
CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

More Concurrency Problems
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Administrivia

❖ Back to in-person next week!!!!!

❖ PennOS

▪ You have the first milestone, which needs to be done sometime
this week

▪ Your group (or at least most of your group) needs to meet with
your assigned TA and display the expectations laid out in the
PennOS Specification

▪ Everyone should have already contacted their group, I sent emails
to every group that had to be filled by course staff (let us know if
you haven’t gotten this)

2

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Administrivia

❖ Check-in released, due before Tuesday’s lecture next
week

❖ Exam grades posted

▪ Remember the Clobber Policy. Many people benefit from this
policy in my courses

▪ Regrade requests open tomorrow at midnight, and will stay open
for a week (April 5th at midnight).

3

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

4

pollev.com/tqm

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Lecture Outline

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

❖ Dining Philosophers

❖ Deadlock Prevention

5

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Condition Variables

❖ Variables that allow for a thread to wait until they are
notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily
release while waiting

▪ Once notified, the thread will re-acquire a lock and resume
execution

6

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Condition Variables

❖ Condition Variables exist so that:

▪ Threads can wait for a shared variable to change

▪ Threads can notify waiting threads that a change has been made
to the shared variable, and that they can stop waiting

❖ Due to condition variables are used to manage access of a
shared variable, it is utilized with a mutex (lock).

▪ For a thread to wait, it must first have the associated lock. While
the thread waits, it gives up the lock

▪ For a thread to signal threads sleeping on a condition variable, it
must also have the associated lock.

▪ When a thread is notified, it will resume executing once it can re-
acquire the lock.

7

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖

▪ “Uninitializes” a condition variable – clean up when done

8

int pthread_cond_init(pthread_cond_t* cond,

 const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition
variable. Once unblocked (by one of the functions below),
function will return and calling thread will have the mutex locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

9

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

 pthread_mutex_t* mutex);

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

10

Critical SectionEntrance Exit

sleeping
room

Waiting
room

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

11

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock

A thread enters the critical section by acquiring a lock

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

12

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

A thread can exit the critical section by acquiring a lock

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

13

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

pthread_cond_wait

If a thread can’t complete its action, or must wait for some change in
state, it can “go to sleep” until someone wakes it up later.

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

14

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

When a thread modifies state and then leaves the critical section, it can also call
pthread_cond_signal to wake up threads sleeping on that condition variable

“WAKEUP”

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

15

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

One or more sleeping threads wake up and attempt to acquire the lock.
Like a normal call to pthread_mutex_lock the thread will block until it can acquire the lock

Implicit call to

pthread_mutex_lock

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Revisiting Producer Consumer

❖ Demo: producer_and_consumer.cpp

▪ Original producer and consumer code

▪ One thread reads a line from stdin and puts it in the deque

▪ The other thread gets that string and prints it

▪ The consumer thread spins while doing this

❖ Demo: cond.cpp

▪ Consumer and producer uses condition variable

▪ Consumer waits if there is no value to process

▪ Producer notifies any sleeping threads

▪ No more spinning ☺

16

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Producer Consumer Example

❖ We still need a
while loop in the
consumer, even
with condition
variables.

❖ Why is this
needed? Why may
our code be
incorrect if we
don’t have one?

17

deque<int> dq;

pthread_mutex_t dq_lock;

pthread_cond_t dq_cond;

void* consumer_thread(void* arg) {

 while (true) {

 pthread_mutex_lock(&dq_lock);

 while (dq.size() == 0) {

 pthread_cond_wait(&dq_cond,

 &dq_lock);

 // do nothing

 }

 int val = dq.at(0);

 dq.pop_front();

 do_something(val);

 pthread_mutex_unlock(&dq_lock);

 }

}

pollev.com/tqm

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Producer Consumer Example

❖ Why is this
needed? Why may
our code be
incorrect if we
don’t have one?

❖ By the time a
thread wakes up,
the shared state
(the queue maybe
empty again)

18

deque<int> dq;

pthread_mutex_t dq_lock;

pthread_cond_t dq_cond;

void* consumer_thread(void* arg) {

 while (true) {

 pthread_mutex_lock(&dq_lock);

 while (dq.size() == 0) {

 pthread_cond_wait(&dq_cond,

 &dq_lock);

 // do nothing

 }

 int val = dq.at(0);

 dq.pop_front();

 do_something(val);

 pthread_mutex_unlock(&dq_lock);

 }

}

pollev.com/tqm

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Lecture Outline

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

❖ Dining Philosophers

❖ Deadlock Prevention

19

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Monitors

❖ Monitors are a higher-level synchronization concept.

❖ A Monitor is associated with an object and enforces that
only one thread can access data/call the functions of an
object at a time.

❖ A monitor is made up of a mutex and a condition variable.

❖ Every Object in java is/has a monitor.

20

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Java Monitor Example

21

public class obj {

 private List<String> data;

 public synchronized String get() {

 while (this.data.size() == 0) {

 wait();

 // Ommitted Java exception handling bs

 }

 return this.data.remove(0);

 }

 public synchronized void set(String new_data) {

 this.data.add(new_data);

 notifyAll();

 }

}

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Monitor vs Condition Variables

❖ What we implemented with condition variables was
essentially a monitor. But condition variables are not
restricted to being used in that context.

❖ Monitors in Java work in a lot of cases and can help
abstract away some of the details with synchronization

❖ In some cases, a monitor would not make the most sense,
but you can still use condition variables to solve the issue.

❖ Monitors are a concept, a condition variable is
an implementation detail 22

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Lecture Outline

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

❖ Dining Philosophers

❖ Deadlock Prevention

23

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Readers / Writers Problem

❖ What if we have some shared data/object and threads
can either read or write to the shared data

❖ How many readers can we have at a time?

▪ Any number of readers, as long as no one is writing, we can have
an unlimited number of readers.

❖ How many writers can we have at a time?

▪ If a thread is writing to the shared data, then only that thread can
have access to the shared data

❖ How do we support multiple readers but single writer?
24

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Reader/Writers

❖ We need some metadata, more than just a lock and a
cond. Consider the following solutions.

25

// These would normally be put

// into a rdwr_lock structure

int num_readers = 0; // number of active readers

int writers_waiting = 0; // number of writers waiting

bool writer_active = false; // is there a writer active?

// lock to make sure only one thread can access &

// modify the metadata at a time

pthread_mutex_t lock;

// allows a reader/writer to wait until

// it is ok to read/write

pthread_mutex_t cond;

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Reader/Writers Demo

❖ Demo: rw_lock.c

▪ Lots of code for how we grant access to readers & writers

26

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Producer Consumer Example

❖ There are (at least 2) issues with liveness in this solution,
what are they?

27

pollev.com/tqm

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

pthread_rwlock

❖ Pthread provides a read/write lock implementation that
handles this problem for us and hides many of the dirty
implementation details

❖ Very similar to pthread_mutex, but two types of locking
▪ pthread_rwlock_rdlock(…); // lock as a reader

▪ pthread_rwlock_wrlock(…); // lock as a writer

29

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Lecture Outline

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

❖ Dining Philosophers

❖ Deadlock Prevention

30

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Dining Philosophers

❖ Assume the following situation

▪ There are N philosophers
(computer scientists) that are
trying to eat rice.

▪ They only have one chopstick
each!

• Need two chopsticks to eat

▪ Alternate between two states:

• Thinking

• Eating

▪ They are arranged in a circle with
a chopstick between each of them

31

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Dining Philosophers

❖ Philosophers have good table
manners

▪ Must acquire two chopsticks to
eat

❖ Useful abstraction /
“standard problem”:

▪ Soundness

• Every chopstick is held by <= 1
philosopher at a time

▪ Deadlock Free

• No state where no one gets to eat

▪ Starvation Free

• Solution guarantees that all
philosophers occasionally eat 32

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

First Solution Attempt

❖ If we number each philosopher 0 – N and the each
chopstick is also 0 – N, we can model the problem with
mutexes, each chopstick is a mutex and each philosopher
is a thread
▪ To eat, thread I must acquire lock I and I + 1

▪ This ensures that each chopstick is only in use by one philosopher
at a time

33

while (true) {

 pthread_mutex_lock(&chopstick[i]);

 pthread_mutex_lock(&chopstick[(i + 1) % N]);

 eat();

 pthread_mutex_unlock(&chopstick[(i + 1) % N]);

 pthread_mutex_unlock(&chopstick[i]);

 think();

}

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Producer Consumer Example

❖ What’s wrong with this? Any Ideas on how to fix it?

34

pollev.com/tqm

while (true) {

 pthread_mutex_lock(&chopstick[i]);

 pthread_mutex_lock(&chopstick[(i + 1) % N]);

 eat();

 pthread_mutex_unlock(&chopstick[(i + 1) % N]);

 pthread_mutex_unlock(&chopstick[i]);

 think();

}

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Second Attempt: Round Robin

❖ Our first attempt deadlocks.

❖ What if we instead we tried doing this “round robin”, we
pass around a token that says “it is your turn to eat”

❖ Can this deadlock?

❖ What issues arise with this solution?

36

No

Not parallel, just sequential eating
Everyone guaranteed gets to eat though ☺

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Third Attempt: Global Mutex

❖ What if instead, we add another “global” mutex that
controls permission to pick up chopsticks. Once a
philosopher has chopsticks, they can release the lock
before they eat

❖ In our metaphor, this means that each philosopher “waits
in line” to pick up chopsticks

❖ Can this deadlock?

❖ What issues arise
with this solution?

37

No
Not the most parallel, could result in sequential
Not everyone guarantee gets to eat

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Fourth Attempt: More Human Approach

❖ What if instead, if a philosopher fails to get a chopstick, it
puts down any chopsticks it has, waits for a little bit and
then tries again?

❖ Can we do this in code?
▪ pthread_mutex_trylock: if the lock can’t be acquired,

return immediately

▪ pthread_mutex_timedlock: timeout after trying to get a
mutex for some specified amount of time

❖ Can this deadlock?

❖ What issues arise with this solution?
38

No

Possible spinning and starvation

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Fifth Attempt: Break the Symmetry

❖ What if the even numbered philosophers and odd
numbered philosophers do things differently?

▪ Even Numbered: Grab chopstick on their left and then right

▪ Odd Numbered: Grab chopstick on their right and then left

❖ Can this deadlock?

❖ What issues arise with this solution?

39

No

threads may still possibly starve

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Lecture Outline

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

❖ Dining Philosophers

❖ Deadlock Prevention

❖ Deadlock Handling (start)

40

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Previously: Deadlocks

❖ Consider the case where there are two threads and two
locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

41

Neither thread can make progress

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Deadlock Definition

❖ A computer has multiple threads, finite resources, and the
threads want to acquire those resources

▪ Some of these resources require exclusive access

❖ A thread can acquire resources:

▪ All at once

▪ Accumulate them over time

▪ If it fails to acquire a resource, it will (by default) wait until it is
available before doing anything

❖ Deadlock: Cyclical dependency on resource acquisition so
that none of them can proceed

▪ Even if all unblocked processes release, deadlock will continue
42

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Preconditions for Deadlock

❖ Deadlock can only happen if these occur simultaneously:

▪ Mutual Exclusion: at least one resource must be held exclusively
by one thread

▪ Hold and Wait: a thread must be holding a resource, requesting a
resource that is held by a thread, and then waiting for it.

▪ No preemption: A resource is held by a thread until it explicitly
releases it. It cannot be preempted by the OS or something else to
force it to release the resource

▪ Circular Wait:
Can be a chain of more than 2 threads
Each thread must be waiting for a resource that is held by another
thread. That other thread must waiting on a resource that forms a
chain of dependency

43

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Circular Wait Example

❖ A cycle can exist of more than just two threads:

44

Has R1

Wants R1

Has R2

Has R3

Thread 1

Thread 2

Thread 3

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Poll:

❖ Can a thread deadlock if there is only one thread?

45

pollev.com/tqm

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Deadlock Prevention

❖ If we can remove the conditions for deadlock, we could
avoid prevent deadlock from every happening

46

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Deadlock Prevention: Mutual Exclusion

❖ Mutual Exclusion: at least one resource must be held
exclusively by one thread

❖ You usually need mutual exclusion or you don’t, so it is
hard to avoid.

❖ Some resources require exclusive access

❖ A lot of work done related to this

▪ called: Lock-free programming, Lock-less programming, or Non-
blocking algorithms

▪ General idea is to take advantage of operations that are atomic at
the hardware level when sharing is needed

47

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Deadlock Prevention: Hold and Wait

❖ Hold and Wait: a thread must be holding a resource,
requesting a resource that is held by a thread, and then
waiting for it.

❖ What if we had each thread acquire all resources it needs
in the begging “at once”

▪ This is like one of our dining philosophers implementations

▪ Not always practical, a thread may not know ahead of time all the
resources it will need

48

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Deadlock Prevention: No Preemption

❖ No preemption: A resource is held by a thread until it
explicitly releases it. It cannot be preempted by the OS or
something else to force it to release the resource

❖ If we force a thread to release a resource, how do we
ensure it is in a valid state?

▪ Undoing actions and recovering valid state is complex (more on
this next lecture)

49

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Deadlock Prevention: Circular Wait

❖ Circular Wait: Each thread must be waiting for a resource
that is held by another thread. That other thread must
waiting on a resource that forms a chain of dependency

❖ Break cycles in resource acquisition.

❖ We could enforce an ordering to resource acquisition.

▪ Consider dining philosophers, what if each thread was required to
get the lowest numbered chopstick it wants first?

❖ Challenge: Still we may not know all resources we need
ahead of time

50

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Deadlock Prevention Summary

❖ Prevent deadlocks by removing any one of the four
deadlock preconditions

❖ But eliminating even one of the preconditions is often
hard/impossible

▪ Mutual Exclusion is necessary in a lot of situations

▪ Forcing a lower priority process to release resources early
requires rollback of execution

▪ Not always possible to know all resources that an operating
system or process will use upfront

51

CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Next Lecture:

❖ More On Deadlock

▪ Detection

▪ Handling

▪ Avoidance

52

	Default Section
	Slide 1: More Concurrency Problems Computer Operating Systems, Spring 2024
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Poll: how are you?
	Slide 5: Lecture Outline
	Slide 6: Condition Variables
	Slide 7: Condition Variables
	Slide 8: pthreads and condition variables
	Slide 9: pthreads and condition variables
	Slide 10: Condition Variable & Mutex Visualization
	Slide 11: Condition Variable & Mutex Visualization
	Slide 12: Condition Variable & Mutex Visualization
	Slide 13: Condition Variable & Mutex Visualization
	Slide 14: Condition Variable & Mutex Visualization
	Slide 15: Condition Variable & Mutex Visualization
	Slide 16: Revisiting Producer Consumer
	Slide 17: Producer Consumer Example
	Slide 18: Producer Consumer Example
	Slide 19: Lecture Outline
	Slide 20: Monitors
	Slide 21: Java Monitor Example
	Slide 22: Monitor vs Condition Variables
	Slide 23: Lecture Outline
	Slide 24: Readers / Writers Problem
	Slide 25: Reader/Writers
	Slide 26: Reader/Writers Demo
	Slide 27: Producer Consumer Example
	Slide 29: pthread_rwlock
	Slide 30: Lecture Outline
	Slide 31: Dining Philosophers
	Slide 32: Dining Philosophers
	Slide 33: First Solution Attempt
	Slide 34: Producer Consumer Example
	Slide 36: Second Attempt: Round Robin
	Slide 37: Third Attempt: Global Mutex
	Slide 38: Fourth Attempt: More Human Approach
	Slide 39: Fifth Attempt: Break the Symmetry
	Slide 40: Lecture Outline
	Slide 41: Previously: Deadlocks
	Slide 42: Deadlock Definition
	Slide 43: Preconditions for Deadlock
	Slide 44: Circular Wait Example
	Slide 45: Poll:
	Slide 46: Deadlock Prevention
	Slide 47: Deadlock Prevention: Mutual Exclusion
	Slide 48: Deadlock Prevention: Hold and Wait
	Slide 49: Deadlock Prevention: No Preemption
	Slide 50: Deadlock Prevention: Circular Wait
	Slide 51: Deadlock Prevention Summary
	Slide 52: Next Lecture:

