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Administrivia

❖ Back to in-person next week!!!!!

❖ PennOS

▪ You have the first milestone, which needs to be done sometime 
this week

▪ Your group (or at least most of your group) needs to meet with 
your assigned TA and display the expectations laid out in the 
PennOS Specification

▪ Everyone should have already contacted their group, I sent emails 
to every group that had to be filled by course staff (let us know if 
you haven’t gotten this)
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Administrivia

❖ Check-in released, due before Tuesday’s lecture next 
week

❖ Exam grades posted

▪ Remember the Clobber Policy. Many people benefit from this 
policy in my courses

▪ Regrade requests open tomorrow at midnight, and will stay open 
for a week (April 5th at midnight).
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Poll: how are you?

❖ Any questions, comments or concerns from last lecture?
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pollev.com/tqm
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Lecture Outline

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

❖ Dining Philosophers

❖ Deadlock Prevention

5
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Condition Variables

❖ Variables that allow for a thread to wait until they are 
notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily 
release while waiting

▪ Once notified, the thread will re-acquire a lock and resume 
execution

6
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Condition Variables

❖ Condition Variables exist so that:

▪ Threads can wait for a shared variable to change

▪ Threads can notify waiting threads that a change has been made 
to the shared variable, and that they can stop waiting

❖ Due to condition variables are used to manage access of a 
shared variable, it is utilized with a mutex (lock).

▪ For a thread to wait, it must first have the associated lock. While 
the thread waits, it gives up the lock

▪ For a thread to signal threads sleeping on a condition variable, it 
must also have the associated lock.

▪ When a thread is notified, it will resume executing once it can re-
acquire the lock.

7
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pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖  

▪ “Uninitializes” a condition variable – clean up when done

8

int pthread_cond_init(pthread_cond_t* cond,

                const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);
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pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition 
variable. Once unblocked (by one of the functions below), 
function will return and calling thread will have the mutex locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

9

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

                pthread_mutex_t* mutex);
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example

10

Critical SectionEntrance Exit

sleeping 
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room
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example
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pthread_mutex_lock

A thread enters the critical section by acquiring a lock 
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example
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sleeping 
room

Waiting
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pthread_cond_wait

If a thread can’t complete its action, or must wait for some change in 
state, it can “go to sleep” until someone wakes it up later.
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example
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When a thread modifies state and then leaves the critical section, it can also call 
pthread_cond_signal to wake up threads sleeping on that condition variable

“WAKEUP”
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example
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One or more sleeping threads wake up and attempt to acquire the lock.
Like a normal call to pthread_mutex_lock the thread will block until it can acquire the lock

Implicit call to

pthread_mutex_lock
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Revisiting Producer Consumer

❖ Demo: producer_and_consumer.cpp

▪ Original producer and consumer code

▪ One thread reads a line from stdin and puts it in the deque

▪ The other thread gets that string and prints it

▪ The consumer thread spins while doing this

❖ Demo: cond.cpp

▪ Consumer and producer uses condition variable

▪ Consumer waits if there is no value to process

▪ Producer notifies any sleeping threads

▪ No more spinning ☺

16
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Producer Consumer Example

❖ We still need a 
while loop in the 
consumer, even 
with condition 
variables.

❖ Why is this 
needed? Why may 
our code be 
incorrect if we 
don’t have one?

17

deque<int> dq;

pthread_mutex_t dq_lock;

pthread_cond_t dq_cond;

void* consumer_thread(void* arg) {

  while (true) {

    pthread_mutex_lock(&dq_lock);

    while (dq.size() == 0) {

      pthread_cond_wait(&dq_cond,

                        &dq_lock);

      // do nothing

    }

    int val = dq.at(0);

    dq.pop_front();

    do_something(val);

    pthread_mutex_unlock(&dq_lock);

  }

}

pollev.com/tqm
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Producer Consumer Example

❖ Why is this 
needed? Why may 
our code be 
incorrect if we 
don’t have one?

❖ By the time a 
thread wakes up, 
the shared state 
(the queue maybe 
empty again)

18

deque<int> dq;

pthread_mutex_t dq_lock;

pthread_cond_t dq_cond;

void* consumer_thread(void* arg) {

  while (true) {

    pthread_mutex_lock(&dq_lock);

    while (dq.size() == 0) {

      pthread_cond_wait(&dq_cond,

                        &dq_lock);

      // do nothing

    }

    int val = dq.at(0);

    dq.pop_front();

    do_something(val);

    pthread_mutex_unlock(&dq_lock);

  }

}

pollev.com/tqm
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Lecture Outline

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

❖ Dining Philosophers

❖ Deadlock Prevention

19
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Monitors

❖ Monitors are a higher-level synchronization concept.

❖ A Monitor is associated with an object and enforces that 
only one thread can access data/call the functions of an 
object at a time.

❖ A monitor is made up of a mutex and a condition variable.

❖ Every Object in java is/has a monitor.

20
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Java Monitor Example

21

public class obj {

  private List<String> data;

  public synchronized String get() {

     while (this.data.size() == 0) {

        wait();

        // Ommitted Java exception handling bs

     }

     return this.data.remove(0);

  }

  public synchronized void set(String new_data) {

     this.data.add(new_data);

     notifyAll();

  }

}
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Monitor vs Condition Variables

❖ What we implemented with condition variables was 
essentially a monitor. But condition variables are not 
restricted to being used in that context. 

❖ Monitors in Java work in a lot of cases and can help 
abstract away some of the details with synchronization

❖ In some cases, a monitor would not make the most sense, 
but you can still use condition variables to solve the issue.

❖ Monitors are a concept, a condition variable is 
an implementation detail 22
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Lecture Outline

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

❖ Dining Philosophers

❖ Deadlock Prevention

23
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Readers / Writers Problem

❖ What if we have some shared data/object and threads 
can either read or write to the shared data

❖ How many readers can we have at a time?

▪ Any number of readers, as long as no one is writing, we can have 
an unlimited number of readers.

❖ How many writers can we have at a time?

▪ If a thread  is writing to the shared data, then only that thread can 
have access to the shared data

❖ How do we support multiple readers but single writer?
24
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Reader/Writers

❖ We need some metadata, more than just a lock and a 
cond. Consider the following solutions.

25

// These would normally be put

// into a rdwr_lock structure

int num_readers = 0;   // number of active readers

int writers_waiting = 0;  // number of writers waiting

bool writer_active = false;  // is there a writer active?

// lock to make sure only one thread can access &

// modify the metadata at a time

pthread_mutex_t lock;  

// allows a reader/writer to wait until

// it is ok to read/write

pthread_mutex_t cond;
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Reader/Writers Demo

❖ Demo: rw_lock.c 

▪ Lots of code for how we grant access to readers & writers

26
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Producer Consumer Example

❖ There are (at least 2) issues with liveness in this solution, 
what are they?

27

pollev.com/tqm
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pthread_rwlock

❖ Pthread provides a read/write lock implementation that 
handles this problem for us and hides many of the dirty 
implementation details

❖ Very similar to pthread_mutex, but two types of locking
▪ pthread_rwlock_rdlock(…);  // lock as a reader

▪ pthread_rwlock_wrlock(…);  // lock as a writer

29
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Lecture Outline

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

❖ Dining Philosophers

❖ Deadlock Prevention

30
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Dining Philosophers

❖ Assume the following situation

▪ There are N philosophers 
(computer scientists) that are 
trying to eat rice.

▪ They only have one chopstick 
each!

• Need two chopsticks to eat 

▪ Alternate between two states:

• Thinking

• Eating

▪ They are arranged in a circle with 
a chopstick between each of them

31
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Dining Philosophers

❖ Philosophers have good table 
manners

▪ Must acquire two chopsticks to 
eat

❖ Useful abstraction /
“standard problem”:

▪ Soundness

• Every chopstick is held by <= 1 
philosopher at a time

▪ Deadlock Free

• No state where no one gets to eat

▪ Starvation Free

• Solution guarantees that all 
philosophers occasionally eat 32
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First Solution Attempt

❖ If we number each philosopher 0 – N and the each 
chopstick is also 0 – N, we can model the problem with 
mutexes, each chopstick is a mutex and each philosopher 
is a thread
▪ To eat, thread I must acquire lock I and I + 1

▪ This ensures that each chopstick is only in use by one philosopher 
at a time

33

while (true) {

  pthread_mutex_lock(&chopstick[i]);

  pthread_mutex_lock(&chopstick[(i + 1) % N]);

  eat();

  pthread_mutex_unlock(&chopstick[(i + 1) % N]);

  pthread_mutex_unlock(&chopstick[i]);

  think();

}
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Producer Consumer Example

❖ What’s wrong with this? Any Ideas on how to fix it?

34

pollev.com/tqm

while (true) {

  pthread_mutex_lock(&chopstick[i]);

  pthread_mutex_lock(&chopstick[(i + 1) % N]);

  eat();

  pthread_mutex_unlock(&chopstick[(i + 1) % N]);

  pthread_mutex_unlock(&chopstick[i]);

  think();

}
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Second Attempt: Round Robin

❖ Our first attempt deadlocks.

❖ What if we instead we tried doing this “round robin”, we 
pass around a token that says “it is your turn to eat”

❖ Can this deadlock?

❖ What issues arise with this solution?

36

No

Not parallel, just sequential eating 
Everyone guaranteed gets to eat though ☺
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Third Attempt: Global Mutex

❖ What if instead, we add another “global” mutex that 
controls permission to pick up chopsticks. Once a 
philosopher has chopsticks, they can release the lock 
before they eat

❖ In our metaphor, this means that each philosopher “waits 
in line” to pick up chopsticks

❖ Can this deadlock?

❖ What issues arise
with this solution?

37

No
Not the most parallel, could result in sequential
Not everyone guarantee gets to eat
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Fourth Attempt: More Human Approach

❖ What if instead, if a philosopher fails to get a chopstick, it 
puts down any chopsticks it has, waits for a little bit and 
then tries again?

❖ Can we do this in code?
▪ pthread_mutex_trylock: if the lock can’t be acquired, 

return immediately

▪ pthread_mutex_timedlock: timeout after trying to get a 
mutex for some specified amount of time

❖ Can this deadlock?

❖ What issues arise with this solution?
38

No

Possible spinning and starvation
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Fifth Attempt: Break the Symmetry

❖ What if the even numbered philosophers and odd 
numbered philosophers do things differently?

▪ Even Numbered: Grab chopstick on their left and then right

▪ Odd Numbered: Grab chopstick on their right and then left

❖ Can this deadlock?

❖ What issues arise with this solution?

39

No

threads may still possibly starve 
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Lecture Outline

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

❖ Dining Philosophers

❖ Deadlock Prevention

❖ Deadlock Handling (start)

40
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Previously: Deadlocks

❖ Consider the case where there are two threads and two 
locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

41

Neither thread can make progress 
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Deadlock Definition

❖ A computer has multiple threads, finite resources, and the 
threads want to acquire those resources

▪ Some of these resources require exclusive access

❖ A thread can acquire resources:

▪ All at once

▪ Accumulate them over time

▪ If it fails to acquire a resource, it will (by default) wait until it is 
available before doing anything 

❖ Deadlock: Cyclical dependency on resource acquisition so 
that none of them can proceed

▪ Even if all unblocked processes release, deadlock will continue
42
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Preconditions for Deadlock

❖ Deadlock can only happen if these occur simultaneously:

▪ Mutual Exclusion: at least one resource must be held exclusively 
by one thread

▪ Hold and Wait: a thread must be holding a resource, requesting a 
resource that is held by a thread, and then waiting for it.

▪ No preemption: A resource is held by a thread until it explicitly 
releases it. It cannot be preempted by the OS or something else to 
force it to release the resource 

▪ Circular Wait: 
Can be a chain of more than 2 threads
Each thread must be waiting for a resource that is held by another 
thread. That other thread must waiting on a resource that forms a 
chain of dependency

43
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Circular Wait Example

❖ A cycle can exist of more than just two threads:

44

Has R1

Wants R1

Has R2

Has R3

Thread 1

Thread 2

Thread 3
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Poll:

❖ Can a thread deadlock if there is only one thread?

45

pollev.com/tqm
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Deadlock Prevention

❖ If we can remove the conditions for deadlock, we could 
avoid prevent deadlock from every happening 

46
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Deadlock Prevention: Mutual Exclusion

❖ Mutual Exclusion: at least one resource must be held 
exclusively by one thread

❖ You usually need mutual exclusion or you don’t, so  it is 
hard to avoid.

❖ Some resources require exclusive access

❖ A lot of work done related to this

▪ called: Lock-free programming, Lock-less programming, or Non-
blocking algorithms

▪ General idea is to take advantage of operations that are atomic at 
the hardware level when sharing is needed

47
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Deadlock Prevention: Hold and Wait

❖ Hold and Wait: a thread must be holding a resource, 
requesting a resource that is held by a thread, and then 
waiting for it.

❖ What if we had each thread acquire all resources it needs 
in the begging “at once”

▪ This is like one of our dining philosophers implementations

▪ Not always practical, a thread may not know ahead of time all the 
resources it will need

48
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Deadlock Prevention: No Preemption

❖ No preemption: A resource is held by a thread until it 
explicitly releases it. It cannot be preempted by the OS or 
something else to force it to release the resource

❖ If we force a thread to release a resource, how do we 
ensure it is in a valid state?

▪ Undoing actions and recovering valid state is complex (more on 
this next lecture)

49



CIS 3800, Spring 2024L16: Cond & Concurrency Problems & Deadlock DetecionUniversity of Pennsylvania

Deadlock Prevention: Circular Wait

❖ Circular Wait: Each thread must be waiting for a resource 
that is held by another thread. That other thread must 
waiting on a resource that forms a chain of dependency

❖ Break cycles in resource acquisition. 

❖ We could enforce an ordering to resource acquisition.

▪ Consider dining philosophers, what if each thread was required to 
get the lowest numbered chopstick it wants first?

❖ Challenge: Still we may not know all resources we need 
ahead of time

50
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Deadlock Prevention Summary

❖ Prevent deadlocks by removing any one of the four 
deadlock preconditions

❖ But eliminating even one of the preconditions is often 
hard/impossible

▪ Mutual Exclusion is necessary in a lot of situations

▪ Forcing a lower priority process to release resources early 
requires rollback of execution

▪ Not always possible to know all resources that an operating 
system or process will use upfront

51
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Next Lecture: 

❖ More On Deadlock

▪ Detection

▪ Handling

▪ Avoidance

52
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