
CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Fun with Concurrency ☺
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Administrivia

❖ PennOS

▪ You have the first milestone, which should have been done last
week

▪ Everyone should have already contacted their group, and should
get started working on it.

▪ Milestone 1 is due next week

• Between Tuesday the 9th and Friday the 12th

• Need to meet with TA again to show significant progress

• Have a plan (a REAL plan) for how to complete the rest

▪ Full Thing due ~April 22nd

2

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Administrivia

❖ Check-in was due before today’s lecture

▪ Another one will be released this week, due sometime next week

❖ Exam grades posted

▪ Remember the Clobber Policy. Many people benefit from this
policy in my courses

▪ Regrade are open and will stay open till April 5th at midnight.

3

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

4

pollev.com/tqm

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Lecture Outline

❖ Dining Philosophers

❖ Deadlock Prevention

❖ Deadlock Handling

❖ Parallel Analysis

5

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Dining Philosophers

❖ Assume the following situation

▪ There are N philosophers
(computer scientists) that are
trying to eat rice.

▪ They only have one chopstick
each!

• Need two chopsticks to eat

▪ Alternate between two states:

• Thinking

• Eating

▪ They are arranged in a circle with
a chopstick between each of them

6

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Dining Philosophers

❖ Philosophers have good table
manners

▪ Must acquire two chopsticks to
eat

▪ Only one philosopher can have
a chopstick at a time

❖ Useful abstraction /
“standard problem”:

▪ Deadlock Free

• No state where no one gets to eat

▪ Starvation Free

• Solution guarantees that all
philosophers occasionally eat

• Ideally maximize parallel eating 7

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

First Solution Attempt

❖ If we number each philosopher 0 – N and then each
chopstick is also 0 – N, we can model the problem with
mutexes, each chopstick is a mutex and each philosopher
is a thread
▪ To eat, thread I must acquire lock I and I + 1

▪ This ensures that each chopstick is only in use by one philosopher
at a time

8

while (true) {

 pthread_mutex_lock(&chopstick[i]);

 pthread_mutex_lock(&chopstick[(i + 1) % N]);

 eat();

 pthread_mutex_unlock(&chopstick[(i + 1) % N]);

 pthread_mutex_unlock(&chopstick[i]);

 think();

}

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Producer Consumer Example

❖ What’s wrong with this? Any Ideas on how to fix it?

▪ Reminder: we number each philosopher 0 – N and then each
chopstick is also 0 – N

9

pollev.com/tqm

while (true) {

 pthread_mutex_lock(&chopstick[i]);

 pthread_mutex_lock(&chopstick[(i + 1) % N]);

 eat();

 pthread_mutex_unlock(&chopstick[(i + 1) % N]);

 pthread_mutex_unlock(&chopstick[i]);

 think();

}

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Producer Consumer Example

❖ What’s wrong with this? Any Ideas on how to fix it?

▪ Reminder: we number each philosopher 0 – N and then each
chopstick is also 0 – N

10

pollev.com/tqm

while (true) {

 pthread_mutex_lock(&chopstick[i]);

 pthread_mutex_lock(&chopstick[(i + 1) % N]);

 eat();

 pthread_mutex_unlock(&chopstick[(i + 1) % N]);

 pthread_mutex_unlock(&chopstick[i]);

 think();

}

Deadlock is possible: what happens if all threads pickup their left at the same time?

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Second Attempt: Round Robin

❖ Our first attempt deadlocks.

❖ What if we instead we tried doing this “round robin”, we
pass around a token that says “it is your turn to eat”

❖ Can this deadlock?

❖ What issues arise with this solution?

11

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Second Attempt: Round Robin

❖ Our first attempt deadlocks.

❖ What if we instead we tried doing this “round robin”, we
pass around a token that says “it is your turn to eat”

❖ Can this deadlock?

❖ What issues arise with this solution?

12

No

Not parallel, just sequential eating
Everyone guaranteed gets to eat though ☺

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Third Attempt: Global Mutex

❖ What if instead, we add another “global” mutex that
controls permission to pick up chopsticks. Once a
philosopher has chopsticks, they can release the lock
before they eat

❖ In our metaphor, this means that each philosopher “waits
in line” to pick up chopsticks

❖ Can this deadlock?

❖ What issues arise
with this solution?

13

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Third Attempt: Global Mutex

❖ What if instead, we add another “global” mutex that
controls permission to pick up chopsticks. Once a
philosopher has chopsticks, they can release the lock
before they eat

❖ In our metaphor, this means that each philosopher “waits
in line” to pick up chopsticks

❖ Can this deadlock?

❖ What issues arise
with this solution?

14

No
Not the most parallel, could result in sequential
Not everyone guarantee gets to eat

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Fourth Attempt: More Human Approach

❖ What if instead, if a philosopher fails to get a chopstick, it
puts down any chopsticks it has, waits for a little bit and
then tries again?

❖ Can we do this in code?
▪ pthread_mutex_trylock: if the lock can’t be acquired,

return immediately

▪ pthread_mutex_timedlock: timeout after trying to get a
mutex for some specified amount of time

❖ Can this deadlock?

❖ What issues arise with this solution?
15

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Fourth Attempt: More Human Approach

❖ What if instead, if a philosopher fails to get a chopstick, it
puts down any chopsticks it has, waits for a little bit and
then tries again?

❖ Can we do this in code?
▪ pthread_mutex_trylock: if the lock can’t be acquired,

return immediately

▪ pthread_mutex_timedlock: timeout after trying to get a
mutex for some specified amount of time

❖ Can this deadlock?

❖ What issues arise with this solution?
16

No

Possible spinning and starvation

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Fifth Attempt: Break the Symmetry

❖ What if the even numbered philosophers and odd
numbered philosophers do things differently?

▪ Even Numbered: Grab chopstick on their left and then right

▪ Odd Numbered: Grab chopstick on their right and then left

❖ Can this deadlock?

❖ What issues arise with this solution?

17

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Fifth Attempt: Break the Symmetry

❖ What if the even numbered philosophers and odd
numbered philosophers do things differently?

▪ Even Numbered: Grab chopstick on their left and then right

▪ Odd Numbered: Grab chopstick on their right and then left

❖ Can this deadlock?

❖ What issues arise with this solution?

18

No

threads may still possibly starve

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Lecture Outline

❖ Dining Philosophers

❖ Deadlock Prevention

❖ Deadlock Handling

❖ Parallel Analysis

19

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Previously: Deadlocks

❖ Consider the case where there are two threads and two
locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

20

Neither thread can make progress

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Deadlock Definition

❖ A computer has multiple threads, finite resources, and the
threads want to acquire those resources

▪ Some of these resources require exclusive access

❖ A thread can acquire resources:

▪ All at once

▪ Accumulate them over time

▪ If it fails to acquire a resource, it will (by default) wait until it is
available before doing anything

❖ Deadlock: Cyclical dependency on resource acquisition so
that none of them can proceed

▪ Even if all unblocked processes release, deadlock will continue
21

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Preconditions for Deadlock

❖ Deadlock can only happen if these occur simultaneously:

▪ Mutual Exclusion: at least one resource must be held exclusively
by one thread

▪ Hold and Wait: a thread must be holding a resource, requesting a
resource that is held by a thread, and then waiting for it.

▪ No preemption: A resource is held by a thread until it explicitly
releases it. It cannot be preempted by the OS or something else to
force it to release the resource

▪ Circular Wait:
Can be a chain of more than 2 threads
Each thread must be waiting for a resource that is held by another
thread. That other thread must waiting on a resource that forms a
chain of dependency

22

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Circular Wait Example

❖ A cycle can exist of more than just two threads:

23

Has R1

Wants R1

Has R2

Has R3

Thread 1

Thread 2

Thread 3

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Poll:

❖ Can a thread deadlock if there is only one thread?

24

pollev.com/tqm

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Deadlock Prevention

❖ If we can remove the conditions for deadlock, we could
avoid prevent deadlock from every happening

25

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Deadlock Prevention: Mutual Exclusion

❖ Mutual Exclusion: at least one resource must be held
exclusively by one thread

❖ You usually need mutual exclusion or you don’t, so it is
hard to avoid.

❖ Some resources require exclusive access

❖ A lot of work done related to this

▪ called: Lock-free programming, Lock-less programming, or Non-
blocking algorithms

▪ General idea is to take advantage of operations that are atomic at
the hardware level when sharing is needed

26

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Deadlock Prevention: Hold and Wait

❖ Hold and Wait: a thread must be holding a resource,
requesting a resource that is held by a thread, and then
waiting for it.

❖ What if we had each thread acquire all resources it needs
in the beginning “at once”

▪ This is like one of our dining philosophers implementations

▪ Not always practical, a thread may not know ahead of time all the
resources it will need

27

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Deadlock Prevention: No Preemption

❖ No preemption: A resource is held by a thread until it
explicitly releases it. It cannot be preempted by the OS or
something else to force it to release the resource

❖ If we force a thread to release a resource, how do we
ensure it is in a valid state?

▪ Undoing actions and recovering valid state is complex (more on
this next lecture)

28

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Deadlock Prevention: Circular Wait

❖ Circular Wait: Each thread must be waiting for a resource
that is held by another thread. That other thread must
waiting on a resource that forms a chain of dependency

❖ Break cycles in resource acquisition.

❖ We could enforce an ordering to resource acquisition.

▪ Consider dining philosophers, what if each thread was required to
get the lowest numbered chopstick it wants first?

❖ Challenge: Still we may not know all resources we need
ahead of time

29

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Deadlock Prevention Summary

❖ Prevent deadlocks by removing any one of the four
deadlock preconditions

❖ But eliminating even one of the preconditions is often
hard/impossible

▪ Mutual Exclusion is necessary in a lot of situations

▪ Forcing a lower priority process to release resources early
requires rollback of execution

▪ Not always possible to know all resources that an operating
system or process will use upfront

30

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Lecture Outline

❖ Dining Philosophers

❖ Deadlock Prevention

❖ Deadlock Handling

▪ Ostrich

▪ Prevention

▪ Detection

▪ Avoidance

❖ Parallel Analysis

31

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

32

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

33Ostriches don’t actually do this, but it is an old myth

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

❖ Ignoring potential problems

▪ Usually under the assumption that it is either rare, too expensive
to handle, and/or not a fatal error

❖ Used in real world contexts, there is a real cost to tracking
down every possible deadlock case and trying to fix it

▪ Cost on the developer side: more time to develop

▪ Cost on the software side: more computation for these things to
do, slows things down

34

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Deadlock Handling: Prevention

❖ Ad Hoc Approach

▪ Key insights into application logic allow you to write code that
avoids cycles/deadlock

▪ Example: Dining Philosophers breaking symmetry with even/odd
philosophers

❖ Exhaustive Search Approach

▪ Static analysis on source code to detect deadlocks

▪ Formal verification: model checking

▪ Unable to scale beyond small programs in practice
Impossible to prove for any arbitrary program (without
restrictions)

35

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Detection

❖ If we can’t guarantee deadlocks won’t happen, we can
instead try to detect a deadlock just before it will happen
and then intervene.

❖ Two big parts

▪ Detection algorithm. This is usually done with tracking metadata
and graph theory

▪ The intervention/recovery. We typically want some sort of way to
“recover” to a safe state when we detect a deadlock is going to
happen

36

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Detection Algorithms

❖ The common idea is to think of the threads and resources
as a graph.

▪ If there is a cycle: deadlock

▪ If there is no cycle: no deadlock

❖ Finding cycles in a graph is a common algorithm problem
with many solutions.

37

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Deadlock Detection Example

❖ Consider the following example with 5 threads and 5
resources that require mutual exclusion is this a
deadlock?

▪ Thread 1 has R2 but wants R1

▪ Thread 2 has R1 but wants R3, R4 and R5

▪ Thread 3 has R4 but wants R5

▪ Thread 4 has R5 but wants R2

▪ Thread 5 has R3

38

pollev.com/tqm

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Resource Allocation Graph

❖ We can represent this deadlock with a graph:

▪ Each resource and thread is a node

▪ If a thread has a resource, draw an arrow pointing at the thread
form that resource

▪ If a thread wants to acquire a resource but can’t, draw an arrow
pointing at the resource from the thread trying to acquire it

39

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

40

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

41

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

42

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

43

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

44

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

45

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Alternate graph

❖ Instead of also representing resources as nodes, we can
have a “wait for” graph, showing how threads are waiting
on each other

46

T1

T5

T2

T4

T3

Wait For Graph

T1 is waiting for a

resource held by T2

and T4 is waiting on T1

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Recovery after Detection

❖ Preemption:

▪ Force a thread to give up a resource

▪ Often is not safe to do or impossible

❖ Rollback:

▪ Occasionally checkpoint the state of the system, if a deadlock is
detected then go back to the checkpointed “Saved state”

▪ Used commonly in database systems

▪ Maintaining enough information to rollback and doing the
rollback can be expensive

❖ Manual Killing:

▪ Kill a process/thread, check for deadlock, repeat till there is no
deadlock

▪ Not safe, but it is simple
47

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Overall Costs

❖ Doing Deadlock Detection & Recovery solves deadlock
issues, but there is a cost to memory and CPU to store the
necessary information and check for deadlock

❖ This is why sometimes the ostrich algorithm is preferred

48

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Avoidance

❖ Instead of detecting a deadlock when it happens and
having expensive rollbacks, we may want to instead avoid
deadlock cases earlier

❖ Idea:

▪ Before it does work, it submits a request for all the resources it
will need.

▪ A deadlock detection algorithm is run

• If acquiring those resources would lead to a deadlock, deny the
request. The calling thread can try again later

• If there is no deadlock, then the thread can acquire the resources and
complete its task

▪ The calling thread later releases resources as they are done with
them 49

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Avoidance

❖ Pros:

▪ Avoids expensive rollbacks or recovery algorithms

❖ Cons:

▪ Can’t always know ahead of time all resources that are required

▪ Resources may spend more time being locked if all resources
need to be acquired before an action is taken by a thread, could
hurt parallelizability

• Consider a thread that does a very expensive computation with many
shared resources.

• Has one resources that is only updated at the end of the computation.

• That resources is locked for a long time and other threads that may
need it cannot access it

50

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Aside: Bankers Algorithm

❖ This gets more complicated when there are multiple
copies of resources, or a finite number of people can
access a resources.

❖ The Banker’s Algorithm handles these cases

▪ But I won’t go into detail about this

▪ There is a video linked on the website under this lecture you can
watch if you want to know more

51

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Lecture Outline

❖ Dining Philosophers

❖ Deadlock Prevention

❖ Deadlock Handling

❖ Parallel Analysis

▪ Recurrences

▪ Amdahl's Law

52

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Parallel Algorithms

❖ One interesting applications of threads is for faster
algorithms

❖ Common Example: Merge sort

53

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

Output array

firstIndex secondIndex

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1Output array

firstIndex secondIndex

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2Output array

firstIndex secondIndex

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2 3Output array

firstIndex secondIndex

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2 3 4Output array

firstIndex secondIndex

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2 3 4 5Output array

firstIndex secondIndex

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2 3 4 5 6Output array

firstIndex secondIndex

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2 3 4 5 6 7Output array

firstIndex secondIndex

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2 3 4 5 6 7 8Output array

firstIndex secondIndex

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

10 11 14 15 20 54 55 78

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ Algorithmic analysis of merge sort gets us to O(n * log(n))
runtime.

❖ We recurse log2(N) times, each recursive “layer” does
O(N) work

70

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 merge_sort(arr, lo, mid); // sort the bottom half

 merge_sort(arr, mid, hi); // sort the upper half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

71

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 // sort bottom half in parallel

 pthread_create(merge_sort(arr, lo, mid));

 merge_sort(arr, mid, hi); // sort the upper half

 pthread_join(); // join the thread that did bottom half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

▪ How long does this take to run?

▪ How much work is being done? 72

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 // sort bottom half in parallel

 pthread_create(merge_sort(arr, lo, mid));

 merge_sort(arr, mid, hi); // sort the upper half

 pthread_join(); // join the thread that did bottom half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

pollev.com/tqm

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Parallel Algos:

❖ We can define T(n) to be the running time of our
algorithm

❖ We can split up our work between two parts, the part
done sequentially, and the part done in parallel

▪ T(n) = sequential_part + parallel_part

▪ T(n) = O(n) merging + T(n/2) sort half the array

• This is a recursive definition

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)
73

Will not test you on this

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Parallel Algos:

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

▪ …

▪ Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

❖ This approximates to T(n) = ~2 * O(n) = O(n)

▪ This parallel merge sort is O(n), but there are further
optimizations that can be done to reach ~O(log(n))

❖ There is a lot more to parallel algo analysis than just this, I
am just giving you a sneak peek

74

Will not test you on this

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Amdahl's Law

❖ For most algorithms, there are parts that parallelize well
and parts that don’t. This causes adding threads to have
diminishing returns

▪ (even ignoring the overhead costs of creating & scheduling
threads)

❖ Consider we have some parallel algorithm T1 = 1

▪ The 1 subscript indicates this is run on 1 thread

▪ we define the work for the entire algorithm as 1

❖ We define S as being the part that can be parallelized

▪ T1 = S + (1 – S) // (1-S) is the sequential part

75

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Amdahl's Law

❖ For running on one thread:

▪ T1 = (1 – S) + S

❖ If we have P threads and perfect linear speedup on the
parallelizable part, we get

▪ TP = (1-S) +
𝑆

𝑃

❖ Speed up multiplier for P threads from sequential is:

▪
𝑇1

𝑇𝑝
 =

1

1−𝑆+
𝑆

𝑃

76

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Amdahl's Law

❖ Let’s say that we have 100000 threads (P = 100000) and
our algorithm is only 2/3 parallel? (s = 0.6666..)

▪
𝑇1

𝑇𝑝
 =

1

1−0.6666+
0.6666

100000

= 2.9999 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 90% parallel? (S = 0.9):

▪
𝑇1

𝑇𝑝
 =

1

1−0.9+
0.9

100000

= 9.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 99% parallel? (S = 0.99):

▪
𝑇1

𝑇𝑝
 =

1

1−0.99+
0.99

100000

= 99.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

77

CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Limitation: Hardware Threads

❖ These algorithms are limited by hardware.

❖ Number of Hardware Threads: The number of threads can
genuinely run in parallel on hardware

❖ We may be able to create a huge number of threads, but
only run a few (e.g. 4) in parallel at a time.

❖ Can see this information in with lscpu in bash

▪ A computer can have some number of CPU sockets

▪ Each CPU can have one or more cores

▪ Each Core can run 1 or more threads

78

	Default Section
	Slide 1: Fun with Concurrency Computer Operating Systems, Spring 2024
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Poll: how are you?
	Slide 5: Lecture Outline
	Slide 6: Dining Philosophers
	Slide 7: Dining Philosophers
	Slide 8: First Solution Attempt
	Slide 9: Producer Consumer Example
	Slide 10: Producer Consumer Example
	Slide 11: Second Attempt: Round Robin
	Slide 12: Second Attempt: Round Robin
	Slide 13: Third Attempt: Global Mutex
	Slide 14: Third Attempt: Global Mutex
	Slide 15: Fourth Attempt: More Human Approach
	Slide 16: Fourth Attempt: More Human Approach
	Slide 17: Fifth Attempt: Break the Symmetry
	Slide 18: Fifth Attempt: Break the Symmetry
	Slide 19: Lecture Outline
	Slide 20: Previously: Deadlocks
	Slide 21: Deadlock Definition
	Slide 22: Preconditions for Deadlock
	Slide 23: Circular Wait Example
	Slide 24: Poll:
	Slide 25: Deadlock Prevention
	Slide 26: Deadlock Prevention: Mutual Exclusion
	Slide 27: Deadlock Prevention: Hold and Wait
	Slide 28: Deadlock Prevention: No Preemption
	Slide 29: Deadlock Prevention: Circular Wait
	Slide 30: Deadlock Prevention Summary
	Slide 31: Lecture Outline
	Slide 32: Deadlock Handling: Ostrich Algorithm
	Slide 33: Deadlock Handling: Ostrich Algorithm
	Slide 34: Deadlock Handling: Ostrich Algorithm
	Slide 35: Deadlock Handling: Prevention
	Slide 36: Detection
	Slide 37: Detection Algorithms
	Slide 38: Deadlock Detection Example
	Slide 39: Resource Allocation Graph
	Slide 40: Resource Allocation Graph Example
	Slide 41: Resource Allocation Graph Example
	Slide 42: Resource Allocation Graph Example
	Slide 43: Resource Allocation Graph Example
	Slide 44: Resource Allocation Graph Example
	Slide 45: Resource Allocation Graph Example
	Slide 46: Alternate graph
	Slide 47: Recovery after Detection
	Slide 48: Overall Costs
	Slide 49: Avoidance
	Slide 50: Avoidance
	Slide 51: Aside: Bankers Algorithm
	Slide 52: Lecture Outline
	Slide 53: Parallel Algorithms
	Slide 54: Merge Sort: Core Ideas
	Slide 55: Merge Sort: Core Ideas
	Slide 56: Merge Sort: Core Ideas
	Slide 57: Merge Sort: Core Ideas
	Slide 58: Merge Sort: Core Ideas
	Slide 59: Merge Sort: Core Ideas
	Slide 60: Merge Sort: Core Ideas
	Slide 61: Merge Sort: Core Ideas
	Slide 62: Merge Sort: Core Ideas
	Slide 63: Merge Sort: High Level Example
	Slide 64: Merge Sort: High Level Example
	Slide 65: Merge Sort: High Level Example
	Slide 66: Merge Sort: High Level Example
	Slide 67: Merge Sort: High Level Example
	Slide 68: Merge Sort: High Level Example
	Slide 69: Merge Sort: High Level Example
	Slide 70: Merge Sort Algorithmic Analysis
	Slide 71: Merge Sort Algorithmic Analysis
	Slide 72: Merge Sort Algorithmic Analysis
	Slide 73: Parallel Algos:
	Slide 74: Parallel Algos:
	Slide 75: Amdahl's Law
	Slide 76: Amdahl's Law
	Slide 77: Amdahl's Law
	Slide 78: Limitation: Hardware Threads

