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Administrivia

❖ PennOS

▪ You have the first milestone, which should have been done last 
week

▪ Everyone should have already contacted their group, and should 
get started working on it.

▪ Milestone 1 is due next week

• Between Tuesday the 9th and Friday the 12th 

• Need to meet with TA again to show significant progress

• Have a plan (a REAL plan) for how to complete the rest

▪ Full Thing due ~April 22nd
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Administrivia

❖ Check-in was due before today’s lecture

▪ Another one will be released this week, due sometime next week

❖ Exam grades posted

▪ Remember the Clobber Policy. Many people benefit from this 
policy in my courses

▪ Regrade are open and will stay open till April 5th at midnight.
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Poll: how are you?

❖ Any questions, comments or concerns from last lecture?
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Lecture Outline

❖ Dining Philosophers

❖ Deadlock Prevention

❖ Deadlock Handling

❖ Parallel Analysis
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Dining Philosophers

❖ Assume the following situation

▪ There are N philosophers 
(computer scientists) that are 
trying to eat rice.

▪ They only have one chopstick 
each!

• Need two chopsticks to eat 

▪ Alternate between two states:

• Thinking

• Eating

▪ They are arranged in a circle with 
a chopstick between each of them
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Dining Philosophers

❖ Philosophers have good table 
manners

▪ Must acquire two chopsticks to 
eat

▪ Only one philosopher can have
a chopstick at a time

❖ Useful abstraction /
“standard problem”:

▪ Deadlock Free

• No state where no one gets to eat

▪ Starvation Free

• Solution guarantees that all 
philosophers occasionally eat

• Ideally maximize parallel eating 7
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First Solution Attempt

❖ If we number each philosopher 0 – N and then each 
chopstick is also 0 – N, we can model the problem with 
mutexes, each chopstick is a mutex and each philosopher 
is a thread
▪ To eat, thread I must acquire lock I and I + 1

▪ This ensures that each chopstick is only in use by one philosopher 
at a time

8

while (true) {

  pthread_mutex_lock(&chopstick[i]);

  pthread_mutex_lock(&chopstick[(i + 1) % N]);

  eat();

  pthread_mutex_unlock(&chopstick[(i + 1) % N]);

  pthread_mutex_unlock(&chopstick[i]);

  think();

}
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Producer Consumer Example

❖ What’s wrong with this? Any Ideas on how to fix it?

▪ Reminder: we number each philosopher 0 – N and then each 
chopstick is also 0 – N

9
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while (true) {

  pthread_mutex_lock(&chopstick[i]);

  pthread_mutex_lock(&chopstick[(i + 1) % N]);

  eat();

  pthread_mutex_unlock(&chopstick[(i + 1) % N]);

  pthread_mutex_unlock(&chopstick[i]);

  think();

}
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Producer Consumer Example

❖ What’s wrong with this? Any Ideas on how to fix it?

▪ Reminder: we number each philosopher 0 – N and then each 
chopstick is also 0 – N

10

pollev.com/tqm

while (true) {

  pthread_mutex_lock(&chopstick[i]);

  pthread_mutex_lock(&chopstick[(i + 1) % N]);

  eat();

  pthread_mutex_unlock(&chopstick[(i + 1) % N]);

  pthread_mutex_unlock(&chopstick[i]);

  think();

}

Deadlock is possible: what happens if all threads pickup their left at the same time?
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Second Attempt: Round Robin

❖ Our first attempt deadlocks.

❖ What if we instead we tried doing this “round robin”, we 
pass around a token that says “it is your turn to eat”

❖ Can this deadlock?

❖ What issues arise with this solution?
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Second Attempt: Round Robin

❖ Our first attempt deadlocks.

❖ What if we instead we tried doing this “round robin”, we 
pass around a token that says “it is your turn to eat”

❖ Can this deadlock?

❖ What issues arise with this solution?

12

No

Not parallel, just sequential eating 
Everyone guaranteed gets to eat though ☺
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Third Attempt: Global Mutex

❖ What if instead, we add another “global” mutex that 
controls permission to pick up chopsticks. Once a 
philosopher has chopsticks, they can release the lock 
before they eat

❖ In our metaphor, this means that each philosopher “waits 
in line” to pick up chopsticks

❖ Can this deadlock?

❖ What issues arise
with this solution?
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Third Attempt: Global Mutex

❖ What if instead, we add another “global” mutex that 
controls permission to pick up chopsticks. Once a 
philosopher has chopsticks, they can release the lock 
before they eat

❖ In our metaphor, this means that each philosopher “waits 
in line” to pick up chopsticks

❖ Can this deadlock?

❖ What issues arise
with this solution?

14

No
Not the most parallel, could result in sequential
Not everyone guarantee gets to eat
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Fourth Attempt: More Human Approach

❖ What if instead, if a philosopher fails to get a chopstick, it 
puts down any chopsticks it has, waits for a little bit and 
then tries again?

❖ Can we do this in code?
▪ pthread_mutex_trylock: if the lock can’t be acquired, 

return immediately

▪ pthread_mutex_timedlock: timeout after trying to get a 
mutex for some specified amount of time

❖ Can this deadlock?

❖ What issues arise with this solution?
15
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Fourth Attempt: More Human Approach

❖ What if instead, if a philosopher fails to get a chopstick, it 
puts down any chopsticks it has, waits for a little bit and 
then tries again?

❖ Can we do this in code?
▪ pthread_mutex_trylock: if the lock can’t be acquired, 

return immediately

▪ pthread_mutex_timedlock: timeout after trying to get a 
mutex for some specified amount of time

❖ Can this deadlock?

❖ What issues arise with this solution?
16

No

Possible spinning and starvation
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Fifth Attempt: Break the Symmetry

❖ What if the even numbered philosophers and odd 
numbered philosophers do things differently?

▪ Even Numbered: Grab chopstick on their left and then right

▪ Odd Numbered: Grab chopstick on their right and then left

❖ Can this deadlock?

❖ What issues arise with this solution?
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Fifth Attempt: Break the Symmetry

❖ What if the even numbered philosophers and odd 
numbered philosophers do things differently?

▪ Even Numbered: Grab chopstick on their left and then right

▪ Odd Numbered: Grab chopstick on their right and then left

❖ Can this deadlock?

❖ What issues arise with this solution?

18

No

threads may still possibly starve 
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Lecture Outline

❖ Dining Philosophers

❖ Deadlock Prevention

❖ Deadlock Handling

❖ Parallel Analysis
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Previously: Deadlocks

❖ Consider the case where there are two threads and two 
locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

20

Neither thread can make progress 
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Deadlock Definition

❖ A computer has multiple threads, finite resources, and the 
threads want to acquire those resources

▪ Some of these resources require exclusive access

❖ A thread can acquire resources:

▪ All at once

▪ Accumulate them over time

▪ If it fails to acquire a resource, it will (by default) wait until it is 
available before doing anything 

❖ Deadlock: Cyclical dependency on resource acquisition so 
that none of them can proceed

▪ Even if all unblocked processes release, deadlock will continue
21
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Preconditions for Deadlock

❖ Deadlock can only happen if these occur simultaneously:

▪ Mutual Exclusion: at least one resource must be held exclusively 
by one thread

▪ Hold and Wait: a thread must be holding a resource, requesting a 
resource that is held by a thread, and then waiting for it.

▪ No preemption: A resource is held by a thread until it explicitly 
releases it. It cannot be preempted by the OS or something else to 
force it to release the resource 

▪ Circular Wait: 
Can be a chain of more than 2 threads
Each thread must be waiting for a resource that is held by another 
thread. That other thread must waiting on a resource that forms a 
chain of dependency

22
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Circular Wait Example

❖ A cycle can exist of more than just two threads:

23

Has R1

Wants R1

Has R2

Has R3

Thread 1

Thread 2

Thread 3
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Poll:

❖ Can a thread deadlock if there is only one thread?

24
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Deadlock Prevention

❖ If we can remove the conditions for deadlock, we could 
avoid prevent deadlock from every happening 

25
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Deadlock Prevention: Mutual Exclusion

❖ Mutual Exclusion: at least one resource must be held 
exclusively by one thread

❖ You usually need mutual exclusion or you don’t, so  it is 
hard to avoid.

❖ Some resources require exclusive access

❖ A lot of work done related to this

▪ called: Lock-free programming, Lock-less programming, or Non-
blocking algorithms

▪ General idea is to take advantage of operations that are atomic at 
the hardware level when sharing is needed

26
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Deadlock Prevention: Hold and Wait

❖ Hold and Wait: a thread must be holding a resource, 
requesting a resource that is held by a thread, and then 
waiting for it.

❖ What if we had each thread acquire all resources it needs 
in the beginning “at once”

▪ This is like one of our dining philosophers implementations

▪ Not always practical, a thread may not know ahead of time all the 
resources it will need

27
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Deadlock Prevention: No Preemption

❖ No preemption: A resource is held by a thread until it 
explicitly releases it. It cannot be preempted by the OS or 
something else to force it to release the resource

❖ If we force a thread to release a resource, how do we 
ensure it is in a valid state?

▪ Undoing actions and recovering valid state is complex (more on 
this next lecture)

28
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Deadlock Prevention: Circular Wait

❖ Circular Wait: Each thread must be waiting for a resource 
that is held by another thread. That other thread must 
waiting on a resource that forms a chain of dependency

❖ Break cycles in resource acquisition. 

❖ We could enforce an ordering to resource acquisition.

▪ Consider dining philosophers, what if each thread was required to 
get the lowest numbered chopstick it wants first?

❖ Challenge: Still we may not know all resources we need 
ahead of time

29
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Deadlock Prevention Summary

❖ Prevent deadlocks by removing any one of the four 
deadlock preconditions

❖ But eliminating even one of the preconditions is often 
hard/impossible

▪ Mutual Exclusion is necessary in a lot of situations

▪ Forcing a lower priority process to release resources early 
requires rollback of execution

▪ Not always possible to know all resources that an operating 
system or process will use upfront

30
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Lecture Outline

❖ Dining Philosophers

❖ Deadlock Prevention

❖ Deadlock Handling

▪ Ostrich

▪ Prevention

▪ Detection

▪ Avoidance

❖ Parallel Analysis

31
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Deadlock Handling: Ostrich Algorithm

32
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Deadlock Handling: Ostrich Algorithm

33Ostriches don’t actually do this, but it is an old myth
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Deadlock Handling: Ostrich Algorithm

❖ Ignoring potential problems

▪ Usually under the assumption that it is either rare, too expensive 
to handle, and/or not a fatal error

❖ Used in real world contexts, there is a real cost to tracking 
down every possible deadlock case and trying to fix it

▪ Cost on the developer side: more time to develop

▪ Cost on the software side: more computation for these things to 
do, slows things down

34
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Deadlock Handling: Prevention

❖ Ad Hoc Approach

▪ Key insights into application logic allow you to write code that 
avoids cycles/deadlock

▪ Example: Dining Philosophers breaking symmetry with even/odd 
philosophers

❖ Exhaustive Search Approach 

▪ Static analysis on source code to detect deadlocks

▪ Formal verification: model checking

▪ Unable to scale beyond small programs in practice
Impossible to prove for any arbitrary program (without 
restrictions)

35
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Detection

❖ If we can’t guarantee deadlocks won’t happen, we can 
instead try to detect a deadlock just before it will happen 
and then intervene.

❖ Two big parts

▪ Detection algorithm. This is usually done with tracking metadata 
and graph theory

▪ The intervention/recovery. We typically want some sort of way to 
“recover” to a safe state when we detect a deadlock is going to 
happen

36
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Detection Algorithms

❖ The common idea is to think of the threads and resources 
as a graph.

▪ If there is a cycle: deadlock

▪ If there is no cycle: no deadlock

❖ Finding cycles in a graph is a common algorithm problem 
with many solutions.

37
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Deadlock Detection Example

❖ Consider the following example with 5 threads and 5 
resources that require mutual exclusion is this a 
deadlock?

▪ Thread 1 has R2 but wants R1 

▪ Thread 2 has R1 but wants R3, R4 and R5

▪ Thread 3 has R4 but wants R5

▪ Thread 4 has R5 but wants R2

▪ Thread 5 has R3

38
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Resource Allocation Graph

❖ We can represent this deadlock with a graph:

▪ Each resource and thread is a node

▪ If a thread has a resource, draw an arrow pointing at the thread 
form that resource

▪ If a thread wants to acquire a resource but can’t, draw an arrow 
pointing at the resource from the thread trying to acquire it

39
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Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1 

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

40

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph
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Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1 

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3
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Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1 

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3
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Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1 

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3
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Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1 

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3
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Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1 

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3
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Alternate graph

❖ Instead of also representing resources as nodes, we can 
have a “wait for” graph, showing how threads are waiting 
on each other

46

T1

T5

T2

T4

T3

Wait For Graph

T1 is waiting for a 

resource held by T2

and T4 is waiting on T1
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Recovery after Detection

❖ Preemption: 

▪ Force a thread to give up a resource

▪ Often is not safe to do or impossible

❖ Rollback:

▪ Occasionally checkpoint the state of the system, if a deadlock is 
detected then go back to the checkpointed “Saved state”

▪ Used commonly in database systems

▪ Maintaining enough information to rollback and doing the 
rollback can be expensive

❖ Manual Killing:

▪ Kill a process/thread, check for deadlock, repeat till there is no 
deadlock

▪ Not safe, but it is simple
47
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Overall Costs

❖ Doing Deadlock Detection & Recovery solves deadlock 
issues, but there is a cost to memory and CPU to store the 
necessary information and check for deadlock

❖ This is why sometimes the ostrich algorithm is preferred

48
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Avoidance

❖ Instead of detecting a deadlock when it happens and 
having expensive rollbacks, we may want to instead avoid 
deadlock cases earlier

❖ Idea:

▪ Before it does work, it submits a request for all the resources it 
will need.

▪ A deadlock detection algorithm is run

• If acquiring those resources would lead to a deadlock, deny the 
request. The calling thread can try again later

• If there is no deadlock, then the thread can acquire the resources and 
complete its task

▪ The calling thread later releases resources as they are done with 
them 49
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Avoidance

❖ Pros:

▪ Avoids expensive rollbacks or recovery algorithms

❖ Cons:

▪ Can’t always know ahead of time all resources that are required

▪ Resources may spend more time being locked if all resources 
need to be acquired before an action is taken by a thread, could 
hurt parallelizability

• Consider a thread that does a very expensive computation with many 
shared resources.

• Has one resources that is only updated at the end of the computation.

• That resources is locked for a long time and other threads that may 
need it cannot access it

50
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Aside: Bankers Algorithm

❖ This gets more complicated when there are multiple 
copies of resources, or a finite number of people can 
access a resources.

❖ The Banker’s Algorithm handles these cases

▪ But I won’t go into detail about this

▪ There is a video linked on the website under this lecture you can 
watch if you want to know more

51
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Lecture Outline

❖ Dining Philosophers

❖ Deadlock Prevention

❖ Deadlock Handling

❖ Parallel Analysis

▪ Recurrences

▪ Amdahl's Law 

52



CIS 3800, Spring 2024L17: Dining Philosophers, Deadlocks, Parallel AnalysisUniversity of Pennsylvania

Parallel Algorithms 

❖ One interesting applications of threads is for faster 
algorithms

❖ Common Example: Merge sort

53
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an 
unsorted array

▪ Consider the two sorted arrays: 
2 4 7 81 3 5 6

Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an 
unsorted array

▪ Consider the two sorted arrays: 
2 4 7 81 3 5 6

1Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an 
unsorted array

▪ Consider the two sorted arrays: 
2 4 7 81 3 5 6

1 2Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an 
unsorted array

▪ Consider the two sorted arrays: 
2 4 7 81 3 5 6

1 2 3Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an 
unsorted array

▪ Consider the two sorted arrays: 
2 4 7 81 3 5 6

1 2 3 4Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an 
unsorted array

▪ Consider the two sorted arrays: 
2 4 7 81 3 5 6

1 2 3 4 5Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an 
unsorted array

▪ Consider the two sorted arrays: 
2 4 7 81 3 5 6

1 2 3 4 5 6Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an 
unsorted array

▪ Consider the two sorted arrays: 
2 4 7 81 3 5 6

1 2 3 4 5 6 7Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an 
unsorted array

▪ Consider the two sorted arrays: 
2 4 7 81 3 5 6

1 2 3 4 5 6 7 8Output array

firstIndex secondIndex
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

10 11 14 15 20 54 55 78
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Merge Sort Algorithmic Analysis

❖ Algorithmic analysis of merge sort gets us to O(n * log(n)) 
runtime.

❖ We recurse log2(N) times, each recursive “layer” does 
O(N) work 

70

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  merge_sort(arr, lo, mid);  // sort the bottom half

  merge_sort(arr, mid, hi);  // sort the upper half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}
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Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

71

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  // sort bottom half in parallel

  pthread_create(merge_sort(arr, lo, mid)); 

  merge_sort(arr, mid, hi);  // sort the upper half

  

  pthread_join(); // join the thread that did bottom half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}
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Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

▪ How long does this take to run?

▪ How much work is being done? 72

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  // sort bottom half in parallel

  pthread_create(merge_sort(arr, lo, mid)); 

  merge_sort(arr, mid, hi);  // sort the upper half

  

  pthread_join(); // join the thread that did bottom half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}

pollev.com/tqm
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Parallel Algos:

❖ We can define T(n) to be the running time of our 
algorithm

❖ We can split up our work between two parts, the part 
done sequentially, and the part done in parallel

▪ T(n) = sequential_part + parallel_part

▪ T(n) = O(n) merging + T(n/2) sort half the array 

• This is a recursive definition

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)
73

Will not test you on this
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Parallel Algos:

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

▪ …

▪ Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

❖ This approximates to T(n) = ~2 * O(n) = O(n)

▪ This parallel merge sort is O(n), but there are further 
optimizations that can be done to reach ~O(log(n))

❖ There is a lot more to parallel algo analysis than just this, I 
am just giving you a sneak peek

74

Will not test you on this
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Amdahl's Law

❖ For most algorithms, there are parts that parallelize well 
and parts that don’t. This causes adding threads to have 
diminishing returns

▪ (even ignoring the overhead costs of creating & scheduling 
threads)

❖ Consider we have some parallel algorithm T1 = 1

▪ The 1 subscript indicates this is run on 1 thread

▪ we define the work for the entire algorithm as 1

❖ We define S as being the part that can be parallelized

▪ T1 = S + (1 – S)  // (1-S) is the sequential part

75
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Amdahl's Law

❖ For running on one thread:

▪ T1 = (1 – S) + S

❖ If we have P threads and perfect linear speedup on the 
parallelizable part, we get

▪ TP = (1-S) + 
𝑆

𝑃

❖ Speed up multiplier for P threads from sequential is:

▪
𝑇1

𝑇𝑝
 =  

1

1−𝑆+
𝑆

𝑃
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Amdahl's Law

❖ Let’s say that we have 100000 threads (P = 100000) and 
our algorithm is only 2/3 parallel? (s = 0.6666..)

▪
𝑇1

𝑇𝑝
 =  

1

1−0.6666+
0.6666

100000

= 2.9999 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 90% parallel? (S = 0.9):

▪
𝑇1

𝑇𝑝
 =  

1

1−0.9+
0.9

100000

= 9.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 99% parallel? (S = 0.99):

▪
𝑇1

𝑇𝑝
 =  

1

1−0.99+
0.99

100000

= 99.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

77
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Limitation: Hardware Threads

❖ These algorithms are limited by hardware. 

❖ Number of Hardware Threads: The number of threads can 
genuinely run in parallel on hardware 

❖ We may be able to create a huge number of threads, but 
only run a few (e.g. 4) in parallel at a time.

❖ Can see this information in with lscpu in bash

▪ A computer can have some number of CPU sockets

▪ Each CPU can have one or more cores

▪ Each Core can run 1 or more threads

78
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