
CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Virtual Memory & Page Tables
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Poll: how are you?

❖ How is PennOS going?

2

pollev.com/tqm

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Administrivia

❖ PennOS

▪ You have the first milestone, which should have been done last
week

▪ Everyone should have already contacted their group, and should
get started working on it.

▪ Milestone 1 is due this week

• Between Tuesday the 9th and Friday the 12th

• Need to meet with TA again to show significant progress

• Have a plan (a REAL plan) for how to complete the rest

• Autograder for pennfat is relased

– You do not need to pass it for the milestone, but you should be able to
showcase work you have done on it.

▪ Full Thing due ~April 22nd

3

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Administrivia

❖ Check-in released: due at end of Friday

▪ Another one will be released this week, due sometime next week

4

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

5

pollev.com/tqm

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Lecture Outline

❖ High Level Refresher

❖ TLB

❖ Page Table Details

❖ Multi-Level Page Tables

❖ Inverted Page Tables

6

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

This doesn’t work anymore

❖ The CPU directly uses an address to access a location in
memory

7

CPU

0:

1:

2:

3:

4:

5:

...

data

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Virtual Address Translation

❖ Programs don’t know about physical addresses; virtual
addresses are translated into them by the MMU

8

CPU

0:

1:

2:

3:

4:

5:

...
Virtual address

(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

THIS SLIDE IS KEY TO THE WHOLE IDEA

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Pages

❖ Memory can be split up into units called “pages”

9

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

 Ram may contain pages from
other active processes

Pages are of fixed size ~4KB

4KB -> (4 * 1024 = 4096 bytes.)

Pages in physical memory

are called “Page frames”

A page may not have an

accompanying page frame

until the page is used

(what the process thinks it has)

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Page Tables

❖ Virtual addresses can be converted into physical
addresses via a page table.

❖ There is one page table per processes, managed by the
MMU

10

More details about

translation later

Virtual page # Valid Physical Page Frame

0 0 ---- //page hasn’t been used yet

1 1 0

2 1 1

3 0 1

Valid determines if the

page is in physical memory

If a page is on disk,

it will be fetched

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Page Fault Exception

❖ An Exception is a transfer of control to the OS kernel in
response to some synchronous event (directly caused by
what was just executed)

❖ In this case, writing to a memory location that is not in
physical memory currently

User code Kernel code

Exception: page fault
Handle page fault:
How it is handled
depends on if this
page has been
handled before

Returns to running thread

Access a
virtual page
not in RAM

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Paging Refresher

❖ What happens if this process tries to access an address in
page 3?

12

Virtual page # Valid Physical Page Frame

0 0 3

1 1 0

2 1 1

3 0 1

… … …

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Paging Refresher

❖ What happens if this process tries to access an address in
page 3?

13

Virtual page # Valid Physical Page Frame

0 0 3

1 1 0

2 1 1

3 0 1

… … …

We get a page fault,

the OS evicts a page

from a frame, loads in

new page into that frame

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Paging Refresher

❖ What happens if this process tries to access an address in
page 1?

14

Virtual page # Valid Physical Page Frame

0 0 3

1 1 0

2 1 1

3 0 1

… … …

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Paging Refresher

❖ What happens if this process tries to access an address in
page 1?

15

Virtual page # Valid Physical Page Frame

0 0 3

1 1 0

2 1 1

3 0 1

… … …

The MMU access the

corresponding frame

(frame 0)

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Addresses

❖ Virtual Address:

▪ Used to refer to a location in a virtual address space.

▪ Generated by the CPU and used by our programs

❖ Physical Address

▪ Refers to a location on physical memory

▪ Virtual addresses are converted to physical addresses

16

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Page Offset

❖ This idea of Virtual Memory abstracts things on the level
of Pages (4096 bytes == 212 bytes)

❖ On almost every machine, memory is byte-addressable
meaning that each byte in memory has its own address

❖ How many different addresses correspond to the same
page?

❖ How many bits are needed in an address to specify where
in the page the address is referring to?

17

4096 addresses to a single page

12 bits

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Virtual Address High Level View

❖ High level view:

▪ Each page starts at a multiple of 4096 (0X1000)

▪ If we take an address and add 4096
(0x1000) we get the same offset
but into the next page

18

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x0595

0x1595

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Steps For Translation

❖ Derive the virtual page number from a virtual address

❖ Look up the virtual page number in the page table

▪ Handle the case where the virtual page doesn’t correspond to a
physical page frame

❖ Construct the physical address

19

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Address Translation: Virtual Page Number

❖ A virtual address is composed of two parts relevant for
translating:

▪ Virtual Page Number length = bits to represent number of pages

▪ Page offset length = bits to represent number of bytes in a page

❖ The virtual page number determines which page we want
to access

❖ The page offset determines which location within a page
we want to access.

▪ Remember that a page is many bytes (~4KiB -> 4096 bytes)

20

Virtual Page Number Page Offset

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Address Translation: Virtual Page Number

❖ A virtual address is composed of two parts relevant for
translating:

▪ Virtual Page Number length = bits to represent number of pages

▪ Page offset length = bits to represent number of bytes in a page

❖ Example address: 0x34805

▪ What is the page number?

▪ What is the offset?

▪ For this problem: there are 64 virtual pages,
 and a page is 4096 bytes

21

Virtual Page Number Page Offset

pollev.com/tqm

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Address Translation: Virtual Page Number

❖ A virtual address is composed of two parts relevant for
translating:

▪ Virtual Page Number length = bits to represent number of pages

▪ Page offset length = bits to represent number of bytes in a page

❖ Example address: 0x34805

▪ What is the page number?

▪ What is the offset?

▪ For this problem: there are 64 virtual pages,
 and a page is 4096 bytes

22

Virtual Page Number Page Offset

pollev.com/tqm

0011 0010 1000 0000 0101

0011 0010 -> 0x34

1000 0000 0101 -> 0x805

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Pages & Frames Details

❖ In the previous example, we worked with the virtual
address 0x34805. Why would the address 0x54805 not
be a legal virtual address in that same system?

▪ A page is typically 4 KiB -> 212 -> 4096 bytes

▪ There were 64 virtual pages

23

pollev.com/tqm

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Pages & Frames Details

❖ In the previous example, we worked with the virtual
address 0x34805. Why would the address 0x54805 not
be a legal virtual address in that same system?

▪ A page is typically 4 KiB -> 212 -> 4096 bytes

▪ There were 64 virtual pages

24

Alternative approach:

64 pages = 6 bits for the page number…

we need 7 bits to represent 0x54 -> 0b 0101 0100

0x54 translates to 84, which is outside the range of valid page numbers (0-63)

pollev.com/tqm

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Address Translation: Lookup & Combining

❖ Once we have the page number, we can look up in our
page table to find the corresponding physical page
number.

▪ For now, we will assume there is an associate page frame

❖ With the physical page number, combine it with the page
offset to get the physical address

▪ In our example, with 0x34805, our physical address is 0x2805

25

Virtual page # Valid Physical Page Number

… 0 null

0x34 1 0x2

… … …

Physical Page Number Page Offset

Translation
Done!

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Lecture Outline

❖ High Level Refresher

❖ TLB

❖ Page Table Details

❖ Multi-Level Page Tables

❖ Inverted Page Tables

26

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

High Level View

❖ MMU just looks up in the page table for every memory
access?

27

CPU

0:

1:

2:

3:

4:

5:

...
Virtual address

(0x300)

data

Physical address
(0x3)

Page Table
hit

miss

Swap

No: turns out that accessing the page table is not cheap.
So we have the TLB to make lookups faster

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

TLB

❖ Transition Lookaside Buffer

❖ A special piece of hardware memory that is quick to do
lookups in. Stores recent virtual page to physical frame
translations.

▪ Hardware for TLB is special, it can quickly check all entries to see if
a specific virtual page number translation is in their or not

• Hardware is expensive, so the TLB is kept relatively small usually

• Usually quicker hardware -> more expensive. To save cost, things
using special hardware are kept smaller

❖ TLB prevents MMU from having to read the page table
on each translation

28

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

TLB Locality

❖ Can only store a subset of the translations of the
translations in the page table

❖ TLB takes advantage of temporal locality to decide which
pages should be stored inside of it

▪ Pages that are accessed are likely to be accessed soon in the
future

29

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

High Level View

❖ Programs don’t know about physical addresses; virtual
addresses are translated into them by the MMU

30

CPU

0:

1:

2:

3:

4:

5:

...
Virtual address

(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

High Level View

❖ MMU Translation is a bit complicated, has multiple steps

31

CPU

0:

1:

2:

3:

4:

5:

...
Virtual address

(0x300)

data

Physical address
(0x3)

TLB
hit

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

High Level View

❖ MMU Translation is a bit complicated, has multiple steps

32

CPU

0:

1:

2:

3:

4:

5:

...
Virtual address

(0x300)

data

Physical address
(0x3)

TLB

Page Table

miss

hit

Swap

On a TLB miss, we go to the page table (and the swap if we page fault).
Then we load the mapping into the TLB and start the instruction over again.

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

TLB: More Details

❖ Entries in the TLB need to store:

▪ The virtual page -> physical frame mapping

▪ Dirty & Permission bits stored in TLB

❖ TLB Entries need to be kept in sync with the page table

▪ If a TLB entry is updated, the page table must be synced to have
the updated dirty bit value

▪ If a page is evicted from the page table, but is in the TLB, then
that entry must be removed from the TLB

❖ To maintain process isolation, one of two things

▪ When we switch executing processes, the TLB is cleared

▪ TLB entries also contain a PID tag to enforce isolation
33

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

TLB: More Details

❖ Like Caches, CPU’s usually have more than 1 TLB.

❖ A Level 1 TLB

▪ Faster (hardware can check all entries in parallel)

▪ Smaller ~64 or 128 entries

▪ Usually (nowadays) two Level 1 TLBs

• One for data

• One for instructions

❖ A Level 2 TLB

▪ Faster than looking up in a Page Table
but slower than a level 1 TLB lookup

▪ ~512 entries

▪ Usually contains addresses for both instructions & data.
34

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Lecture Outline

❖ High Level & Address Translation Refresher

❖ TLB

❖ Page Table Details

❖ Multi-Level Page Tables

❖ Inverted Page Tables

35

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Previous View of a page table

❖ One page table per process

❖ Is just a big array of page table entries

❖ One entry per page

▪ on a modern 64-bit machine, that is 252 (4,503,599,627,370,496)
entries

36

Virtual page # Valid Physical Page Frame

0 0 ---- //page hasn’t been used yet

1 1 0

2 1 1

3 0 1

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Page Table Entry

❖ A page table entry stores more than a valid bit and the
physical page number (and more than what I have here)

▪ Valid: True/False whether the page is in physical memory

▪ Frame #: the location of the page in physical memory iff it is in it

▪ Reference: two bits used for page replacement policy

▪ Dirty: whether the page was written to or not

▪ Permissions: whether the page can be used for Reading, Writing
or eXecuting.

37

Virtual page # Valid Frame # Reference dirty permissions

0 0 ----

1 1 0 11 1 R/W

2 1 1 01 0 R/X

3 0 1

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Page Table Entry: Valid Bit & Frame #

❖ Valid:

▪ 1 bit, True/False whether the page is in physical memory

▪ Iff bit is 0, then it is not present in memory and a page fault occurs

❖ Frame #

▪ #bits = log2(num_frames)

▪ The corresponding frame number for that page, if it is in memory

38

Virtual page # Valid Frame # Reference dirty permissions

0 0 ----

1 1 0 11 1 R/W

2 1 1 01 0 R/X

3 0 1

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Page Table Entry: Reference & Dirty Bits

❖ Reference:

▪ 2 bits

▪ Used to keep track of how recently a page was used. This
information is used for page replacement policies

❖ Dirty:

▪ 1 bit whether the page has been written to

▪ If page is dirty and needs to be evicted from physical memory,
then the data must be written back to the swap file

39

Virtual page # Valid Frame # Reference dirty permissions

0 0 ----

1 1 0 11 1 R/W

2 1 1 01 0 R/X

3 0 1

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Page Table Entry: Permission Bits

❖ Permissions:

▪ At least three bits to determine permissions to that memory

▪ Can it be Read, Written or eXecuted?

40

Virtual page # Valid Frame # Reference dirty permissions

0 0 ----

1 1 0 11 1 R/W

2 1 1 01 0 R/X

3 0 1

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

A Big Array

❖ We can view the page table as being an array that we can
index into using the Virtual page number

❖ With 252 virtual pages per process, that is 252 entries per
page table… It would help to keep page table entries small

❖ Question: is there something we can remove from this to
make entries smaller

41

Virtual page # Valid Frame # Reference dirty permissions

0 0 ----

1 1 0 11 1 R/W

2 1 1 01 0 R/X

3 0 1

pollev.com/tqm

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Optimization: Remove Virtual Page #

❖ The Virtual page # can be removed since it is implicitly the
index into our Page Table

42

Virtual page # Valid Frame # Reference dirty permissions

0 0 ----

1 1 0 11 1 R/W

2 1 1 01 0 R/X

3 0 1

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Still really big :(

❖ Removing the page number saves us 52 bits from the
input, but we still end up with ~30 bits (4 bytes) per entry

❖ One page table takes up 252 * 4 = 254 bytes

❖ How can we make this better?

43

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Lecture Outline

❖ High Level & Address Translation Refresher

❖ TLB

❖ Page Table Details

❖ Multi-Level Page Tables

❖ Inverted Page Tables

44

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Multi Level Page Table

❖ If you’ve heard of a Trie or a prefix tree, then this is
basically that

❖ On a 64-bit address, we keep the bottom 12 bits for the
page offset, and the upper 52 for the page number.

❖ We can split the page number into 4 groups of 9 bits
(ignore the remainder)

45

Page Offset
12 bits

Ignored
16 bits

G offset
9 bits

U offset
9 bits

M offset
9 bits

PTE offset
9 bits

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Diagram

❖ High level view

46

…

…

…

…

…

…

…

…

…

…

Top level table

Third tables

Mid level tables PTE’s (Page Table Entries)

Each “node” is 512 (29) entries

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Looking up an address

❖ First index into top level table using the top 9-bit chunk

47

…

…

…

…

…

…

…

…

…

Top level table

Third tables

Mid level tables PTE’s

Page Offset
12 bits

Ignored
16 bits

G offset
9 bits

U offset
9 bits

M offset
9 bits

PTE offset
9 bits

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Looking up an address

❖ Index into next level table using the next 9-bit chunk

48

…

…

…

…

…

…

…

…

…

Top level table

Third tables

Mid level tables PTE’s

Page Offset
12 bits

Ignored
16 bits

G offset
9 bits

U offset
9 bits

M offset
9 bits

PTE offset
9 bits

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Looking up an address

❖ Index into next level table using the next 9-bit chunk

49

…

…

…

…

…

…

…

…

…

Top level table

Third tables

Mid level tables PTE’s

Page Offset
12 bits

Ignored
16 bits

G offset
9 bits

U offset
9 bits

M offset
9 bits

PTE offset
9 bits

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Looking up an address

❖ Access the page table entry based on the last 9 bits

50

…

…

…

…

…

…

…

…

THIS ONE

…

Top level table

Third tables

Mid level tables PTE’s

Page Offset
12 bits

Ignored
16 bits

G offset
9 bits

U offset
9 bits

M offset
9 bits

PTE offset
9 bits

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Why 9 bits?

❖ Why is each index into a level of the page table 9 bits?

▪ 9 bits = 29 = 512 entries into each “node”

❖ Each entry is just a pointer to the next level table

▪ A pointer on a 64-bit machine is 8 (23) bytes

▪ A page table entry is also at max 8 bytes

❖ Any guesses?

51

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Why 9 bits?

❖ Why is each index into a level of the page table 9 bits?

▪ 9 bits = 29 = 512 entries into each “node”

❖ Each entry is just a pointer to the next level table

▪ A pointer on a 64-bit machine is 8 (23) bytes

▪ A page table entry is also at max 8 bytes

❖ 29 entries * 23 bytes per entry = 212 bytes (size of a page!)

▪ This means each level into the page table itself is the size of the
page. Makes maintaining the page table itself convenient since
the page table itself lies in memory.

52

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Analysis

❖ Most of the pages that are theoretically available to a
process go unused. Multi Level Page Tables take
advantage of this, most pointers in the table are NULL

▪ A lot less space needed than our first idea of a page table

❖ Lazily allocate page table entries for pages as they are
needed

▪ E.g. only allocate them once they are needed

❖ Take advantage of temporal locality: if a particular
memory location is referenced, it is likely that it and
nearby memory locations will be accessed soon

▪ I’ll revisit the idea of locality later 53

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Analysis pt. 2

❖ Take advantage of temporal locality: if a particular
memory location is referenced, it is likely that it and
nearby memory locations will be accessed soon

▪ If pages near each other in memory are accessed, they will in the
same nodes in the tree! Not every page access requires the
creation of a mid-level node

▪ I’ll revisit the idea of locality later

❖ What was once just one memory access to lookup page
frame is now four memory accesses
▪ This can be very expensive time-wise

▪ There is hardware (TLB) that helps a lot with this ☺

54

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Lecture Outline

❖ High Level & Address Translation Refresher

❖ TLB

❖ Page Table Details

❖ Multi-Level Page Tables

❖ Inverted Page Tables

55

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Another way we can save space

❖ Idea: there are a lot more virtual pages than there are
physical pages…

❖ Why not just have one entry per physical page?

❖ Would be one global page table since it is based on
physical memory

▪ Still need a way to enforce process isolation

❖ Implemented essentially as a changing hash table

56

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Diagram

❖ Chaining Hash Table

▪ Hash: the If a process wants to lookup to see if a page is in
physical memory, it combines the target virtual page number and
its process id to create the hash

57

Hash Chain

0

1

2 NULL

3 NULL

4

5 NULL

…

PTE

PTE

PTEPTE PTE

PTE PTE PTE

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Diagram

❖ Inspecting the chain

▪ Once it find the corresponding chain, it iterates through the PTE’s
in the chain to see if any are for the corresponding virtual page

▪ The PTE must store the virtual page num and the PID so it can be
 validated as the correct page

58

Hash Chain

0

1

2 NULL

3 NULL

4

5 NULL

…

PTE

PTE

PTEPTE PTE

PTE PTE PTE

It isn’t really like a typical “chaining hash table”
but this is the core idea of how it works.

CIS 3800, Spring 2024L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Analysis

❖ Potentially faster, potentially slower. Depends on how
long the chains in the table get.

❖ Uses up a LOT less space, only 1 PTE per frame that is
being used.

❖ Having a PTE for pages that have been sent to swap is
useful, can store information in that PTE about where it is
in swap. Inverted Page Tables don’t have these…

59

	Default Section
	Slide 1: Virtual Memory & Page Tables Computer Operating Systems, Spring 2024
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Poll: how are you?
	Slide 6: Lecture Outline
	Slide 7: This doesn’t work anymore
	Slide 8: Virtual Address Translation
	Slide 9: Pages
	Slide 10: Page Tables
	Slide 11: Page Fault Exception
	Slide 12: Paging Refresher
	Slide 13: Paging Refresher
	Slide 14: Paging Refresher
	Slide 15: Paging Refresher
	Slide 16: Addresses
	Slide 17: Page Offset
	Slide 18: Virtual Address High Level View
	Slide 19: Steps For Translation
	Slide 20: Address Translation: Virtual Page Number
	Slide 21: Address Translation: Virtual Page Number
	Slide 22: Address Translation: Virtual Page Number
	Slide 23: Pages & Frames Details
	Slide 24: Pages & Frames Details
	Slide 25: Address Translation: Lookup & Combining
	Slide 26: Lecture Outline
	Slide 27: High Level View
	Slide 28: TLB
	Slide 29: TLB Locality
	Slide 30: High Level View
	Slide 31: High Level View
	Slide 32: High Level View
	Slide 33: TLB: More Details
	Slide 34: TLB: More Details
	Slide 35: Lecture Outline
	Slide 36: Previous View of a page table
	Slide 37: Page Table Entry
	Slide 38: Page Table Entry: Valid Bit & Frame #
	Slide 39: Page Table Entry: Reference & Dirty Bits
	Slide 40: Page Table Entry: Permission Bits
	Slide 41: A Big Array
	Slide 42: Optimization: Remove Virtual Page #
	Slide 43: Still really big :(
	Slide 44: Lecture Outline
	Slide 45: Multi Level Page Table
	Slide 46: Diagram
	Slide 47: Looking up an address
	Slide 48: Looking up an address
	Slide 49: Looking up an address
	Slide 50: Looking up an address
	Slide 51: Why 9 bits?
	Slide 52: Why 9 bits?
	Slide 53: Analysis
	Slide 54: Analysis pt. 2
	Slide 55: Lecture Outline
	Slide 56: Another way we can save space
	Slide 57: Diagram
	Slide 58: Diagram
	Slide 59: Analysis

