
CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Page Replacement
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Poll: how are you?

❖ How is PennOS going?

2

pollev.com/tqm

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Administrivia

❖ PennOS

▪ You have the first milestone, which should have been done last
week

▪ Everyone should have already contacted their group, and should
get started working on it.

▪ Milestone 1 is due this week

• Between Tuesday the 9th and Friday the 12th

• Need to meet with TA again to show significant progress

• Have a plan (a REAL plan) for how to complete the rest

• Autograder for pennfat is relased

– You do not need to pass it for the milestone, but you should be able to
showcase work you have done on it.

▪ Full Thing due ~April 22nd

3

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Administrivia

❖ Check-in released: due at end of Friday

▪ Another one will be released this week, due sometime next week

4

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Lecture Outline

5

❖ Page Replacement: High Level

▪ FIFO

▪ Reference Strings

▪ Beladys

❖ LRU

❖ Thrashing

❖ FIFO w/ Reference bit

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Page Replacement

❖ The operating system will sometimes have to evict a page
from physical memory to make room for another page.

❖ If the evicted page is access again in the future, it will
cause a page fault, and the Operating System will have to
go to Disk to load the page into memory again

❖ Remember this? Disk access is very very slow (relatively
speaking).

▪ How can we minimize disk accesses?

▪ How can we try to ensure the page we
evict from memory is unlikely to be
used again in the future? 6

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Reference String

❖ A reference string is a string representing a sequence of
virtual page accesses. By a given process on some input.
▪ E.g., 0 1 2 3 4 1 2 9 5 3 2 2 …

▪ Page 0 is accessed, then 1, then 2, then 3 …

❖ These strings are useful for reasoning about page
replacement policies, and how they act on certain page
access patterns

7

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

FIFO Replacement

❖ One way to decide which pages can be evicted is to use
FIFO (First in First Out)

❖ If a page needs to be evicted from physical memory, then
the page that has been in memory the longest (since it
was last brought into memory) can be evicted.

8

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

FIFO Replacement

❖ If we have 4 frames, and the reference string:
4 1 1 2 3 4 5

▪ Red numbers indicate that accessing the page caused a page fault.
Accessing 5 also causes 4 to be evicted from physical memory

9

Ref str: 4 1 1 2 3 4 5

Newest 4 1 1 2 3 3 5

4 4 1 2 2 3

4 1 1 2

Oldest 4 4 1

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

❖ Given the following reference string, how many page
faults occur when using a FIFO algorithm

❖ 1 2 3 4 1 2 5 1 2 3 4 5

❖ Assume that

▪ physical memory has three frames

▪ we can ignore sharing those frames with other processes.

▪ Physical Memory starts empty

❖ Part 2: If we didn’t have to follow a strict policy, what is
the “optimal” pages that could be evicted to minimize
faults? How many less faults would we have?

10

pollev.com/tqm

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

“optimal” replacement

❖ If you knew the exact sequence of page accesses in
advance, you could optimize for smallest number of page
faults

❖ Always replace the page that is furthest away from being
used again in the future

▪ How do we predict the future??????

▪ You can’t, but you can make a “best guess” (later in lecture)

❖ Optimal replacement is still a handy metric. Used for
testing replacement algorithms, see how an algorithm
compares to various “optimal” possibilities.

13

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

❖ Given the following reference string, how many page
faults occur when using a FIFO algorithm

❖ 3 2 1 0 3 2 4 3 2 1 0 4

❖ Assume that

▪ physical memory has three frames

▪ we can ignore sharing those frames with other processes.

▪ Physical Memory starts empty

❖ Part 2: What if we had 4 page frames, how many faults
would we have?

14

pollev.com/tqm

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Bélády's anomaly

❖ Sometimes increasing the number of page frames results
in an increase in the number of page faults

❖ This behaviour is something that we want to
avoid/minimize the possibility of.

❖ Stack based algorithms (Optimal, LIFO, LRU) avoid this
issue

17

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Lecture Outline

18

❖ Page Replacement: High Level

▪ FIFO

▪ Reference Strings

▪ Beladys

❖ LRU

❖ Thrashing

❖ FIFO w/ Reference bit

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

LRU (Least Recently Used)

❖ If a page is used recently, it is likely to be used again in the
near future

❖ Use past knowledge to predict the future

❖ Replace the page that has had the longest time since it
was last used

19

Ref
str:

4 0 1 2 0 3 0 4 2 3 0 3

Most
recently
used

4 0 1 2 0 3 0 4 2 3 0 3

4 0 1 2 0 3 0 4 2 3 0

LRU 4 0 1 2 2 3 0 4 2 2

Victim 4 1 2 3 0 4

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

❖ What if there are four frames instead of 3? How Many
Page Faults?

20

Ref
str:

4 0 1 2 0 3 0 4 2 3 0 3

Most
recently
used

LRU

Victim

pollev.com/tqm

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

LRU Implementation?

❖ To implement this properly, there are a couple
possibilities

▪ we would need to timestamp each memory access and keep a
sorted list of these pages

• High overhead, timestamps can be tricky to manage :/

▪ Keep a counter that is incremented for each memory access
Look through the table to find the lowest counter value on
eviction

• Looking through the table can be slow

• How do you distinguish a process that has been accessed a lot in the
past vs one accessed a little more recently?

▪ Whenever a page is accessed find it in the stack of active pages
and move it to the bottom

22

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

LRU Approximation: Reference Bit & Clock

❖ It is expensive to do bookkeeping every time a page is
accessed. Minimize the bookkeeping if possible

❖ When we access a page, we can update the reference bit
for that PTE to show that it was accessed recently

▪ This is done automatically by hardware, when accessing memory.

▪ Setting a bit to 1 is much quicker than managing time stamps and
re-organizing a stack

❖ We could check the reference bit at some clock interval to
see if the page was used at all in the last interval period

23

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

LRU Approximation: Aging

❖ Each page gets an 8-bit counter.

❖ On clock interval and for every page:

▪ shift the counter to the right by 1 bit

▪ copy the reference bit into the MSB of the counter.

▪ Reference bit in the PTE is reset to 0

❖ If we read the counter as an unsigned integer, then a
larger value means the counter was accessed more
recently

24

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0

25

0 0 0 0 0 0 0 0

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 1

26

0 0 0 0 0 0 0 0

Page
access

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0

27

1 0 0 0 0 0 0 0

Page
access

interval

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0

28

1 0 0 0 0 0 0 0

Page
access

interval

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 1

29

1 0 0 0 0 0 0 0

Page
access

interval

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 1

30

1 0 0 0 0 0 0 0

Page
access

interval

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0

31

1 1 0 0 0 0 0 0

Page
access

interval

Same change to counter regardless of
number of accesses in the interval, and
when the accesses happened in the
interval

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0

32

1 1 0 0 0 0 0 0

Page
access

interval

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0

33

0 1 1 0 0 0 0 0

No Page
access

interval

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Aging: Analysis

❖ Analysis

▪ Low overhead on clock tick and memory access

▪ Still must search page table for entry to remove

▪ Insufficient information to handle some ties

• Only one bit information per clock cycle

• Information past a certain clock cycle is lost

34

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Lecture Outline

35

❖ Page Replacement: High Level

▪ FIFO

▪ Reference Strings

▪ Beladys

❖ LRU

❖ Thrashing

❖ FIFO w/ Reference bit

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Thrashing

❖ This is not specific to LRU, but it is easiest to demonstrate
with LRU

❖ When the physical memory of a computer is
overcommitted, causing almost constant page faults
(which are slow)

▪ Overcommitment most commonly happens when there are too
many processes, and thus too much memory needed

▪ Can also happen with a few processes, if the process needs too
much memory

36

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Thrashing: LRU Example

❖ Consider the following example with three page frames
and LRU

❖ Page fault on every memory access

37

Ref
str:

0 1 2 3 0 1 2 3 0 1 2 3

Most
recently
used

0 1 1 2 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2

LRU 0 1 2 3 0 1 2 3 0 1

Victim 0 1 2 3 0 1 2 3 0

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Thrashing: Multiprogramming

❖ It is good to have more processes running, then we can
have better utilization of CPU.

▪ While one process waits on something, another can run

▪ More on CPU Utilization later

❖ As we use more processes running at once, more memory
is needed, can cause thrashing

38

CPU
util.

Degree of multiprogramming

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Lecture Outline

39

❖ Page Replacement: High Level

▪ FIFO

▪ Reference Strings

▪ Beladys

❖ LRU

❖ Thrashing

❖ FIFO w/ Reference bit

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

FIFO Analysis

❖ Remember FIFO? The first page replacement algorithm
we covered?

▪ Evict the page that has been in physical memory the longest

❖ Analysis:

▪ Low overhead. No need to do any work on each memory access,
instead just need to do something when loading a new page into
memory & evicting an existing page

▪ Not the best at predicting which pages are used in the future

❖ Could we modify FIFO to better suit our needs?

40

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Second Chance

❖ Second chance algorithm is very similar to FIFO

▪ Still have a FIFO queue

▪ When we take the first page of the queue, instead of immediately
evicting it, we instead check to see if the reference bit is 1 (was
used in the last time interval)

▪ If so, move it to the end of the queue

▪ Repeat until we find a value that does not have the reference bit
set (if all pages have reference bit as 1, then we eventually get
back to the first page we looked at)

41

A
1

B
1

C
0

D
1

E
0

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Second Chance Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so set to 0 and move to end

42

A
1

B
1

C
0

D
1

E
0

head

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Second Chance Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so move to end

43

B
1

C
0

D
1

E
0

A
0

head

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Second Chance Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so move to end

C
0

44

D
1

E
0

A
0

B
0

head

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

FREE

Second Chance Example

❖ If we need to evict a page: start at the front

❖ Found a page with reference bit = 0, evict Page C!

45

D
1

E
0

A
0

B
0

head

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Clock

❖ Optimization on the second chance algorithm

❖ Have the queue be circular, thus the cost to moving
something to the “end” is minimal

46

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Clock Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so set to 0 and move to end

47

A
1

B
1

C
0

D
1

E
0

head

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Clock Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so set to 0 and move to end

48

A
0

B
1

C
0

D
1

E
0

head

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Clock Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so set to 0 and move to end

49

A
0

B
1

C
0

D
1

E
0

head

Can also be modified to

prefer to evict clean pages

instead of dirty pages

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Linux

❖ Two Clock lists: Active and Inactive

▪ Reclaim from inactive list first

▪ If page has not been referenced recently, move to inactive list

▪ If page is referenced:

• Set reference flag to be true

• Move to active list next time it is accessed

▪ Two page accesses to be declared active

▪ If second access does not happen, reference flag is reset
periodically

❖ After two timeouts, move a page to inactive state

50

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Linux diagram

51

PG_active = 0
PG_reference = 0

PG_active = 1
PG_reference = 0

PG_active = 0
PG_reference = 1

PG_active = 1
PG_reference = 1

Inactive Active

Used

Timeout Timeout UsedUsed

This is sort of like a 2-bit

counter for reference bits.

We keep pages in two clock lists.

Reality is more

complicated than this

CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Linux diagram

52

PG_active = 0
PG_reference = 0

PG_active = 1
PG_reference = 0

PG_active = 0
PG_reference = 1

PG_active = 1
PG_reference = 1

Inactive Active

Refill

Refill

Used

Timeout Timeout UsedUsed

Refill

Linux will want to keep a good

ratio of inactive to active, so

that there are always some

pages that are considered

“more ok” to evict

Active should be ~2/3 of pages at most

	Default Section
	Slide 1: Page Replacement Computer Operating Systems, Spring 2024
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Lecture Outline
	Slide 6: Page Replacement
	Slide 7: Reference String
	Slide 8: FIFO Replacement
	Slide 9: FIFO Replacement
	Slide 10
	Slide 13: “optimal” replacement
	Slide 14
	Slide 17: Bélády's anomaly
	Slide 18: Lecture Outline
	Slide 19: LRU (Least Recently Used)
	Slide 20
	Slide 22: LRU Implementation?
	Slide 23: LRU Approximation: Reference Bit & Clock
	Slide 24: LRU Approximation: Aging
	Slide 25: Aging Illustration
	Slide 26: Aging Illustration
	Slide 27: Aging Illustration
	Slide 28: Aging Illustration
	Slide 29: Aging Illustration
	Slide 30: Aging Illustration
	Slide 31: Aging Illustration
	Slide 32: Aging Illustration
	Slide 33: Aging Illustration
	Slide 34: Aging: Analysis
	Slide 35: Lecture Outline
	Slide 36: Thrashing
	Slide 37: Thrashing: LRU Example
	Slide 38: Thrashing: Multiprogramming
	Slide 39: Lecture Outline
	Slide 40: FIFO Analysis
	Slide 41: Second Chance
	Slide 42: Second Chance Example
	Slide 43: Second Chance Example
	Slide 44: Second Chance Example
	Slide 45: Second Chance Example
	Slide 46: Clock
	Slide 47: Clock Example
	Slide 48: Clock Example
	Slide 49: Clock Example
	Slide 50: Linux
	Slide 51: Linux diagram
	Slide 52: Linux diagram

