
CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Page Replacement
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund &     Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu



CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Poll: how are you?

❖ How is PennOS going?
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Administrivia

❖ PennOS

▪ You have the first milestone, which should have been done last 
week

▪ Everyone should have already contacted their group, and should 
get started working on it.

▪ Milestone 1 is due this week

• Between Tuesday the 9th and Friday the 12th 

• Need to meet with TA again to show significant progress

• Have a plan (a REAL plan) for how to complete the rest

• Autograder for pennfat is relased

– You do not need to pass it for the milestone, but you should be able to 
showcase work you have done on it. 

▪ Full Thing due ~April 22nd
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Administrivia

❖ Check-in released: due at end of Friday

▪ Another one will be released this week, due sometime next week
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Lecture Outline
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❖ Page Replacement: High Level

▪ FIFO

▪ Reference Strings

▪ Beladys

❖ LRU

❖ Thrashing

❖ FIFO w/ Reference bit
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Page Replacement

❖ The operating system will sometimes have to evict a page 
from physical memory to make room for another page.

❖ If the evicted page is access again in the future, it will 
cause a page fault, and the Operating System will have to 
go to Disk to load the page into memory again

❖ Remember this? Disk access is very very slow (relatively 
speaking).

▪ How can we minimize disk accesses?

▪ How can we try to ensure the page we
evict from memory is unlikely to be
used again in the future? 6
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Reference String

❖ A reference string is a string representing a sequence of 
virtual page accesses. By a given process on some input.
▪ E.g., 0 1 2 3 4 1 2 9 5 3 2 2 …

▪ Page 0 is accessed, then 1, then 2, then 3 …

❖ These strings are useful for reasoning about page 
replacement policies, and how they act on certain page 
access patterns
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FIFO Replacement

❖ One way to decide which pages can be evicted is to use 
FIFO (First in First Out)

❖ If a page needs to be evicted from physical memory, then 
the page that has been in memory the longest (since it 
was last brought into memory) can be evicted. 
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FIFO Replacement

❖ If we have 4 frames, and the reference string:
4 1 1 2 3 4 5

▪ Red numbers indicate that accessing the page caused a page fault. 
Accessing 5 also causes 4 to be evicted from physical memory 

9

Ref str: 4 1 1 2 3 4 5

Newest 4 1 1 2 3 3 5

4 4 1 2 2 3

4 1 1 2

Oldest 4 4 1
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❖ Given the following reference string, how many page 
faults occur when using a FIFO algorithm

❖ 1 2 3 4 1 2 5 1 2 3 4 5

❖ Assume that

▪ physical memory has three frames

▪ we can ignore sharing those frames with other processes.

▪ Physical Memory starts empty

❖ Part 2: If we didn’t have to follow a strict policy, what is 
the “optimal” pages that could be evicted to minimize 
faults? How many less faults would we have?
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“optimal” replacement

❖ If you knew the exact sequence of page accesses in 
advance, you could optimize for smallest number of page 
faults

❖ Always replace the page that is furthest away from being 
used again in the future

▪ How do we predict the future??????

▪ You can’t, but you can make a “best guess” (later in lecture)

❖ Optimal replacement is still a handy metric. Used for 
testing replacement algorithms, see how an algorithm 
compares to various “optimal” possibilities.
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❖ Given the following reference string, how many page 
faults occur when using a FIFO algorithm

❖ 3 2 1 0 3 2 4 3 2 1 0 4

❖ Assume that

▪ physical memory has three frames

▪ we can ignore sharing those frames with other processes.

▪ Physical Memory starts empty

❖ Part 2: What if we had 4 page frames, how many faults 
would we have?
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Bélády's anomaly

❖ Sometimes increasing the number of page frames results 
in an increase in the number of page faults 

❖ This behaviour is something that we want to 
avoid/minimize the possibility of.

❖ Stack based algorithms (Optimal, LIFO, LRU) avoid this 
issue

17
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Lecture Outline
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❖ Page Replacement: High Level

▪ FIFO

▪ Reference Strings

▪ Beladys

❖ LRU

❖ Thrashing

❖ FIFO w/ Reference bit
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LRU (Least Recently Used)

❖ If a page is used recently, it is likely to be used again in the 
near future

❖ Use past knowledge to predict the future

❖ Replace the page that has had the longest time since it 
was last used

19

Ref 
str:

4 0 1 2 0 3 0 4 2 3 0 3

Most 
recently 
used

4 0 1 2 0 3 0 4 2 3 0 3

4 0 1 2 0 3 0 4 2 3 0

LRU 4 0 1 2 2 3 0 4 2 2

Victim 4 1 2 3 0 4
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❖ What if there are four frames instead of 3? How Many 
Page Faults?
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Ref 
str:

4 0 1 2 0 3 0 4 2 3 0 3

Most 
recently 
used

LRU

Victim
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LRU Implementation?

❖ To implement this properly, there are a couple 
possibilities

▪ we would need to timestamp each memory access and keep a 
sorted list of these pages

• High overhead, timestamps can be tricky to manage :/

▪ Keep a counter that is incremented for each memory access
Look through the table to find the lowest counter value on 
eviction

• Looking through the table can be slow

• How do you distinguish a process that has been accessed a lot in the 
past vs one accessed a little more recently?

▪ Whenever a page is accessed find it in the stack of active pages 
and move it to the bottom

22
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LRU Approximation: Reference Bit & Clock

❖ It is expensive to do bookkeeping every time a page is 
accessed. Minimize the bookkeeping if possible

❖ When we access a page, we can update the reference bit 
for that PTE to show that it was accessed recently

▪ This is done automatically by hardware, when accessing memory.

▪ Setting a bit to 1 is much quicker than managing time stamps and 
re-organizing a stack

❖ We could check the reference bit at some clock interval to 
see if the page was used at all in the last interval period

23
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LRU Approximation: Aging

❖ Each page gets an 8-bit counter.

❖ On clock interval and for every page:

▪ shift the counter to the right by 1 bit

▪ copy the reference bit into the MSB of the counter.

▪ Reference bit in the PTE is reset to 0

❖ If we read the counter as an unsigned integer, then a 
larger value means the counter was accessed more 
recently

24



CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0
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0 0 0 0 0 0 0 0
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Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 1
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0 0 0 0 0 0 0 0

Page
access
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Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0
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1 0 0 0 0 0 0 0

Page
access

interval
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Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0
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1 0 0 0 0 0 0 0

Page
access

interval
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Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 1
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1 0 0 0 0 0 0 0
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interval
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Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 1
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1 0 0 0 0 0 0 0
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Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0
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1 1 0 0 0 0 0 0

Page
access

interval

Same change to counter regardless of 
number of accesses in the interval, and 
when the accesses happened in the 
interval
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Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0

32

1 1 0 0 0 0 0 0

Page
access

interval
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Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0
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0 1 1 0 0 0 0 0

No Page
access
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Aging: Analysis

❖ Analysis

▪ Low overhead on clock tick and memory access

▪ Still must search page table for entry to remove

▪  Insufficient information to handle some ties

• Only one bit information per clock cycle

• Information past a certain clock cycle is lost

34
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Lecture Outline
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❖ Page Replacement: High Level

▪ FIFO

▪ Reference Strings

▪ Beladys

❖ LRU

❖ Thrashing

❖ FIFO w/ Reference bit
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Thrashing

❖ This is not specific to LRU, but it is easiest to demonstrate 
with LRU

❖ When the physical memory of a computer is 
overcommitted, causing almost constant page faults 
(which are slow)

▪ Overcommitment most commonly happens when there are too 
many processes, and thus too much memory needed

▪ Can also happen with a few processes, if the process needs too 
much memory

36



CIS 3800, Spring 2024L20: Page replacementUniversity of Pennsylvania

Thrashing: LRU Example

❖ Consider the following example with three page frames 
and LRU

❖ Page fault on every memory access 

37

Ref 
str:

0 1 2 3 0 1 2 3 0 1 2 3

Most 
recently 
used

0 1 1 2 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2

LRU 0 1 2 3 0 1 2 3 0 1

Victim 0 1 2 3 0 1 2 3 0
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Thrashing: Multiprogramming

❖ It is good to have more processes running, then we can 
have better utilization of CPU. 

▪ While one process waits on something, another can run

▪ More on CPU Utilization later

❖ As we use more processes running at once, more memory 
is needed, can cause thrashing 

38

CPU 
util.

Degree of multiprogramming
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Lecture Outline
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❖ Page Replacement: High Level

▪ FIFO

▪ Reference Strings

▪ Beladys

❖ LRU

❖ Thrashing

❖ FIFO w/ Reference bit
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FIFO Analysis

❖ Remember FIFO? The first page replacement algorithm 
we covered?

▪ Evict the page that has been in physical memory the longest

❖ Analysis:

▪ Low overhead. No need to do any work on each memory access, 
instead just need to do something when loading a new page into 
memory & evicting an existing page

▪ Not the best at predicting which pages are used in the future 

❖ Could we modify FIFO to better suit our needs?

40
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Second Chance

❖ Second chance algorithm is very similar to FIFO

▪ Still have a FIFO queue

▪ When we take the first page of the queue, instead of immediately 
evicting it, we instead check to see if the reference bit is 1 (was 
used in the last time interval)

▪ If so, move it to the end of the queue

▪ Repeat until we find a value that does not have the reference bit 
set (if all pages have reference bit as 1, then we eventually get 
back to the first page we looked at)

41
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Second Chance Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so set to 0 and move to end

42
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Second Chance Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so move to end
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Second Chance Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so move to end

C
0
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FREE

Second Chance Example

❖ If we need to evict a page: start at the front

❖ Found a page with reference bit = 0, evict Page C!
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Clock

❖ Optimization on the second chance algorithm

❖ Have the queue be circular, thus the cost to moving 
something to the “end” is minimal

46
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Clock Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so set to 0 and move to end

47
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Clock Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so set to 0 and move to end

48
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Clock Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so set to 0 and move to end
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Can also be modified to 

prefer to evict clean pages 

instead of dirty pages
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Linux

❖ Two Clock lists: Active and Inactive

▪ Reclaim from inactive list first

▪ If page has not been referenced recently, move to inactive list

▪ If page is referenced:

• Set reference flag to be true

• Move to active list next time it is accessed

▪ Two page accesses to be declared active

▪ If second access does not happen, reference flag is reset 
periodically

❖ After two timeouts, move a page to inactive state

50
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Linux diagram

51

PG_active = 0
PG_reference = 0

PG_active = 1
PG_reference = 0

PG_active = 0
PG_reference = 1

PG_active = 1
PG_reference = 1

Inactive Active

Used

Timeout Timeout UsedUsed

This is sort of like a 2-bit 

counter for reference bits.

We keep pages in two clock lists. 

Reality is more 

complicated than this
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Linux diagram

52

PG_active = 0
PG_reference = 0

PG_active = 1
PG_reference = 0

PG_active = 0
PG_reference = 1

PG_active = 1
PG_reference = 1

Inactive Active

Refill

Refill

Used

Timeout Timeout UsedUsed

Refill

Linux will want to keep a good 

ratio of inactive to active, so 

that there are always some 

pages that are considered 

“more ok” to evict

Active should be ~2/3 of pages at most
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