University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Course Review
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:
Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris
Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta
Charis Gao Jerry Wang Maxi Liu Tom Holland
Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Administrivia

+ PennOS

= Everyone should have already contacted their group, and should
get started working on it.

= Full Thing due ~April 22" (Yesterday)
- Can still use late tokens, so late deadline is April 26t

- After you submit, you need to schedule a meeting with your TA to
demonstrate that it is working

" There will be a PennOS Team evaluation form that goes out
sometime soon

- Will be due on the last day of classes: wednesday (5/1) @ midnight



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Administrivia

J
>

» Post semester survey
® To be released soon, due sometime next week

+» We released stress.c and stress.h for testing your PennOS
kernel

« The full PennOS demo plan is on ed, please look at it!

*

CIS TA Application is out now!
= 2400 is “due” April 26" @ midnight



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» How is PennOS going? Any questions related to it?



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Midterm Philosophy / Advice (pt. 1)

+» | do not like midterms that ask you to memorize things
" You will still have to memorize some critical things.

= | will hint at some things, provide documentation or a summary of
some things. (for example: | will provide parts of the man pages
for various system calls)

+» | am more interested in questions that ask you to:
= Apply concepts to solve new problems
" Analyze situations to see how concepts from lecture apply

+» Will there be multiple choice?

" |f there is, you will still have to justify your choices



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Midterm Philosophy / Advice (pt. 2)

+ | am still trying to keep the exam fair to you, you must
remember some things

= High level concepts or fundamentals. | do not expect you to
remember every minute detail.

- E.g. how a multi level page table works should be know, but not the
exact details of what is in each page table entry

(I know this boundary is blurry, but hopefully this statement helps)

+ |'am NOT trying to “trick” you (like | sometimes do in poll
everywhere questions)



CIS 3800, Spring 2024

University of Pennsylvania L24: Course Review

Midterm Philosophy / Advice (pt. 3)

» | am trying to make sure you have adequate time to stop
and think about the questions.
" You should still be wary of how much time you have

" But also, remember that sometimes you can stop and take a deep
breath.

» Remember that you can move on to another problem.

» Remember that you can still move on to the next part
even if you haven’t finished the current part



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Midterm Philosophy / Advice (pt. 4)

% On the midterm you will have to explain things

+ Your explanations should be more than just stating a topic
name.

» Don't just say something like (for example) "because of
threads" or just state some facts like "threads are parallel
and lightweight processes".

+ State how the topic(s) relate to the exam problem and
answer the question being asked.



Disclaimer

+THIS REVIEW IS NOT
EXHAUSTIVE

»Topics not in this review
are still testable

« Recitation after lecture is exam review



CIS 3800, Spring 2024

University of Pennsylvania L24: Course Review

Practice Problems

+» Processes vs Threads
+» Memory Allocation

+» Caches

% Scheduling

+ Virtual Memory

+» Threads & Data Races
+» Deadlock

10



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Processes vs Threads

» Let’s say we had a program that did an expensive
computation we wanted to parallelize, we could use
either threads or processes. Which one would be faster
and why?

+» Sometimes we want to call software that is written in
another language. If it is written as a library with the
proper support (e.g. TensorFlow is in C++ but callable
from Python), we could use threads. If we want to invoke
a program that is already compiled (isn’t a library/doesn't
have a callable interface) we could not use threads. We
would have to use fork & exec. Why?

11



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Threads

+ We have seen two concurrency models so far
" Forking processes (fork)
- Creates a new process, but each process will have 1 thread inside it

= Kernel Level Threads (pthread create)
 User level library, but each thread we create is known by the kernel
« 1:1 threading model

14



University of Pennsylvania L24: Course Review

Threads

+ For each of the three concurrency models, state whether

it is possible to do each of the following.

+ In real exam, | would ask you to briefly explain why

Processes

pthread

Can share files and concurrently access those files.

Can communicate through pipes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 3800, Spring 2024

15



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Memory Allocation Q1

+ Slab allocator is really fast, but it would be inconvenient
to replace malloc with a slab allocator. Why is that?

+ How much internal and external fragmentation does a
slab allocator have?

21



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Memory Allocation Part 2

+ |In some instances, we want to allocate a lot of items and
limit those allocations to one scope. We call our allocator
a “temp_allocator” since it allocates things that are
expected to be temporary to some scope.

+» For example, Consider we start with:

start ptr ——

end ptr

|
1024 bytes
= Note that there is no metadata, just these two pointers

« Then we allocate 4 bytes

start ptr ———f Allecd

- Y
1024 bytes

23



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Memory Allocation Part 2

+» For example, Consider we start with:

start ptr ——

end ptr

|
1024 bytes
" Note that there is no metadata, just these two pointers

+» Then we allocate 4 bytes

start ptr ————f Allecd

end ptr-\\\\\\\—d/f J
- Y

1020 bytes

+» Then we allocate 16 bytes
end ptr '
\\J 1008 bytes

24



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Memory Allocation Part 2

» How fast is our allocator at allocating things on average?
At freeing things?

+ What does the internal and external fragmentation look
like with our allocator?

+ Why can’t we use this as a replacement for malloc
maintaining lists of allocated & freed memory?

26



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Memory Allocation

» Lets say that in addition to malloc, we also had a custom
slab allocator implemented that could allocate chunks of
space that is 64 bytes (16 integers) large.

+ What is one reason we may prefer the custom slab
allocator to malloc?

+» What is one reason we may prefer malloc?

30



University of Pennsylvania

Memory Allocation

L24: Course Review

How is the array in this snippet of code likely allocated at

a low level (in assembly)?

r#include <stdio.h>
#include <stdlib.h>

int main(int argc,

int arr[l
arr[0]
arr[l] =
(1nt
arr[i]

}

printf ("%d\n", arr[9]);

1
1L g
i

CIS 3800, Spring 2024

char** argv)

i < 10;
+ arr[1-2];




University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Caches

% The most common way to store a sequence of elements in
C++ and most languages is a dynamically resizable array
(e.g. a vector).

A vector of <int> looks something like this in memory:

int main(int argc, char** argv) {
vector<int> v {3, 4, 5, 7, 8}; heap

}

stack

size t size = 3
slize t capacity = 3
int* data = 7

A

(IO |PS|W

A

16 bytes 20 bytes .



CIS 3800, Spring 2024

University of Pennsylvania L24: Course Review

Caches

+» Typically, abool variable is 1 byte. How much space does
a bool strictly need though?

= 1 bit

» C++ goes against the standard implementation of a vector
for the bool type, and instead has each bool stored as a
bit instead of the type a stand-a-lone Boolean variable
would be stored as.

" Travis thinks this was a horrible design decision, but there is a
reason why they did this. What are those reasons?

34



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Caches

« |f we stored a vector of 120 bools, and wanted to iterate
over all of them, roughly how many cache hits & misses
would we have if we:

" You can assume a cache line is 64 bytes.

" |f we used a vector<bool> that allocates the bools normally (1
byte per bool)

" |f we use a vector<bool> that represents each bool with a
single bit

36



University of Pennsylvania L24: Course Review

CIS 3800, Spring 2024

Scheduling

+ Four processes are executing on one CPU following round

robin scheduling:
0. 1. 2. 3. 4 5. 6. 7. 5. 9 100 11. 12, 13. 14

Lo I T = s I =

<« YOU can assume:

= All processes do not block for |/O or any resource.
= Context switching and running the Scheduler are instantaneous.

= |f a process arrives at the same time as the running process’ time

slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

38



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Scheduling

0. 1. 2. 3 4 5 6 ;.8 %9 100 11 12 13 14

=

s

C
D

= All processes do not block for I/O or any resource.
= Context switching and running the Scheduler are instantaneous.

" |f a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

+» What is the earliest time that process C could have
arrived?

+» Which processes are in the ready queue at time 97?

+ If this algorithm used a quantum of 3 instead of 2, how
many fewer context switches would there be? 39



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Page Tables Q1

+» One oddity about page tables is that the page table itself
exists in memory. However, the memory that is used to
store some page tables are usually “pinned” into memory,
meaning that those page tables cannot be
evicted/removed from physical memory.

+» Why is it important that some of the memory
representing these page tables remain “pinned”? Please
explain your answer.

44



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Page Tables Q2

+» When we first brought up the idea of page tables, we

imagined the page table as one giant array containing one
page table entry for each page. We investigated other
page table implementations (inverted and multi-level)
since this “big array” model uses up A LOT of space for
entries that may never be used.

» Let’s say we had a virtual page number that we wanted to
translate to a physical page number. How would the
lookup speed of our original “big array” page table model
compare to the more space efficient page tables
implementations?

46



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Page Tables Q3

+» One thing that is different about inverted page tables is
that the page table has one entry per physical page
instead of per virtual page.

» Because of this, a page table can be shared across all
processes instead of being per process. This is since all
processes share physical memory.

» If a page table is shared across all processes, what issues
could this cause? How does an inverted page table handle
this issue?

48



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Page Replacement Policy

% Seungmin and Nate are debating the best page
replacement policy. One of them says that LRU is strictly
better (e.g. better in all cases) than FIFO page
replacement and always leads to less page faults.

» |Is this true or false? Please explain your answer. If it is not
true, provide an example of page accesses that counters
this claim.

50



University of Pennsylvania

L24: Course Review

Threads & Data Races

CIS 3800, Spring 2024

+ Consider the following pseudocode that uses threads.
Assume that file.txt is large file containing the contents of

a book. Assume that
there is a main() that
creates one thread
running first_thread()
and one thread for
second_thread()

« There is a data race.
How do we fix it
using just a mutex?

rstring data = ""; // global

void* first thread(void* argqg)

f open("file.txt",
while (!f.eof()) {

string data read

data data read;

}
}

void* second thread (void* arg)
while (true) {
if (data.size ()
print (data) ;
}

data = "";

}

0) A

)

{

{

O _RDONLY) ;

f.read (10 chars);

(where do we add calls to lock and unlock?)

52




University of Pennsylvania L24: Course Review

Threads & Data Races

CIS 3800, Spring 2024

+» Thereis a data race. How do we fix it using just a mutex?

(where do we add calls to lock and unlock?)

rstring data = ""; // global
void* first thread (void* arg)
while (!f.eof()) {

data = data read;
}
}

void* second thread (void* arg)
while (true) {
if (data.size () !'= 0) {
print (data) ;
}

data = "";

}

U

{

f = open("file.txt", O RDONLY) ;

string data read = f.read (10 chars);

{

53



University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Threads & Data Races

+ After we remove the data race on the global string, do we
have deterministic output? (Assuming the contents of the

file stays the same). (string data = ""; // global

void* first thread(void* arg) {
f = open("file.txt", O RDONLY) ;
(!f.eof()) {
string data read = f.read (10 chars);
data = data read;

}
}

void* second thread (void* arg) {
(true) {
1f (data.size() != 0) {
print (data) ;
}

data = "";

}
}

\ J




University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Threads & Data Races

+ Thereis an issue of inefficient CPU utilization going on in

this code. What is it and how can we fix it?
rString data = ""; // global

% (You can describe the | void* first thread(void* arg) {
f = open("file.txt", O RDONLY) ;

fix at a high level, no e (1) §
need to Write COde) string data read = f.read (10 chars);
data = data read;

}
}

void* second thread (void* arg) {
(true) {
if (data.size() != 0) {
print (data) ;
}
data = "";
}

}

\ J




University of Pennsylvania L24: Course Review

CIS 3800, Spring 2024

Deadlock

+» Consider we are working with a data base that has N
numbered blocks. Multiple threads can access the data
base and before they perform an operation, the thread
first acquires the lock for the blocks it needs.

= Example: Threadl accesses B3, B5 and B1. Thread2 may want to
access B3, B9, B6. Here is some example pseudo code:

void transaction(list<int> block numbers) {
(every block num in block numbers)
acquire lock (block num)

}

operation (block numbers);

(every block num in block numbers)
release lock (block num);

}




University of Pennsylvania L24: Course Review CIS 3800, Spring 2024

Deadlock

" This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to
acquire the same lock twice

= Someone proposes we fix this by locking the whole database
instead of locking at the block level. What downsides does this
have? Does it even avoid deadlocks?

void transaction(list<int> block numbers) {
(every block num in block numbers) {

[ | [ [
How can we fix this acquire lock (block num)

(without locking )
the whole database

if that even works)? | Peratron(block numbers);

(every block num in block numbers)
release lock (block num);

}




	Default Section
	Slide 1: Course Review Computer Operating Systems, Spring 2024
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Poll: how are you?
	Slide 5: Midterm Philosophy / Advice (pt. 1)
	Slide 6: Midterm Philosophy / Advice (pt. 2)
	Slide 7: Midterm Philosophy / Advice (pt. 3)
	Slide 8: Midterm Philosophy / Advice (pt. 4)
	Slide 9: Disclaimer
	Slide 10: Practice Problems
	Slide 11: Processes vs Threads
	Slide 14: Threads
	Slide 15: Threads
	Slide 21: Memory Allocation Q1
	Slide 23: Memory Allocation Part 2
	Slide 24: Memory Allocation Part 2
	Slide 26: Memory Allocation Part 2
	Slide 30: Memory Allocation
	Slide 31: Memory Allocation
	Slide 33: Caches
	Slide 34: Caches
	Slide 36: Caches
	Slide 38: Scheduling
	Slide 39: Scheduling
	Slide 44: Page Tables Q1
	Slide 46: Page Tables Q2
	Slide 48: Page Tables Q3
	Slide 50: Page Replacement Policy
	Slide 52: Threads & Data Races
	Slide 53: Threads & Data Races
	Slide 56: Threads & Data Races
	Slide 58: Threads & Data Races
	Slide 60: Deadlock
	Slide 61: Deadlock


