
Valgrind, GDB &
Penn-Shell M1
A crash course on learning to

love seg faults

Table of Contents

1. Valgrind
2. GDB
3. File Descriptors, Redirections & Pipes
4. Penn Shell Milestone 1

Valgrind

Valgrind

● Debugging tool for detecting memory bugs and leaks
● Basically a program that ‘runs’ your program, looks for potential memory leaks

and reports them
● Why Valgrind?

○ Tells you position of segfaults
○ Usage of non-initialized values
○ Errors in memory usage: double free, wrong memory parameters

Valgrind Usage

./valgrind --leak-check=full --show-leak-kinds=all -track-origins=yes [program name]

Enable memory leak
detection

Show all “definite, indirect,
possible, reachable” leak

kinds

Track origins of
uninitialized values

Example Run
$ valgrind ./penn-shredder 2
==151614== Memcheck, a memory error detector
==151614== Copyright (C) 2002-2017, and GNU GPL’d, by Julian Seward et al.
==151614== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==151614== Command: ./penn-shredder 2
==151614==
penn-shredder# sleep
sleep: No such file or directory
==151627==
==151627== HEAP SUMMARY:
==151627== in use at exit: 0 bytes in 0 blocks
==151627== total heap usage: 3 allocs, 3 frees, 1,512 bytes allocated
==151627==
==151627== All heap blocks were freed -- no leaks are possible
==151627==
==151627== For lists of detected and suppressed errors, rerun with: -s
==151627== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
penn-shredder# /bin/sleep
/bin/sleep: missing operand
Try ’/bin/sleep --help’ for more information.
penn-shredder# /bin/sleep 3
Bwahaha ... Tonight, I dine on turtle soup!
penn-shredder# /bin/sleep 1
penn-shredder# cat ˆC
penn-shredder# /bin/cat
Bwahaha ... Tonight, I dine on turtle soup!
penn-shredder# ˆC
penn-shredder# /bin/cat
ˆC
penn-shredder#
==151614==
==151614== HEAP SUMMARY:
==151614== in use at exit: 0 bytes in 0 blocks
==151614== total heap usage: 6 allocs, 6 frees, 112 bytes allocated
==151614==
==151614== All heap blocks were freed -- no leaks are possible
==151614==
==151614== For lists of detected and suppressed errors, rerun with: -s
==151614== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

These would be
super nice… but

Common Errors

● Conditional jump or move depends on uninitialised value(s)
● Invalid read of size 8
● 8 bytes in 1 blocks are definitely lost in loss record 1 of 7
● Process terminating with default action of signal 11 (SIGSEGV)
● ==29== HEAP SUMMARY:

==29== in use at exit: 74,043 bytes in 11 blocks
==29== total heap usage: 13 allocs, 2 frees, 74,115 bytes
allocated
==29== LEAK SUMMARY:
==29== definitely lost: 16 bytes in 2 blocks
==29== indirectly lost: 0 bytes in 0 blocks
==29== possibly lost: 0 bytes in 0 blocks
==29== still reachable: 0 bytes in 0 blocks
==29== suppressed: 74,027 bytes in 9 blocks

Example 1. Invalid Write

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv){
 int i;
 int *a = malloc(sizeof(int) * 10);
 if (!a) return -1; /*malloc failed*/
 for (i = 0; i < 11; i++){
 a[i] = i;
 }
 free(a);
 return 0;
}

==23779== Invalid write of size 4
==23779== at 0x400548: main (invalid_write.c:9)
==23779== Address 0x4c30068 is 0 bytes after a block of size 40
alloc'd
==23779== at 0x4A05E46: malloc (vg_replace_malloc.c:195)
==23779== by 0x40051C: main (invalid_write.c:6)

What’s wrong?
- Writing to memory that is not allocated

How to fix?
- Follow line numbers to where it happened
- Check if you allocated space for it
- Really check. Double check
- Usually indexing error

Example 2. Uninitialized Values
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv){
 int i;
 int a[10];
 for (i = 0; i < 9; i++)
 a[i] = i;

 for (i = 0; i < 10; i++){
 printf("%d ", a[i]);
 }
 printf("\n");
 return 0;
}

==24599== Conditional jump or move depends on uninitialised value(s)
==24599== at 0x33A8648196: vfprintf (in /lib64/libc-2.13.so)
==24599== by 0x33A864FB59: printf (in /lib64/libc-2.13.so)
==24599== by 0x400567: main (uninitialized.c:11)
==24599== Use of uninitialised value of size 8
==24599== at 0x33A864484B: _itoa_word (in /lib64/libc-2.13.so)
==24599== by 0x33A8646D50: vfprintf (in /lib64/libc-2.13.so)
==24599== by 0x33A864FB59: printf (in /lib64/libc-2.13.so)
==24599== by 0x400567: main (uninitialized.c:11)
==24599== Conditional jump or move depends on uninitialised value(s)
==24599== at 0x33A8644855: _itoa_word (in /lib64/libc-2.13.so)
==24599== by 0x33A8646D50: vfprintf (in /lib64/libc-2.13.so)
==24599== by 0x33A864FB59: printf (in /lib64/libc-2.13.so)
==24599== by 0x400567: main (uninitialized.c:11)
==24599==

What’s wrong?
- Usage of uninitialized value

How to fix?
- Go through line numbers to find where
- Try to initialize everything, char[], int… give it a default

value
- calloc(3) instead of malloc(3) saves you sometimes

- calloc(3) = malloc + initialize

Example 3. Memory Leaks
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv){
 int i;
 int *a;

 for (i=0; i < 10; i++){
 a = malloc(sizeof(int) * 100);
 }
 free(a);
 return 0;
}

==24810== HEAP SUMMARY:
==24810== in use at exit: 3,600 bytes in 9 blocks
==24810== total heap usage: 10 allocs, 1 frees, 4,000 bytes allocated
==24810==
==24810== 3,600 bytes in 9 blocks are definitely lost in loss record 1 of 1
==24810== at 0x4A05E46: malloc (vg_replace_malloc.c:195)
==24810== by 0x400525: main (mem_leak.c:9)
==24810==
==24810== LEAK SUMMARY:
==24810== definitely lost: 3,600 bytes in 9 blocks
==24810== indirectly lost: 0 bytes in 0 blocks
==24810== possibly lost: 0 bytes in 0 blocks
==24810== still reachable: 0 bytes in 0 blocks
==24810== suppressed: 0 bytes in 0 blocks

What’s wrong?
- Memory is leaked: we did

not free enough

How to fix?
- Line numbers
- 1 alloc = 1 free rule
- When we exit(2) because of error, we want to free(3)

everything too
- Custom exit function could be helpful

GDB

What is GDB?

● A scary program
● GNU Project Debugger

○ GNU = GNU’s not Unix! (recursive acronym)

● You can see what’s going on “inside” a program as it executes
● Supports Assembly, C, C++, D, Fortran, Go, Rust, etc.

Using GDB

● -g flag in Makefile for compiling

Type in your shell:

a) gdb penn-shredder
b) gdb --args penn-shredder 3
c) gdb

○ (gdb) file penn-shredder
○ (gdb) set args 3
○ (gdb) run < in.txt
○ (gdb) help [command]

Walking through code

Command Shortcut Description

start ● Start from beginning and stop there

run r ● Start and run program from beginning

continue c ● Run until program exits*

step s ● Run until next line*
○ Steps into a function

next n ● Run until next line in the current function is reached / returns*
○ Steps over a function

finish fin ● Run until the current function finishes*

*or until next breakpoint
= command I use often

Walking through code: example

int main(int argc, char* argv[]) {

 int n = 3;

 int fib = fibonacci(n);

 fprintf(stderr, "Fibonacci: %d\n", fib);

 return 0;

}

int fibonacci(int n) {

 int t1 = 0;

 int t2 = 1;

 int next = 0;

 if (n == 1) {

 return t1;

 } else if (n == 2) {

 return t2;

 }

 for (int i = 3; i <= n; i++) {

 next = t1 + t2;

 t1 = t2;

 t2 = next;

 }

 return next;

}

= next

= step
breakpoint

= continue

Where am I in the code?

Command Description

layout src ● Changes the window layout to show source code

refresh / ref ● Refreshes the window in case it looks weird

Ctrl-x + a ● Close this window layout view

list / l ● Show some lines of source code before/around current

backtrace / bt / where ● Displays the call stack

frame [number] ● Selects and inspects a specific stack frame

Breakpoints (b/break)

Command Description

b [filename:]function
b [filename:]linenum

● Sets a breakpoint at the beginning of a function or at a
specific line number

info breakpoints
info b

● Lists all breakpoints w/ status and conditions

disable [bnum]
enable [bnum]

● Disable or enable a specific breakpoint

delete [bnum]
d [bnum]

● Deletes a specific breakpoint
● Deletes all if breakpoint num isn’t specified

clear [filename:]function
clear [filename:]linenum

● Removes breakpoints in a specific function or at a specific
line number

Printing things (p/print)

Command Description

p var ● Prints the value of a variable

p/x var ● Prints the value, in hex (might be useful in PennOS)

p var.field ● Prints a field of a struct

p var->field
p (*var).field

● Prints a field of a struct pointer

p head.next->next->data ● Example of printing data in a linked list

p *arr[@len] ● Prints the elements of an array, up to the specified length

p var = value ● Sets a different value to a variable

Inspection

Command Description

info args ● Displays args of the current function

info locals ● Displays local variables in the current function

info variables [regex] ● Lists all global and static variables + their data types
● Can filter using regex

info functions [regex] ● Displays all functions in the program
● Can filter using regex

ptype [expression] ● Shows the data type of the given expression
● Can display the definition of a type (useful for structs)

watch [expression] ● Stops program whenever value of expression changes
● Ex: watch foobar if foobar > 3

Demo: Stack

stack.c

typedef struct Node {
 int data;
 struct Node *below;
} Node;

void push(Node *top, int data) {
 Node *newNode = (Node *)malloc(sizeof(Node));
 *newNode = (Node){data, top};
 top = newNode;
}

Node *getMaxNode(Node *top) {
 if (top && top->below && top->data < top->below->data) {
 return getMaxNode(top->below);
 }
 return top;
}

int main() {

 Node *top = NULL;

 push(top, 1);

 push(top, 3);

 push(top, 2);

 // Results

 Node *maxNode = getMaxNode(top);

 printf("Max: %d\n", maxNode->data);

 return 0;

}

Penn Shell-specific debugging

Command Description

signal [signal] ● Sends a signal (e.g. SIGINT)
● Useful to test Ctrl + C, Ctrl + Z, etc

shell [cmd] ● Executes a command as if you were in bash

shell ps j ● Lists process(es) info w/ job format output

shell kill -9 <pid> ● Sends a SIGKILL to a specific process (non-ignorable)

kill ● Kill the program being debugged

set follow-fork-mode
[parent|child]

● After a fork, follow the child or parent process
● (parent by default)

shell ls -l /proc/<pid>/fd ● List a process’ open fd’s

Very fun gdb things

● You can recompile within gdb
○ Just type `make` into the gdb shell!

● gdb -tui: start gdb with a textual interface (same as running `layout src`)

More commands

● set logging on: log debugging session to show (flex?) to others
● set pretty array on: pretty array printing
● thread apply all bt: see frames of all threads

And a lot more here + real life GDB debugging example/walkthrough here

https://stackoverflow.com/questions/1471226/most-tricky-useful-commands-for-gdb-debugger
https://blog.0x972.info/?d=2015/09/09/09/19/14-debugging-with-gdb-a-real-life-example

Other Cool GDB Things

Command Description

disassemble / disas ● View assembly instructions of the current function

b [filename:]linenum
condition

● Make a breakpoint with an associated condition
● e.g. b 73 i > 4 && i % 2 == 0

call ● Calls a function immediately
● Helpful for on-the-fly behavior probing

until, advance, jump,
etc.

● Even more ways to step through your code

python ● Yes you can do python scripting in GDB

quit / q / Ctrl-D ● Fixes your bugs instantly
● Can touch grass

File Descriptors, Redirections & Pipes

File Descriptor

● Unique id that refers to a file
● Type int
● read(2) and write(2)
● open(2) and close(2)

○ Open with unique permissions
○ Read only, write only, read&write, etc

● Each process has unique file
descriptor table

● 0, 1, 2 reserved for stdin, stdout,
stderr

0

1

2

3

…

Terminal Input (stdin)

Terminal Output (stdout)

Terminal Output Error
(stderr)

file.txt

Quick Example

- read(STDIN_FILENO, buf, 30);
- Reads from terminal input and stores to buffer

- write(STDERR_FILENO, “error message\n”, 15);
- Write to terminal output error

- write(STDIN_FILENO, “trying to write\n”, 17);
- Error. STDIN is “read only”

- open(“file.txt”, O_WRONLY | O_CREAT, 0644);
- Open file called “file.txt” with “write only” permissions, create if doesn’t exist. Also, give 0644

permissions
- 0644 is an octal integer, each digit after 0 represents user, group, and other permissions
- 6 (read & write) user permission, 4 (read) group permission, 4 (read) other permission

Redirections

- Redirect a file descriptor to point to some other file!
- dup2(int oldfd, int newfd)

- Whatever file that was pointed to by oldfd is now pointed to file pointed to by newfd

● dup2(newfd, STDIN_FILENO)
○ Redirect STDIN to newfd. What does this mean?
○ Anything that was supposed to go to stdin, which was terminal input,

will now go to newfd
● dup2(newfd, STDOUT_FILENO)

○ Redirect STDOUT to newfd. What does this mean?
○ Anything that was supposed to be outputted to stdout, will now be

outputted to newfd

Pipes

● FIFO data structure with a read end and write end
○ Picture a pipe with water flowing into (write end) and out of (read end)

● pipe(2) system call. pipe(int pipefd[2])
○ Creates the pipe data structure pointed to by pipefd
○ pipefd[0] = read-end, pipefd[1] = write-end

write(pipefd[1], “stuff”, 6); read(pipefd[0], buf, 6);

pipe

Pipes and processes

● File Descriptor table is “shared” among processes
○ → pipes are shared!!!!

● Child processes has its own copy of each pipe end

pipe

parent
child

read

write

write

read

Some tips

DRAW! It is easier to visualize what points where.

READ! The system calls related to file descriptors. open(2), close(2), dup2(2), pipe(2)

READ CAREFULLY! The man pages for above. Really know what’s going on.

E.g. What happens when we fork(2) after pipe(2)?

 What happens if we close(2) in a child process?

Penn-Shell M1

Quick Recap of Shredder

while(true) {
write(prompt);
char cmd_string[];
int bytes = read(cmd_string);
struct parsed_command cmd;
parse_command(cmd_string, cmd);
pid_t pid = fork();
if (child){

exec(cmd);
}
else {

wait()
}

}

- Simple write(), read(), fork(), exec() loop
- Signal handling

- SIGINT, SIGALRM

Things to add for Shell M1

- Redirections
- cat < file
- ls -l > file

- Pipes
- history -1000 | grep ssh
- cat < file | wc | cat >> file2

- You want to fork a child for
each command in the pipeline!

while(true) {
 write(prompt);
 read(cmd_string);
 parse_command(cmd_string, cmd);
 create appropriate # of pipes
 pipe(pipes)
 for (i = [0, num_command]) {
 pid_t pid = fork();
 if (child){
 redirect if needed
 connect pipes
 exec(cmd);
 }
 }
 waitpid(for all children);
}

Things to add for Shell M1

while(true) {
 write(prompt);
 read(cmd_string);
 parse_command(cmd_string, cmd);
 create appropriate # of pipes
 pipe(pipes)
 for (i = [0, num_command]) {
 pid_t pid = fork();
 if (child){
 redirect if needed
 connect pipes
 exec(cmd);
 }
 }
 waitpid(for all children);
}

- Redirections
- cat < file
- ls -l > file

- Pipes
- history -1000 | grep ssh
- cat < file | wc | cat >> file2

- You want to fork a child for
each command in the pipeline!

Example Run
cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

Example Run
cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

pipe1

pipe2

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

Example Run
cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

Child1 for
cat

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

Example Run
cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

Child 1 for
cat

Child 2 for
grep

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

Example Run
cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

Child 1 for
cat

Child 2 for
grep

Child 3 for
wc

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

Example Run
cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

Child 1 for
cat

Child 2 for
grep

Child 3 for
wc

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

“Redirect if needed!”

Example Run
cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

Child 1 for
cat

Child 2 for
grep

Child 3 for
wc

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: file.txt

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: out.txt

2: stderr

“Redirect if needed!”

Example Run

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: file.txt

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: out.txt

2: stderr

Parent: penn-shell Child1: cat Child2: grep Child3: wc

pipe1 pipe2[1] [0] [1] [0]

“Connect children with pipes!”

cat < file.txt | grep comrade | wc -l -c > out.txt

Example Run
cat < file.txt | grep comrade | wc -l -c > out.txt

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: file.txt

1: pipe1[1]

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: pipe1[0]

1: pipe2[1]

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: pipe2[0]

1: out.txt

2: stderr

Parent: penn-shell Child1: cat Child2: grep Child3: wc

pipe1 pipe2[1] [0] [1] [0]

Content from “file.txt” will travel through pipes from Child 1 to 3
Each child will execute according to data they read from pipe/file

file.txt

Example Run

root# cat < file.txt | grep comrade | wc -l -c > out.txt
root#

file.txt
Comrade, in the spirit of camaraderie and unity, I extend my heartfelt greetings to you, my esteemed comrade.
Together, as comrades, we navigate the complex tapestry of life, facing challenges with unwavering solidarity.
Comrade, let us forge ahead, shoulder to shoulder, in pursuit of a brighter tomorrow.
As comrades, our shared ideals bind us in a bond that transcends the ordinary, creating a harmonious symphony of collective
aspirations.
Comrade, may our journey be marked by mutual support and the enduring strength that comes from the fellowship of
like-minded souls.

Read from file.txt, output to pipe 1
Read from pipe 1, get lines with the word “comrade”, output to pipe 2
Read from pipe 2, get line count and character count of those lines, output to out.txt

out.txt
 3 358

Wrap up

- Get into groups for penn-shell!
- Draw Pipe/Redirection diagrams
- Shredder Peer Review due end of the week!
- Milestone due Wednesday Feb 14
- OH for remaining time
- Any questions?

