
Recitation 04
Midterm Review!

Table of Contents

1. Brief overview of all topics
2. Some thinking questions
3. Any questions on Midterm??
4. Open OH for remaining time

List of Midterm Topics

1. Processes
2. Signals
3. Terminal Control
4. File System
5. Cache, Locality and Buffering

Shredder - fork(), exec(), wait()

Parent

Heap

Stack

shredder> echo hi

Parent

Heap

Stack

shredder> echo hi

Child

Heap

Stack

fork()

Shredder - fork(), exec(), wait()

Parent

Heap

Stack

shredder> echo hi
hi

wait(pid);

fork()
echo

echo Heap

echo Stack

Shredder - fork(), exec(), wait()

Parent

Heap

Stack

shredder> echo hi
hi
shredder> sleep 10

Shredder - alarm(), signal

fork()
sleep

alarm(5);

Parent

Heap

Stack

shredder> echo hi
hi
shredder> sleep 10

Shredder - alarm(), signal

fork()
sleep

alarm(5);
kill(pid, SIGINT)

Parent

Heap

Stack

shredder> echo hi
hi
shredder> sleep 10
BWAHAHA…

Shredder - alarm(), signal

alarm(5);
wait();

Parent

Heap

Stack

shredder> echo hi
hi
shredder> sleep 10
BWAHAHA…
shredder>

Shredder - alarm(), signal

alarm(5);
wait();

Shell - pipe, redirection
cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

pipe1

pipe2

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

Shell - pipe, redirection

cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

Child1 for
cat

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

Shell - pipe, redirection

cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

Child 1 for
cat

Child 2 for
grep

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

Shell - pipe, redirection

cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

Child 1 for
cat

Child 2 for
grep

Child 3 for
wc

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

Shell - pipe, redirection

cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

Child 1 for
cat

Child 2 for
grep

Child 3 for
wc

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

Shell - pipe, redirection
“Redirect if needed!”

cat < file.txt | grep comrade | wc -l -c > out.txt

penn-shell
(parent)

Child 1 for
cat

Child 2 for
grep

Child 3 for
wc

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: file.txt

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: out.txt

2: stderr

“Redirect if needed!”
Shell - pipe, redirection

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: file.txt

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: out.txt

2: stderr

Parent: penn-shell Child1: cat Child2: grep Child3: wc

pipe1 pipe2[1] [0] [1] [0]

“Connect children with pipes!”

cat < file.txt | grep comrade | wc -l -c > out.txt

Shell - pipe, redirection

cat < file.txt | grep comrade | wc -l -c > out.txt

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: stdin

1: stdout

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: file.txt

1: pipe1[1]

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: pipe1[0]

1: pipe2[1]

2: stderr

3: pipe1[0]

4: pipe1[1]

5: pipe2[0]

6: pipe2[1]

0: pipe2[0]

1: out.txt

2: stderr

Parent: penn-shell Child1: cat Child2: grep Child3: wc

pipe1 pipe2[1] [0] [1] [0]

Content from “file.txt” will travel through pipes from Child 1 to 3
Each child will execute according to data they read from pipe/file

file.txt

Shell - pipe, redirection

out.txt

sleep 20
(pid: 1101)

Shell - process group, terminal control

penn-shell
(pid: 1000)

shell> sleep 10 | sleep 20 &
shell> sleep 200 &
shell> sleep 300 &
shell>

sleep 10
(pid: 1100)

sleep 200
(pid: 1150)

sleep 300
(pid: 1160)

status: running
terminal control: no
ppid: 1000
pgid: 1100

status: running
terminal control: yes

status: running
terminal control: no
ppid: 1000
pgid: 1150

status: running
terminal control: no
ppid: 1000
pgid: 1160

sleep 20
(pid: 1101)

Shell - process group, terminal control

penn-shell
(pid: 1000)

shell> sleep 10 | sleep 20 &
shell> sleep 200 &
shell> sleep 300 &
shell> fg

(running sleep 300)

sleep 10
(pid: 1100)

sleep 200
(pid: 1150)

sleep 300
(pid: 1160)

status: running
terminal control: no
ppid: 1000
pgid: 1100

status: running
terminal control: no

status: running
terminal control: no
ppid: 1000
pgid: 1150

status: running
terminal control: yes
ppid: 1000
pgid: 1160

sleep 20
(pid: 1101)

Shell - process group, terminal control

penn-shell
(pid: 1000)

shell> sleep 10 | sleep 20 &
shell> sleep 200 &
shell> sleep 300 &
shell> fg

(running sleep 300)
(sleep 10 | sleep 20 finishes in background)

sleep 10
(pid: 1100)

sleep 200
(pid: 1150)

sleep 300
(pid: 1160)

status: terminated
(zombie)
terminal control: no
ppid: 1000
pgid: 1100

status: running
terminal control: no

status: running
terminal control: no
ppid: 1000
pgid: 1150

status: running
terminal control: yes
ppid: 1000
pgid: 1160

sleep 20
(pid: 1101)

Shell - process group, terminal control

penn-shell
(pid: 1000)

shell> sleep 10 | sleep 20 &
shell> sleep 200 &
shell> sleep 300 &
shell> fg

(running sleep 300)
(sleep 10 | sleep 20 finishes in background)

^Z (SIGTSTP sent to foreground process, shells re-gains TC)
Finished: sleep 10 | sleep 20 (Any terminated child in background is waited on)
shell> (Reprompt)

sleep 10
(pid: 1100)

sleep 200
(pid: 1150)

sleep 300
(pid: 1160)

status: running
terminal control: yes

status: running
terminal control: no
ppid: 1000
pgid: 1150

status: stopped
terminal control: no
ppid: 1000
pgid: 1160

status: terminated
(zombie)
terminal control: no
ppid: 1000
pgid: 1100

I/O Bus

CPU

MMU

Physical Memory
Frames (RAM)

Disk Controller

HDD, SSD, SwapFilesystem

Filesystem

● Interfaces, abstractions to organize/access data in disk
● Sequence of bytes ⇒ Blocks of bytes ⇒ Files
● How and where to access?

○ Directory file
○ Bitmap
○ FAT
○ Inodes

Filesystem - Some questions

● What are the pros and cons of each method?
● Is bitmap alone enough for a filesystem API? If not, how can we modify?
● Contiguous allocation vs Linked List allocation
● Internal Fragmentation and External Fragmentation
● Difference between Inodes and FAT?

Buffering

int main() {
 for (i is [1,3]) {
 pid = fork();

if (pid == 0) print(“hi”);
 }
}

How many children?
7
How many “hi\n”?
12

C1Pi=1

i=2

i=3

C2 C3

C4 C5 C7C6

hi

hihi

hihi

hi

hi hihi hihihi

How to resolve?
Why do we buffer?

I/O Bus

CPU

MMU

Physical Memory
Frames (RAM)

Disk Controller

Disk

Caches

Registers

SRAM

L1 Cache (I, D)

L2 Cache (I, D)

L3 Cache (I, D)

DRAM

Least Recently Used (LRU)

- Memory is limited
- Which line of memory to evict/replace when we run out of memory?

- Least Recently Used

- Advantages of LRU
- Generally good performance, we are evicting a page that is “least” frequently used
- Reduces number of page faults

- Disadvantages of LRU
- Quite costly to find the LRU page

- Think of a scenario where LRU may actually hurt performance
- Sequential Access: If some sequential access pattern forces LRU to evict and re-allocate parts

of memory, we will have poor performance

- How else can we design the eviction policy?

Some Thinking Questions 1: What might go wrong here?

void poll() {
for (all background jobs) {

waitpid(-pgid, status, WNOHANG |
WUNTRACED);

modify_queue();
}

}

while (true) {
poll();
prompt_and_get_command();
pipe();
for (all children) fork(), setpgid();

pipe(), redirect(), exec()
if (background) { waitpid(-1, status, WNOHANG); }
else { waitpid(-1, status, WUNTRACED); }

}

1. We are waiting for only 1 child process in a job in
lines 13, 14

a. What if “sleep 10 | sleep 100” ?
2. We are waiting for “any child process” waitpid(-1)

in line 13
a. What if there were zombied processes in

the background?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Some Thinking Questions 2
Consider this graph of CPU Utilization vs # of Processes Running

What is happening at each point?

C
PU

 U
til

iz
at

io
n

(%
)

100%

of Processes1 2 3

A
B

C

A: Context Switching becomes a
problem
B: SUM(memory utilization) >
RAM, so we start using more
SWAP file
C: Thrashing: Most of the
memory access causes a page
fault, and we use SWAP a lot

Some Thinking Questions 3

Suppose our cache block size is 4096 bytes and we had a data structure that is 128
bytes big. If we had an array of this structure, what principle could we take
advantage of when we fetch this array sequentially?

Spatial locality

What if the data struct is 4096 bytes big?

Cache is almost meaningless since only one data struct can fit in it

More Practice Problems

https://www.seas.upenn.edu/~cis3800/24sp/exams/midterm

https://www.seas.upenn.edu/~cis3800/24sp/exams/midterm

Any
Questions?

