
Recitation 5
PennOS!

Table of Contents

1. Makefiles
2. PennFAT
3. Scheduler
4. QnA

Makefile for PennOS

How to structure your files/directories

src/ .c and .h files

bin/ executable binary files

log/ generated log files

doc/ README, companion doc, etc.

tests/ .c files for tests (with its own main() function)

|-- Makefile
|-- bin
| |-- pennfat
| |-- pennos
| |-- sched-demo
| `-- test2
|-- src
| |-- pennfat.c
| |-- pennos.c
| |-- spthread.c
| |-- spthread.h
`-- tests
 |-- sched-demo.c
 `-- test2.c

Editing the Makefile for mains

Add .c files that have a int main(...)

to these lines

TEST_MAINS = $(TESTS_DIR)/cat_test.c $(TESTS_DIR)/list.c

MAIN_FILES = $(SRC_DIR)/pennos.c $(SRC_DIR)/pennfat.c

|-- Makefile
|-- bin
| |-- pennfat
| |-- pennos
| |-- sched-demo
| `-- test2
|-- src
| |-- pennfat.c
| |-- pennos.c
| |-- spthread.c
| |-- spthread.h
`-- tests
 |-- sched-demo.c
 `-- test2.c

Using the Makefile

● make or make all: create executables of mains in src/
○ *Be sure to make a bin/ directory before calling make

● make tests : create executables of test mains in tests/
● make info: list which files are set as main, execs, etc.
● make format: auto format main, test main, src, and header files
● make clean: delete *.o and executable files

demo

C: header guards, extern variables

● Header guards → prevent including code
multiple times in same file

● Extern variables → global variables across files

#ifndef GLOBAL_STATE_H

#define GLOBAL_STATE_H

typedef struct GlobalState {

 int id;

} GlobalState;

extern GlobalState gs;

#endif // GLOBAL_STATE_H

global_state.h

#include "global_state.h"

#include "helper.h"

GlobalState gs;

int main() {

 gs.id = 0;

 ...

}

main.c

#include "global_state.h"

void helper_func() {

 gs.id++;

 printf("%d\n", gs.id);

}

helper.c

Tips

● Functions with varying number of arguments: <stdarg.h>
● Add bin/*, src/*.o, and .DS_Store to your .gitignore
● Check for memory leaks with valgrind (fixing memory leaks → resolve bugs!)

○ Ex: valgrind bin/pennos
○ Ex: valgrind --leak-check=full --show-leak-kinds=all

--track-origins=yes --verbose bin/pennos

● Run top to check CPU usage for kernel
● Using gdb:

○ handle SIGUSR1 nostop : to not stop whenever a thread is spthread_suspend’d
○ info threads : list running pthreads
○ t N: switch to thread N

https://www.man7.org/linux/man-pages/man3/stdarg.3.html

PennFAT

Intro

FAT system splits to two parts:

FAT table and Data blocks

FAT

Each entry is 2 byte.

First entry give info : # of FAT entries(MSB) and block size(LSB).

Then, all entries are block informations: index is block number, value is next block
number.

Second FAT entry must be ROOT DIRECTORY.

Which means, FAT[1] is root directory, so first data block must be root directory.

Next entries(FAT[1]......FAT[N])are all file block numbers.

Data block

Root Director and other files.

Root directory stores info of other files.

Metadata(64 bytes)

With metadata, we will know first block number of the file, and we can get next
block number of the file by indexing FAT table.

FAT[current]=Next.

PennFAT thinks itself as a hard disk, but actually a binary file.

Milestone 1 - Standalone PennFAT

./pennfat

pennfat> mkfs minfs 1 0

MAKE A FILE SYSTEM!

pennfat> mount minfs

MOUNT IT!

pennfat> touch f1 f2 f3

pennfat> cat -w f1

HOST OS
FILESYSTEMminfs

PennFAT

I/O

Terminal

mkfs

- Do not overthink it!

Quick mkfs exercise

pennfat> mkfs pikachu 16 2

1. Name of Filesystem? pikachu
2. How many blocks in FAT? 16
3. How many entries in FAT? 16*1024/2=8192
4. How many blocks in DATA? 8192-1=8191
5. How big is pikachu in bytes? FAT + DATA = 8192*2 + 8191*1024 = 8403968

mount

- mmap(2) - creates a new mapping in the virtual address space of the calling
process.

minfs

2B 2B 2B 2B
2B 2B 2B 2B
2B 2B 2B 2B
2B 2B 2B 2B

.

.

.

PennFAT

Virtual Memory

uint16_t* fat = mmap()

What about
unmount?

k_functions

- Kernel side API specific for PennFAT
- Direct interaction with the PennFAT file system binary
- Direct interaction with the global file descriptor table

Standalone
PennFAT

Standalone
Routines

(cat, cp, ls, etc…)
k_functions

Global FD
Table

pikachu

Example - k_write(int fd, const char *str, int n)

1. Look for the open file descriptor fd in the FD table and retrieve it
2. According to what the offset value of the file is, write n bytes of str from the

offset
3. Modify the FAT and Directory entries accordingly

Things to consider when starting

- Think about how you want to structure your file descriptor table. What
information do you want to store for each file?

- Offset, filename, etc…

- What do each k_function want to achieve?
- What happens if you write over a block? What changes in the FAT? The

Directory entry?
- Make sure to update timestamp when you modify a file

- Any error checking?
- What if there is no more space in the filesystem?
- What if the file descriptor is open only for reading but you try to write to it?

Comment on Offset

- Each file has their unique offset
- Pointer to where in the file a new request to the file will read/write from
- k_lseek(int fd, int offset, int whence) can set this offset value
- k_read() and k_write() will start reading/writing from this offset pointer
- You can calculate the actual offset of where to write in the filesystem using

each file’s unique offset value!

File Descriptor Node
Filename: file1
fd: 5
Offset: 20 (bytes)

pikachu

FAT

DATA

directory

Data block
for file1

Offset
pointer
(20 bytes
into the
file)

Total Offset: FAT_size + blocksize + 20

Standalone Routines

- touch FILE …
- Creates the file ONLY. Does not allocate any memory for it as it has no data written into it.
- … means multiple files can be created at once

- mv SOURCE DEST
- Renames SOURCE to DEST ONLY.
- Nothing else. Really.

- cat FILE … [-w/a OUTPUT_FILE]
- Read contents of FILE(s) and overwrite/append to OUTPUT_FILE
- Should act like UNIX cat. Exit on ^D (read until EOF)

- cp -h
- Your HOST OS is files in your docker container
- Everything else are files in your file system (pikachu)

- chmod
- Is included too!

Quick example: cat file1 file2 file3 -w file4

1. fd1 = k_open(file1), fd2 = k_open(file2), fd3 = k_open(file3)
2. k_read(fd1), k_read(fd2), k_read(fd3)
3. fd4 = k_open(file4)
4. k_write(fd4)
5. k_close(fd1), k_close(fd2), k_close(fd3), k_close(fd4)

- Note fds and filenames are different
- You may want to have an intermediate buffer to store contents of f1, f2, f3. But

you don’t need one
- Max number of entries at any time in the FD table during this routine?

- 7 (stdin, stdout, stderr, f1, f2, f3, f4)
- min: 4 (stdin, stdout, stderr, and any one file currently being used)

Things to consider

- You are NOT creating a child process to execute something, but rather literally
implementing a function that has the functionality of each routines

- These should be implemented using k_functions
- Only when interacting with host OS, you should be using C system calls
- Some may not need k_functions

- Function syntax for each routines should be relatively simple!!!
- Check out the examples on the PennOS lecture slides
- You may implement your own k_functions as you need

Some More Clarifications…

- name[0]
- This is the INTEGER 0 (0x00) not ASCII 0 (0x30)
- What is 1, what is 2?

- file type
- What is 0: Unknown, 4: Symbolic Link?

- default permissions
- Follow UNIX! Read&Write is appropriate here

- Do we mmap FAT only or the entire Filesystem?
- Up to you. Both ways are valid

- How to handle file deletions?
- Do we want to zero-out the entire file?
- Or what is the minimal viable change to indicate a deleted file?

- What if …?
- Up to you!

TL;DR

1. Specifications should be followed. (Read the write-up carefully!)
2. When in doubt, follow UNIX behaviors
3. Implementation details are 100% up to you!

a. If you think it is appropriate, go ahead!

THIS IS YOUR MILESTONE!

What’s After?

- PennOS and PennFAT Interaction
- u_functions

- These are your own system calls!
- These provide the connection between PennOS Shell and your File System

- You may use functionalities you implemented in standalone PennFAT to
implement u_functions

- You MUST use u_functions to run ANY user-level functions like cat, echo,
touch redirections, etc.

Scheduler

Penn-OS Scheduler Structure

- Runs every “clock” cycle (recurring alarm signal)
- Picks a “process” to run (or the idle process)
- Maintains 3 priority queues, 0, 1, 2
- Lower queue are higher priority
- Maintained ratios of running program

Functions To Implement the Scheduler

Kernel Level:

- k_proc_create
- k_proc_cleanup

User Level:

- s_waitpid
- s_spawn
- s_kill
- s_exit

k_proc_create

k_proc_cleanup

s_spawn

s_waitpid

s_kill

s_exit

s_sleep

s_nice

PCB Struct

What might we want to have?

PCB Struct

What might we want to have?

- Spthread pointer/struct
- Status of process
- File descriptors
- Parent process identification
- Children process identification
- File descriptors

Ways To Get Started

- Try starting from the ground up. Implement function headers, structs, and
constants. Think PCB, signal numbers and function outlines

- Look at sched-demo.c and understand it. Try and implement your own shell
which can take an input and based on the input schedule different threads

- Create the outline of the queues and think about how the correct queue will be
chosen (and ensured it has a process on it)

Any Questions?

