
Recitation 6
Midterm 2 Review!

Topics Covered

● Virtual Memory
● Memory Allocation
● Threads & synchronization (lock and condition variables)
● Deadlock
● File System
● Processes
● Scheduling
● Caches

Virtual Memory

- Physical space is limited!
- Bound by RAM and Hard Drive

- Want processes to “think” it has “unlimited” memory
- The x86-64 architecture (as of 2016) allows 48 bits for virtual memory and, for any given

processor, up to 52 bits for physical memory. These limits allow memory sizes of 256 TiB
(256 × 10244 bytes) and 4 PiB (4 × 10245 bytes), respectively.

- Give virtual address space to each process, map each to actual physical
memory, and process can actually access this memory.

- Uses special structures to achieve this translation
- TLB
- Page Tables

- Multi level Page Table
- Inverted Page Table

I/O Bus

CPU

MMU

Virtual Address

Physical Address

Physical Memory
Frames (RAM)

Disk Controller

Swap
MOV R, M

Virtual Memory

I/O Bus

CPU

MMU

Virtual Address

Physical Address

Physical Memory
Frames (RAM)

Disk Controller

Swap
MOV R, M

Virtual Memory

I/O Bus

CPU

MMU

Virtual Address

Physical Address

Physical Memory
Frames (RAM)

Disk Controller

SwapMOV R, M

Full Memory Architecture

TLB Page Table

Registers

SRAM

L1 Cache (I, D)

L2 Cache (I, D)

L3 Cache (I, D)

DRAM

Memory Translation

What is the page size?
4KB / 4096 bytes

How many bits represent page offset?
12 bits

How many bits represent each page?
4 bits

How many pages?
16 pages

How many addresses per page?
4096

Least Recently Used (LRU)

- Memory is limited
- Which line of memory to evict/replace when we run out of memory?

- LRU

- Advantages of LRU
- Generally good performance, we are evicting a page that is “least” frequently used
- Reduces number of page faults

- Disadvantages of LRU
- Quite costly to find the LRU page

- Think of a scenario where LRU may actually hurt performance
- Sequential Access: If some sequential access pattern forces LRU to evict and re-allocate parts

of memory, we will have poor performance

Memory Allocation

- How to use memory the most ‘efficient’ way?
- Best fit, first fit, worst fit
- What are the pros and cons?

- Buddy Algorithm, Slab Allocator
- What are the characteristics of each allocation method?
- What do they assume?
- How are internal and external fragmentation handled in each case?

Memory - Sample Question 1

A 32-bit byte-addressable system with page size of 2KiB and 2GiB of physical
memory. How many bits are there for page offset bits? Virtual page bits, physical
address bits? Physical page number bits?

Virtual page number bits: 21 bits

Page Offset bits: 11 bits

Physical page number bits: 20 bits

Physical page address bits: 31 bits

Virtual page number (21) Page offset (11)

Virtual address (32)

Physical page number (20) Page offset (11)

Physical address (31)

Memory - Sample Question 2

True or False

1. Worst-fit is always the least efficient strategy.
2. Best-Fit is slower than First-Fit because it must search the entire list every time

it is called.
3. If we reduce page size, we can limit external fragmentation
4. Buddy algorithm can significantly reduce external fragmentation

Memory - Sample Question 2

True or False

1. Worst-fit is always the least efficient strategy.
a. False! Worst-fit can sometimes help reduce external fragmentation

2. Best-Fit is slower than First-Fit because it must search the entire list every time
it is called.
a. True! First-Fit returns as long as it finds a hole that is large enough. Therefore this option is

correct

3. If we reduce page size, we can limit external fragmentation
a. False! Reducing page size generally limits internal fragmentation

4. Buddy algorithm can significantly reduce external fragmentation
a. True! Though same is not true for internal fragmentation

Threads

- Lightweight compared to processes
- Shared Memory
- Efficient context switching
- Concurrency

Threads

- Lightweight compared to processes
- Shared Memory
- Efficient context switching
- Concurrency

- Lots of ISSUES with concurrency and synchronization!!!!

Issues with Concurrency

- Data Races
- Deadlocks
- Producer Consumer Problem
- Reader / Writer Problem
- Dining Philosophers
- Methods to prevent these

- Peterson’s solution
- Mutexes
- TSL
- Condition Variables
- Monitors

Make sure to understand what each problem
states, and what each measures do to prevent
any issues.

What can go wrong? How do they achieve
concurrency? Atomic actions? Deadlock
Prevention?

Threads & Concurrency - Sample Problem 1

Consider the following implementation of Peterson’s Algorithm. Why will this not
work? What needs to change?

bool flag[2] = {false, false};
int turn;

P0: flag[0] = true;
P0_gate: turn = 1;
 while (flag[0] && turn == 1)
 {
 // busy wait
 }
 // critical section
 ...
 // end of critical section
 flag[0] = false;

P1: flag[1] = true;
P1_gate: turn = 0;
 while (flag[1] && turn == 0)
 {
 // busy wait
 }
 // critical section
 ...
 // end of critical section
 flag[1] = false;

Threads & Concurrency - Sample Problem 1

Consider the following implementation of Peterson’s Algorithm. Why will this not
work? What needs to change?

bool flag[2] = {false, false};
int turn;

P0: flag[0] = true;
P0_gate: turn = 1;
 while (flag[1] && turn == 1)
 {
 // busy wait
 }
 // critical section
 ...
 // end of critical section
 flag[0] = false;

P1: flag[1] = true;
P1_gate: turn = 0;
 while (flag[0] && turn == 0)
 {
 // busy wait
 }
 // critical section
 ...
 // end of critical section
 flag[1] = false;

Threads & Concurrency - Sample Problem 2

Which of the strategies would work to break the circular wait in the Dining Philosophers problem?

a. Assign each chopstick a distinct number [0 to N] in counterclockwise order. Each philosopher “i”
first

grabs the right chopstick and then the left chopstick.

b. Each philosopher “i” grabs chopstick “i” and then chopstick “i+1 mod N”

c. Each philosopher “i” grabs chopstick “i” and then chopstick “i+1”

d. Assign each chopstick the numbers 1 and 2 in alternate order. Each philosopher “i” grabs the
adjacent chopstick of lower number and then the resource of a higher number.

Threads & Concurrency - Sample Problem 2

Which of the strategies would work to break the circular wait in the Dining Philosophers problem?

a. Assign each chopstick a distinct number [0 to N] in counterclockwise order. Each philosopher “i”
first

grabs the right chopstick and then the left chopstick.

b. Each philosopher “i” grabs chopstick “i” and then chopstick “i+1 mod N”

c. Each philosopher “i” grabs chopstick “i” and then chopstick “i+1”

d. Assign each chopstick the numbers 1 and 2 in alternate order. Each philosopher “i” grabs the
adjacent chopstick of lower number and then the resource of a higher number.

File System

- A disk is just a random assortment of bits
- File systems help us organize them efficiently

File System - Contiguous Allocation

- Allocate memory for files together

File System - FAT

- Linked-List File Organization

File System - FAT

File System - Inode

File System - Inodes

- Index Node Best Node

File System - Sample Problem 1

How many disk operations are needed to fetch the i-node for the file
/usr/ast/courses/os/handout.t?

Only root directory is in RAM currently

File System - Sample Problem 2

-

Processes

- A self contained program which the operating system manages
- Includes its own set of virtual memory and file descriptors
- Mostly self contained

Processes

Processes

Process

Processes - Sample Problem 1

- When an interrupt or a system call transfers control to the operating system, a
kernel a stack area separate from the stack of the interrupted process is
generally used. Why?

Processes - Sample Problem 2

- If we check out the diagram from before, what possible states or transitions are
missing from the diagram?

Scheduling

- Scheduling is how we decide which process gets to run when
- What might be some goals of scheduling?

Scheduling

Scheduling

Scheduling

Scheduling

Scheduling

Scheduling

Scheduling - Sample Problem 1

- Five jobs are waiting to be run. Their expected run times are 9, 6, 3, 5, and X.
In what order should they be run to minimize average response time? (Your
answer will depend on X.)

Scheduling - Sample Problem 2

Caches

- Keep recently
used memory
nearby to be
used again

Caches

Caches - Sample Problem 1

Caches - Sample Problem 2

Explain the concept of cache hit and cache miss?

