allih. o
Corporate needs you to find the differences

° °
Re C I ta t I O n 6) between this picture and this picture.

Midterm 2 Review!

p—
—
P

Topics Covered

Virtual Memory

Memory Allocation

Threads & synchronization (lock and condition variables)
Deadlock

File System

Processes

Scheduling

Caches

Virtual Memory

- Physical space is limited!
- Bound by RAM and Hard Drive
- Want processes to “think” it has “unlimited” memory
- The x86-64 architecture (as of 2016) allows 48 bits for virtual memory and, for any given

processor, up to 52 bits for physical memory. These limits allow memory sizes of 256 TiB
(256 x 10244 bytes) and 4 PiB (4 x 10245 bytes), respectively.

- Give virtual address space to each process, map each to actual physical
memory, and process can actually access this memory.

- Uses special structures to achieve this translation
- TLB
- Page Tables
- Multi level Page Table
- Inverted Page Table

Virtual Memory

MOV R, M

Virtual Address

Physical Address

I/0 Bus

Virtual Memory

MOV R, M

Virtual Address

Physical Address

I/0 Bus

Full Memory Architecture

MOV R, M

Virtual Address

L1 Cache (I, D)

L2 Cache (I, D)

L3 Cache (I, D)

TLB

Page Table

Physical Address

I/0 Bus

Memory Translation

X
Oxo0iN) What is the page size?
0x0595 4KB / 4096 bytes
0x1000
How many bits represent page offset?
0x1535 12 bits
0x2000
How many bits represent each page?
4 bits
0x3000
How many pages?
16 pages
0x4000
How many addresses per page?
0x5000 4096

Least Recently Used (LRU)

- Memory is limited

- Which line of memory to evict/replace when we run out of memory?
- LRU
- Advantages of LRU
- Generally good performance, we are evicting a page that is “least” frequently used
- Reduces number of page faults
- Disadvantages of LRU
- Quite costly to find the LRU page
- Think of a scenario where LRU may actually hurt performance

- Sequential Access: If some sequential access pattern forces LRU to evict and re-allocate parts
of memory, we will have poor performance

Memory Allocation

- How to use memory the most ‘efficient’ way?
- Best fit, first fit, worst fit
- What are the pros and cons?

- Buddy Algorithm, Slab Allocator

- What are the characteristics of each allocation method?
- What do they assume?
- How are internal and external fragmentation handled in each case?

Memory - Sample Question 1

A 32-bit byte-addressable system with page size of 2KiB and 2GiB of physical
memory. How many bits are there for page offset bits? Virtual page bits, physical
address bits? Physical page number bits?

Virtual page number bits: 21 bits Virtual address (32)

bage Offset bits: 11 bits - Vinualpage number 21 | Page offset 1) |

Physical page number bits: 20 bits

Physical address (31)

Physical page address bits: 31 bits _

Memory - Sample Question 2

True or False

1.
2.

Worst-fit is always the least efficient strategy.

Best-Fit is slower than First-Fit because it must search the entire list every time
it is called.

If we reduce page size, we can limit external fragmentation
Buddy algorithm can significantly reduce external fragmentation

Memory - Sample Question 2

True or False

1.

2.

Worst-fit is always the least efficient strategy.

a. False! Worst-fit can sometimes help reduce external fragmentation

Best-Fit is slower than First-Fit because it must search the entire list every time
it is called.

a. True! First-Fit returns as long as it finds a hole that is large enough. Therefore this option is
correct

If we reduce page size, we can limit external fragmentation
a. False! Reducing page size generally limits internal fragmentation

Buddy algorithm can significantly reduce external fragmentation
a. True! Though same is not true for internal fragmentation

Threads

- Lightweight compared to processes
- Shared Memory

- Efficient context switching

- Concurrency

Threads

- Lightweight compared to processes
- Shared Memory

- Efficient context switching

- Concurrency

- Lots of ISSUES with concurrency and synchronization!!!!

Issues with Concurrency

- Data Races

- Deadlocks

- Producer Consumer Problem
- Reader / Writer Problem

- Dining Philosophers

- Methods to prevent these

Peterson’s solution
Mutexes

TSL

Condition Variables
Monitors

Make sure to understand what each problem
states, and what each measures do to prevent
any issues.

What can go wrong? How do they achieve
concurrency? Atomic actions? Deadlock
Prevention?

Threads & Concurrency - Sample Problem 1

Consider the following implementation of Peterson’s Algorithm. Why will this not
work? What needs to change?

bool flag[2] = {false, false};

int turn;
PO: flag[0] = true; P1l: flag[l] = true;
P0 gate: turn = 1; Pl gate: turn = 0;
while (flag[0] && turn == 1) while (flag[l] && turn == 0)
{ {
// busy wait // busy wait
} }
// critical section // critical section
// end of critical section // end of critical section
flag[0] = false; flag[l] = false;

Threads & Concurrency - Sample Problem 1

Consider the following implementation of Peterson’s Algorithm. Why will this not
work? What needs to change?

bool flag[2] = {false, false};

int turn;
PO: flag[0] = true; P1l: flag[l] = true;
P0 gate: turn = 1; Pl gate: turn = 0;
while (flag[l] && turn == 1) while (flag[0] && turn == 0)
{ {
// busy wait // busy wait
} }
// critical section // critical section
// end of critical section // end of critical section
flag[0] = false; flag[l] = false;

Threads & Concurrency - Sample Problem 2

Which of the strategies would work to break the circular wait in the Dining Philosophers problem?

[{3%2]
I

a. Assign each chopstick a distinct number [0 to N] in counterclockwise order. Each philosopher
first

grabs the right chopstick and then the left chopstick.

b. Each philosopher “i” “i”

grabs chopstick “i” and then chopstick “i+1 mod N”

[{3%4) {134
I I

c. Each philosopher “i” grabs chopstick “i” and then chopstick “i+1”

€69
|

d. Assign each chopstick the numbers 1 and 2 in alternate order. Each philosopher
adjacent chopstick of lower number and then the resource of a higher number.

grabs the

Threads & Concurrency - Sample Problem 2

Which of the strategies would work to break the circular wait in the Dining Philosophers problem?

[{3%2]
I

a. Assign each chopstick a distinct number [0 to N] in counterclockwise order. Each philosopher
first

grabs the right chopstick and then the left chopstick.

€9
I

b. Each philosopher “i” grabs chopstick “i” and then chopstick “i+1 mod N”

[{3%4) {134
I I

c. Each philosopher “i” grabs chopstick “i” and then chopstick “i+1”

d. Assign each chopstick the numbers 1 and 2 in alternate order. Each philosopher “i” grabs the
adjacent chopstick of lower number and then the resource of a higher number.

File System

- A disk is just a random assortment of bits
- File systems help us organize them efficiently

(/birv)

root
| | | | | | |
[/ boot/) [/dev/] [/etc/ J [/home/] {/ lib/) [/media/]
[/opt/] [/root/] [/sbin/] [/srv/] @ Jusr/ Nar/

|

|

|

(/i) [finctudel] (b/) - (ssbin/]

[lcachel] (11ogr) (/spool/] (#mpl)

Partition table

\

—

Entire disk

Disk partition

b~

\

MBR

Boot block

Superblock

Free space mgmt

[-nodes

Root dir

Files and directories

File System - Contiguous Allocation

- Allocate memory for files together

File System - FAT

- Linked-List File Org

anization
Directory table entry (32B)
Fllename {83)
Extersion {33)
Attrioetes {18)
Reserved {18)
Create time {38)
Srose dee{z8) Flle allocation tabie
Last access date (28] o
First cluster & (MS38, 28) \olume info
Last mod. time {28) . ——
Last mod. date {28) R =
First chuster & (LSB,281 r s
| Fuesize(ds) 5 -
& EOC
? 3
B 3
Q Free
10 11
11 EOC
(------- % -------)

File System - FAT

iﬁ University of Pennsylvania LO7: File System Intro CIS 3800, Spring 2024

FAT size

« A FAT is similar to a bitmap
= A bitmap needs 1 bit per block
= A FAT needs ~16-bits per block ®

« At least we don’t need bitmap anymore!

« Grows a lot as the size of disk grows

= As the disk grows, there are more blocks in the disk. We need
more FAT entries, and each entry needs more bits. (To hold the
block number. # of bits for block # grows to support more blocks)

= A FAT may be bigger than one block

= Since we need to keep the FAT in memory, this increases our
memory consumption as well

= FAT got fazed out for I-nodes (next lecture) because of this

56

File System - Inode

E University of Pennsylvania LO8: FAT & I-nodes CIS 3800, Spring 2024

Inode motivation

+ ldea: we usually don’t care about ALL blocks in the file
system, just the blocks for the currently open files

« Can we group the block numbers of a file together?

meta data
0t phys block #
15t phys block #
2™ phys block #
3rd phys block #
4t phys block #

+ Yes: we call these inodes:

® Contains some metadata about
the file and 12 physical block
numbers corresponding to the
first 12 logical blocks of a file

12t phys block #

37

File System - Inodes

- Index Node Best Node

Direct
Data Blocks
Inode Indirect
Data Blocks
Information
Double Indirect
. / Blocks of Data Blocks
2 Pointers
3
\. 1 /
: : 2 Blocks of
1 1 1 \ Pointers
1 1
128 1 1
13 : /
14
1 1
15 L
N 2 128
\\
N 1
AN 128 1
A Y N
~ “~ 2
A N
N . |\
~ N !
A N
s 128
"} .
.
A Y
Y
A Y
A Y
P

File System - Sample Problem 1

How many disk operations are needed to fetch the i-node for the file
/usr/ast/courses/os/handout.t?

Only root directory is in RAM currently

File System - Sample Problem 2

18. Consider a file whose size varies between 4 KB and 4 MB during its lifetime. Which
of the three allocation schemes (contiguous, linked and table/indexed) will be most ap-
propriate?

Processes

A self contained program which the operating system manages
Includes its own set of virtual memory and file descriptors

Mostly self contained

Process State Lifetime

Process creation
e.g. fork()

Selected by the
kernel to run

Process finished

o

After running for a bit
it is another processes “turn”

Terminated

Processes

User Space

Operating System

Hardware

@ltnn Engineering

—->

P1’s Process Control
Block
(SP, PC, registers, ...)

CPU
(SP, PC,
registers)

Physical
External
Memory Devices

STATIC
DATA

Property of Penn Engineering

Processes

WFenn Engineering

Execution Context
Stack pointer
Program counter

P1’s PCB

Compute register values
Segment register values
Status (running, blocked, ready)

Memory Context
* Pointer to page table

Open File

Descriptor Table

FD

Devices

STDOUT

Property of Penn Engineering

% University of Pennsylvania LO2: Processes, wait(), signal() CIS 3800, Fall 2023

Process Signals

« A Process can be interrupted with various types of signals

® This interruption can occur in the middle of most code

<« Each signal type has a different meaning, number
associated with it, and a way it is handled

« Examples:
*| STGCHID ——— Default: ignore

| SIGINT
| SIGKILL

= SIGALRM
" | STGSEGV _—— Default: terminate & core dump

Default: terminate the process

34

Processes - Sample Problem 1

- When an interrupt or a system call transfers control to the operating system, a
kernel a stack area separate from the stack of the interrupted process is
generally used. Why?

Processes - Sample Problem 2

- If we check out the diagram from before, what possible states or transitions are
missing from the diagram?

Scheduling

- Scheduling is how we decide which process gets to run when
- What might be some goals of scheduling?

Scheduling

¥ University of Fennsylvania L15: Scheduling & File System Intro CIS 3800, Fall 2023

Goals

®,
o

The scheduler will have various things to prioritize

.
X4

» Some examples:

.
o

Minimizing wait time
® Get threads started as soon as possible

Minimizing latency

®,
o

®" Quick response times and task completions are preferred
Maximizing throughput

® Do as much work as possible per unit of time

®,
o

Maximizing fairness

.
o

® Make sure every thread can execute fairly

.
o

These goals depend on the system and can conflict

Scheduling

Example of SJF 1CPU

Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

e

> Same example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

FCFS schedule:
| Job 2 | Job 3 | Job 1

0 3 6

« Total waiting time: 6+0+3 =9

+ Average waiting time: 3

« Total turnaround time: 30 +3 +6 =39
+ Average turnaround time: 39/3 =13

University of Pennsylvania

30

CIS 3800, Spring

Scheduhnq

Ay ULIVErSILY 0 FENnsy1vania L1>: dCNeaulng & rie dSystem inuo LCID 38UV, rail Zuss

Example of FCFS 1cPU

Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

» Example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

« FCFS schedule:

| Job 1 | Job 2 | Job 3 |
0 24 27 30

« Total waiting time: 0+ 24 + 27 =51

« Average waiting time: 51/3 =17

« Total turnaround time: 24 + 27 + 30 =81
« Average turnaround time: 81/3 = 27

13

Scheduling

Ready Queue

timer interrupt

W Penn Engineering Property of Penn Engineering

Scheduling

time quantum

increases
as

priority level

desreases

'H‘i in b A:_i‘ Cermg Property of Penn Engineering

Scheduling

' Pennkr ITINEC TINg Property of Penn Engineering

Scheduling - Sample Problem 1

- Five jobs are waiting to be run. Their expected run times are 9, 6, 3, 5, and X.
In what order should they be run to minimize average response time? (Your
answer will depend on X.)

Scheduling - Sample Problem 2

round-robin scheduling algornthm.

43. Measurements of a certain system have shown that the average process runs for a time
T before blocking on I/O. A process switch requires a time S. which is effectively
wasted (overhead). For round-robin scheduling with quantum Q. give a formula for
the CPU efficiency for each of the following:

(a) Q=00
(byO>T
(c)S<Q<T
(d Q=S5
(e) Q nearly O

;:‘ University of Pennsylvania L11: Caches & Threads CIS 3800, Fall 2023

Caches Memory Hierarchy B lanjer 1oy ve Vst
of as a “cache” of the layer
below

- Keep recently
t B3 \ _ cpuy registers hold words retrieved
Smaller, 1 h from the L1 cache.
used memory fastet, u/ cache
and (SRAM) L1 cache holds cache lines retrieved
nearby to be costliar i T "o the 12 cache.
(per byte) . (SRAM)
. storage L2 cache holds cache lines
u S e d a g a I n devices retrieved from L3 cache.
|L3: L3 cache
(SRAM)
L3 cache holds cache lines
Tetrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
(per byte) retrieved from local disks.
storage . Local secondary storage
devices (local disks)
Local disks hold files
v retrieved from disks
on remote servers.
L6: Remote secondary storage
(e.g., Web servers)
Bryanta i ron, Ci Systems: A Programmer’s Perspective, Third Edition
8

Caches

? University of Pennsylvania

L11: Caches & Threads

CIS 3800,

Cache Lines

+ Imagine memory as a big array of data:

Fall 2023

Neighboring data brought into the cache
Access this data

+ Just like we did with pages, we can split these into 64-byte
“lines” or “blocks”(64 bytes on most architectures)

® This means bottom 6 bits of an address are the offset into a line

®" The top 58 bits of the address specify the “line” number

+« When we access data at an address, we bring the whole
cache line (cache block) into the L1 Cache

® Data next to address access is thus also brought into the cache!

14

Caches - Sample Problem 1

11. Consider the following C program:

int X[N]J;
int step = M; /* M is some predefined constant */
for (inti=0; 1< N;i+=step) X[i] = X[i] + 1;

(a) If this program is run on a machine with a 4-KB page size and 64-entry TLB, what
values of M and N will cause a TLB miss for every execution of the inner loop?

(b) Would your answer in part (a) be different if the loop were repeated many times?
Explain.

Caches - Sample Problem 2

Explain the concept of cache hit and cache miss?

