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Simply typed lambda­calculus

The definition of the simply typed lambda­calculus with Unit is reproduced on page 11.

1. (8 points) For each of the following untyped λ­terms, either give a well­typed term of the simply typed

lambda­calculus with Unit whose erasure is the given term, or else write “not typable” if no such term

exists.

The type annotations in your answers should only involve Unit and →.

(a) λx. x (x unit)

Answer: λx:Unit→Unit. x (x unit)

(b) λx. x unit x

Answer: Not typable

(c) λx. x unit unit

Answer: λx:Unit→Unit→Unit. x unit unit

(for example)

(d) λx. λy. λz. (x y) (y z)

Answer: λx:(Unit→Unit)→Unit→Unit. λy:Unit→Unit. λz:Unit. (x y) (y z)

(for example)

Grading scheme: Each of the items is worth 2 points. Partial credit (1 point) was given for incorrect but

“not completely unreasonable” answers.
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References

The definition of the simply typed lambda­calculus with references is reproduced on page 11.

2. (9 points) Suppose, for this question, that our language also has let expressions and numbers. Then

evaluating the expression

let x = ref 5 in

let y = x in

let z = ref (λa:Nat. y := a; succ (!y)) in

(!z) (!y)

beginning in an empty store yields:

Result: 6 Store: l1 , 5

l2 , λa:Nat. l1 := a; succ (!l1)

Fill in the results and final stores (when started with an empty store) of the following terms:

(a) let x = ref 2 in

let y = x in

let f = λa:Ref Nat. λb:Ref Nat. a := 5; b := 6; !a in

f x y

Answer: Result: 6 Store: l1 , 6

(b) let x = ref 2 in

let y = ref x in

let z = ref y in

!z

Answer: Result: l2 Store: l1 , 2

l2 , l1

l3 , l2

(c) let x = ref 0 in

let f = ref (λu:Unit. !x) in

x := 2;

let g = λu:Unit. (!f) unit in

x := 3;

f := λu:Unit. succ (!x) in

let r = g unit in

x := 9;

r

Answer: Result: 4 Store: l1 , 9

l2 , λu:Unit. succ (!l1)

Grading scheme: Each of the items was worth 3 points (1 point for the correct result, and 2 points for

the correct store). Partial credit was given for “somewhat correct” stores; for instance,

l2 , λu:Unit. succ (!x)

was accepted as an almost correct variant of

l2 , λu:Unit. succ (!l1).
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3. (3 points) Is there any well­typed term that, when started with an empty store, will yield the following

store?

l1 , l1

If so, give one. If not, explain (briefly!) why not.

Answer: No: this store is not typable, so the preservation theorem tells us that no well­typed program

could create it.

Grading scheme:

• 1 point for “no” (0 points for “yes”)

• 2 points for saying something about why it seems hard to create, but omitting the observation

about typing.
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4. (8 points) We saw in homework 8 that, using references, we can achieve the effect of a recursive

function definition by building a “cyclic store” in which the function’s body refers to its own defi­

nition indirectly, via a reference cell. The same idea extends straightforwardly to mutually recursive

definitions.

Fill in the blanks in the following expressions so that, after evaluating them, even will be a function

that checks whether its argument n is even (by returning true if it is 0 and otherwise checking whether

(pred n) is odd).

evenref = ref (λn:Nat.true);

oddref = ref (λn:Nat.true);

evenbody = λn:Nat. if iszero n then true else ((___________)(pred n));

oddbody = λn:Nat. if iszero n then false else ((___________)(pred n));

evenref := __________________;

oddref := __________________;

even = !evenref;

odd = !oddref;

Answer:

evenbody = λn:Nat. if iszero n then true else ((!oddref)(pred n));

oddbody = λn:Nat. if iszero n then false else ((!evenref)(pred n));

evenref := evenbody;

oddref := oddbody;

Grading scheme: The problem asked to simulate recursion through references. However, some people

defined evenbody using oddbody , i.e., through the regular recursion. If this did not contain additional

errors, 2 points; zero otherwise.

If the dereference operator ! was missing in the entries for evenbody and oddbody , then minus 4 points.

If the extraneous ref operator was present in the assignements for evenref and oddref , then minus 4

points.

If the suffixes ref or body were absent in the function names, minus 2 points.

Minus 2 points for an error in the function logic, e.g. odd instead of even, or an extra negation of a

function call, etc.
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5. (20 points) In Chapter 13 of TAPL, the following lemmas were used in proving the preservation prop­

erty for the simply typed lambda­calculus with references. (We’ve given all the lemmas names here,

for easy reference.)

Lemma [Inversion]:

(a) If Γ | Σ ` x : T, then x:T ∈ Γ .

(b) If Γ | Σ ` λx:T1. t2 : T, then T = T1→T2 for some T2 with Γ , x:T1 | Σ ` t2 : T2.

(c) If Γ | Σ ` t1 t2 : T, then there is some type T11 such that Γ | Σ ` t1 : T11→T and Γ | Σ ` t2 :
T11.

(d) If Γ | Σ ` unit : T, then T = Unit.

(e) If Γ | Σ ` ref t1 : T, then T = Ref T1 and Γ | Σ ` t1 ∈ T1.

(f) If Γ | Σ ` !t1 : T, then T = T11 with Γ | Σ ` t1 ∈ Ref T11.

(g) If Γ | Σ ` t1:=t2 : T, then T = Unit and Γ | Σ ` t1 ∈ Ref T11 and Γ | Σ ` t2 : T11.

(h) If Γ | Σ ` l : T, then T = Ref Σ(l).

Lemma [Substitution]: If Γ , x:S | Σ ` t : T and Γ | Σ ` s : S, then Γ | Σ ` [x, s]t : T.

Lemma [Replacement]: If

Γ | Σ ` µ

Σ(l) = T

Γ | Σ ` v : T

then Γ | Σ ` [l , v]µ.

Lemma [Weakening]: If Γ | Σ ` t : T and Σ′ ⊇ Σ, then Γ | Σ′ ` t : T.

For each case in the proof on the next page, write down the skeleton of the argument. A skeleton

contains the same sequence of steps as the full argument, but omits all details. The rules for writing

skeletons are as follows:

• Steps of the form “By part (x) of the inversion lemma, we obtain...” in the full argument become

“inversion(x)” in the skeleton.

• Steps of the form “By the substitution lemma, we obtain...” become “substitution.” (Similarly for

replacement and weakening.)

• Steps of the form “By the induction hypothesis, we obtain...” become “IH.”

• Steps of the form “By typing rule T­XXX, we obtain...” become “T­XXX.”

• If the full argument doesn’t use any of the lemmas or the induction hypothesis, then its skeleton

is “Direct.”

For example, if the full argument is

Case E­DerefLoc: t = !l t′ = µ(l) µ′ = µ

By part (f) of the inversion lemma, T = T11, and Γ | Σ ` l : Ref T11. By part (h) of the

inversion lemma, T11 = Ref Σ(l), i.e., T = T11 = Σ(l). But now, from the assumption that

Γ | Σ ` µ, we can conclude (by the definition of Γ | Σ ` µ) that Γ | Σ ` µ(l) : Σ(l).

the skeleton is written:

Case E­DerefLoc: t = !l t′ = µ(l) µ′ = µ

Inversion(f), inversion(h)

As a second example, the case for E­Ref is also given below.
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Theorem [Preservation]: If

Γ | Σ ` t : T

Γ | Σ ` µ (i.e., dom(µ) = dom(Σ) and Γ | Σ ` µ(l) : Σ(l) for every l ∈ dom(µ))

t | µ -→ t′ | µ′

then, for some Σ′ ⊇ Σ,

Γ | Σ′ ` t′ : T

Γ | Σ′ ` µ′.

Proof: By induction on evaluation derivations, with a case analysis on the final rule used.

Case E­App1: t = t1 t2 t1| µ -→ t′1| µ
′ t′ = t′1 t2

Answer: Inversion(c), IH, weakening, T­App.

Case E­App2:

Similar.

Case E­AppAbs: t = (λx:T11.t12) v2 t′ = [x, v2]t12 µ′ = µ

Answer: inversion(c), inversion(b), substitution

Case E­Ref: t = ref t1 t′ = ref t′1 t1 | µ -→ t′1 | µ
′

inversion(e), IH, T­Ref

Case E­DerefLoc: t = !l t′ = µ(l) µ′ = µ

Inversion(f), inversion(h)

Case E­Deref: !t1 | µ -→ !t′1 | µ
′

Answer: inversion(f), IH, T­Deref

Case E­Assign: t = l:=v2 t′ = unit µ′ = [l , v2]µ

Answer: inversion(g), inversion(h), replacement, T­Unit

Case E­Assign1: t = t1:=t2 t′ = t′1:=t2 t1 | µ -→ t′1 | µ
′

Answer: inversion(g), IH, weakening, T­Assign

Case E­Assign2:

Similar.

Grading scheme: 4 points possible for each part

• 1 point off for missing weakening, inversion, or use of a typing rule

• 2 points off for missing IH, substitution, or replacement

• 1 point off for wrong ordering

• 1 point off for using the wrong case of the inversion lemma

• 1 point off for including an unnecessary step, as long the extra step was possible; 2 points if the

extra step was actually wrong (not legal at the point where it appeared)

• 3 points off whole problem for writing a full proof instead of a sketch
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Subtyping

The definition of the simply typed lambda­calculus with records and subtyping is reproduced for your

reference on page 13.

6. (11 points) For each type S from the left­hand column below, draw a line connecting it to each type T

in the right­hand column such that S <: T.

Choices for S:

{a:{}, b:{x:Top}}

Top→Top

{}→{}

Top

({a:Top}→{})→{b:Top}

{b:Top→Top}

Choices for T:

({}→{a:Top})→{}

Top→Top

{}→Top

Top→{}

{b:Top}

{b:{}}

Answer: Numbering both columns from top to bottom, we have

• S1 <: T5, T6

• S2 <: T2, T3

• S3 <: T3

• S4 is not a subtype of any of the Ts

• S5 <: T1

• S6 <: T5

Grading scheme: 1 point off for each missing line; 1 off for each incorrect line.
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7. (12 points) It is easy to show, by induction on subtyping derivations, that

Lemma A: If Top <: T, then T = Top.

A similar, but slightly more interesting, lemma holds for supertypes of arrow types.

Lemma B: If S1→S2 <: T, then either T = Top or else T has the form T1→T2, with T1 <: S1 and

S2 <: T2.

Fill in the arguments for the S­Arrow and S­Trans cases of its proof.

Proof: By induction on subtyping derivations. Proceed by a case analysis on the last rule used in

the derivation.

Case S­Refl: T = S1→S2

T clearly has the required form, with T1 = S1 and T2 = S2. The inclusions T1 <: S1 and S2 <: T2

both follow by S­Refl.

Case S­Trans: S1→S2 <: U U <: T

Answer:

By the induction hypothesis, either U = Top or else U has the form U1→U2, with U1 <: S1 and

S2 <: U2. In the first case (U = Top), lemma A tells us that T = Top and we are finished. Otherwise,

U = U1→U2, and we can use the induction hypothesis again to show that either T = Top or else T

has the form T1→T2, with T1 <: U1 and U2 <: T2. But now, from T1 <: U1 and U1 <: S1, we obtain

T1 <: S1 using S­Trans. Similarly, from S2 <: U2 and U2 <: T2, S­Trans yields S2 <: T2.

Case S­Arrow: T = T1→T2 T1 <: S1 and S2 <: T2

Answer:

Immediate.

Case S­Top: T = Top

Immediate.

Case S­RcdWidth, S­RcdDepth, S­RcdPerm, S­Top:

Can’t happen: T has the wrong form.

Grading scheme: The subcase S­Trans was worth 9 points; subcase S­Arrow, 3 points.

Minus 1 point for each case when, in an otherwise correct proof, a step was not justified by an explicit

reference to an inductive case, Lemma A, or the rule S­Trans. Minus 1 point when, instead of IH, the

proof referred to Lemma B.

Minus 3 points when the consideration of the Top subcase in the induction step is omitted completely.

At most 4 points (out of 9) were given when the induction argument was very unclear but most of the

statements that would arise in a correct proof were mentioned.

Some solutions got 0 points for totally incoherent arguments.
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8. (9 points) Suppose we remove rule S­Arrow from the subtype relation. Which of the following prop­

erties will remain true? For each one, write either “true” (if it remains true) or else “false” (if it becomes

false), plus (in either case) a one­sentence justification of your answer.

(a) Existence of minimal types (if term t is typable in context Γ , then there is some type S such that

Γ ` t : S and, for every type T such that Γ ` t : T, we have S <: T)

Answer: False. For example, the term λx:{}. x has both the types {}→{} and {}→Top, but, without

the arrow rule, these two types have no common lower bound.

(b) Progress (if t is a closed, well­typed term, then either t is a value or else t -→ t′ for some t′)

Answer: True: removing pairs from the subtype relation can only reduce the number of well­typed

terms, which can only make it easier for progress to hold.

(c) Preservation (if t has type T and t -→ t′, then t′ also has type T)

Answer: True. The only part of the preservation proof that changes is the inversion lemma (which

changes back to its form from chapter 9(!) and becomes easier to prove) and the case of the main

proof where it is used.

This part of the question was more subtle than the others, since it is not the case that preservation

remains true for any simple reason. In particular, it’s not correct to observe, at this point, that

making fewer terms well typed can only make preservation easier by weakening its premise, since

its conclusion is also weakened. Indeed, it could very well be that removing things from the subtype

relation could break preservation; it just happens that, in this case, it does not.

Grading scheme: ­3 for each wrong answer. One point awarded for correct answer. One point awarded

for partial explanation (given generously). One point awarded for complete explanation (given spar­

ingly).
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For reference: Simply typed lambda calculus with Unit

Syntax

t ::= terms

unit constant unit

x variable

λx:T.t abstraction

t t application

v ::= values

unit constant unit

λx:T.t abstraction value

T ::= types

Unit unit type

T→T type of functions

Γ ::= contexts

∅ empty context

Γ , x:T term variable binding

Evaluation t -→ t′

t1 -→ t′1

t1 t2 -→ t′1 t2

(E­App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(E­App2)

(λx:T11.t12) v2 -→ [x, v2]t12 (E­AppAbs)

Typing Γ ` t : T

Γ ` unit : Unit (T­Unit)

x:T ∈ Γ

Γ ` x : T
(T­Var)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T­Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T­App)
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For reference: References

New syntactic forms

t ::= ... terms

ref t reference creation

!t dereference

t:=t assignment

l store location

v ::= ... values

l store location

T ::= ... types

Ref T type of reference cells

µ ::= ... stores

∅ empty store

µ, l = v location binding

Σ ::= ... store typings

∅ empty store typing

Σ, l:T location typing

New evaluation rules t | µ -→ t′ | µ′

t1| µ -→ t′1| µ
′

t1 t2| µ -→ t′1 t2| µ
′

(E­App1)

t2| µ -→ t′2| µ
′

v1 t2| µ -→ v1 t
′
2| µ

′
(E­App2)

(λx:T11.t12) v2| µ -→ [x, v2]t12| µ (E­AppAbs)

l ∉ dom(µ)

ref v1 | µ -→ l | (µ, l , v1)
(E­RefV)

t1 | µ -→ t′1 | µ
′

ref t1 | µ -→ ref t′1 | µ
′

(E­Ref)

µ(l) = v

!l | µ -→ v | µ
(E­DerefLoc)

t1 | µ -→ t′1 | µ
′

!t1 | µ -→ !t′1 | µ
′

(E­Deref)

l:=v2 | µ -→ unit | [l , v2]µ (E­Assign)

t1 | µ -→ t′1 | µ
′

t1:=t2 | µ -→ t′1:=t2 | µ
′

(E­Assign1)
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t2 | µ -→ t′2 | µ
′

v1:=t2 | µ -→ v1:=t
′
2 | µ

′
(E­Assign2)

New typing rules Γ | Σ ` t : T

Γ | Σ ` unit : Unit (T­Unit)

x:T ∈ Γ

Γ | Σ ` x : T
(T­Var)

Γ , x:T1| Σ ` t2 : T2

Γ | Σ ` λx:T1.t2 : T1→T2

(T­Abs)

Γ | Σ ` t1 : T11→T12 Γ | Σ ` t2 : T11

Γ | Σ ` t1 t2 : T12

(T­App)

Σ(l) = T1

Γ | Σ ` l : Ref T1

(T­Loc)

Γ | Σ ` t1 : T1

Γ | Σ ` ref t1 : Ref T1

(T­Ref)

Γ | Σ ` t1 : Ref T11

Γ | Σ ` !t1 : T11

(T­Deref)

Γ | Σ ` t1 : Ref T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(T­Assign)
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For reference: Simply typed lambda calculus with records and subtyping

New syntactic forms

t ::= ... terms

{li=ti
i∈1..n} record

t.l projection

v ::= ... values

{li=vi
i∈1..n} record value

T ::= ... types

{li:Ti
i∈1..n} type of records

Top maximum type

New evaluation rules t -→ t′

{li=vi
i∈1..n}.lj -→ vj (E­ProjRcd)

t1 -→ t′1

t1.l -→ t′1.l
(E­Proj)

tj -→ t′j

{li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}

-→ {li=vi
i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}

(E­Rcd)

New subtyping rules S <: T

S <: S (S­Refl)

S <: U U <: T

S <: T
(S­Trans)

S <: Top (S­Top)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(S­Arrow)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S­RcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S­RcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S­RcdPerm)

New typing rules Γ ` t : T

for each i Γ ` ti : Ti

Γ ` {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T­Rcd)

Γ ` t1 : {li:Ti
i∈1..n}

Γ ` t1.lj : Tj
(T­Proj)

Γ ` t : S S <: T

Γ ` t : T
(T­Sub)
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