CIS 500 — Software Foundations

Midterm II

Answer key
November 12, 2003

Simply typed lambda-calculus

The following questions refer to the simply typed lambda-calculus with booleans and exceptions. The syntax, typing,
and evaluation rules for this system are given on page &?? of the companion handout.

1. (4 points) In this question, you can use B as an abbreviation for the type Bool while drawing typing
derivation trees. For example, you can draw the derivation tree

T-TRUE
x: Bool +true: Bool
T-ABS
F Ax: Bool . true: Bool —Bool
as:
T-TRUE
X:BFtrue: B
T-ABS
FAx:B. true. B—B
Draw the typing derivation tree for the following lambda-term:
Ax: Bool —Bool . Ay: Bool . xy
Answer:
x:B—Bex:B—B,y: B y:Bex:B—B,y:B
T-VAR T-VAR
x:B—B,y:BFx: B—B x:B—B,y:Br-y:.: B
T-Arpr
x:B—-B,y:BFxy: B
T-ABS

X:B—=BFAy:B. xy: B—B
FAx: B—B. Ay: B. xy: (B—B) —=B—B

Grading scheme: Three points off for deriving the wrong type, one point off for each tiny error.

2. (5 points) Consider the following terms:

t AX: Bool .

try
(if x then
(Ay: Bool . true)
el se
((Az:____. z) error))
W th
error

a=1t true

o
1

t fal se

(a) What type must we put on the binder of z (in place of ___), in order for the whole term to be
well typed? Answer: Bool —Bool

(b) What is the type of t ? Answer: Bool —(Bool —Bool)
(c) What does t evaluate to? Answer: itself

(d) What does a evaluate to? Answer: (Ay: Bool . true)
(e) What does b evaluate to? Answer: err or

Grading scheme: Binary

References

The following questions refer to the simply typed lambda-calculus with references (and Uni t, Nat, Bool ,
and | et). The syntax, typing, and evaluation rules for this system are given on page &?? of the companion
handout.

. (9 points) Evaluating the expression

let x = ref (An:Nat. 0) in

let y =ref (An:Nat. (!x) n) in
let z =ref (An:Nat. (!'y) n) in
('z) 3

beginning in an empty store yields:
Result: 0 Store: |7+—An:Nat. O
l2—An:Nat. (!l¢) n
l3—An:Nat. (!l2) n

Fill in the resulting values and final stores (when started with an empty store) for the following terms:

(a) let x =ref 0in
let y =ref 1 in
let f = Az:Ref Nat. z := succ(!z) in
(fy): (Ix)
Answer:
Result: 0 Store: 11 — O
2'—)2
(b) let x =ref 5in
let y = x in
let z =ref (Aa:Nat. y := a; pred (Ix)) in
(tz) (ty)
Answer:
Result: 4 Store: |1 1—5

lo—Aa:Nat. (I ;:=a; pred(!l))

(c) let f =ref (An:Nat. ref 999) in
f :=An:Nat. if iszero(n) then ref 0
elseref ('((!'f) (pred n)));

(1f) 3
Answer:
Result: | 5 Store: | 1—An:Nat. if iszero(n) then(ref 0)
elseref (1 ((!'l1)(predn)))
|2'—>0
|3'—>0
|4'—)0
|5'—)0

Grading scheme: One point for the result, two points for the store.

3

4. (10 points)

Recall the following notations from the book:

M IZFpiffdom(L) =dom(p)and T [ZF p(l) @ Z(1) foreveryl e p.
L C Y'iffdom(X) C dom(X’) and we have Z(1) = X’(1) for every 1 € dom(X).

State the preservation theorem for the simply typed lambda-calculus with references.

Answer: If

MNEt: T
NIkuw
tlp—t’p

then, for some X' O L,
r+t’: T
Neu.

Grading scheme:

Minus two points if ' D X is missing.

Minus for points if heap well-formedness (T' | £’ = W) is ignored or the heap is not part of the evaluation
relation.

o Minus two points if they make up notation and do not define it.

Minus one point if they misstate the type of quantification or place the quantifiers in the wrong place.

Minus four points if they are missing the well-formedness of the term.

Minus one points for smaller notational mistakes (forgetting to put “If” and “then” or missing contexts)

Minus for points if there is no mention of the evaluation relation.

5. (3 points) Suppose we delete the rule T-REF from the definition of the typing relation. How should
the statement of the preservation theorem be changed so that it is true for the modified system?

Answer: No change is needed—the theorem as stated is also true for the new system.

Howeuver, if we like, we can make the theorem a bit more precise by replacing W' with y, since in the new system
there is no way to extend the store by allocating new references.

Grading scheme: Three points for correct answers, one point for “almost correct” answers.

6. (21 points) There are seven mistakes in the following proof of the progress theorem for the simply-
typed lambda calculus with references. Circle each mistake and write an appropriate correction beside
it. Several cases (T-Var, T-Abs, T-App, etc.) are not shown and do not need correction. The (correct)
inversion and canonical forms lemmas are repeated on the next page, for reference.

THEOREM [PROGRESS]: Suppose t is a closed, well-typed term — thatis,) | Z -t © T for
some T and X. Then either t is a value or else, for any store p such that) | £ F p, there are
some termt ’ and store p’ witht |p—t /| '

PROOF: By induction on the structure of the term t [should be: the derivation of) | L Ft @ TI:
Case T-UNIT: t =unit T=Unit

Immediate: uni t is a value.

Case T-LOC: t =1 T = X(1) [should be: T = Ref X(1)]

Can’t happen because t is closed. [should be: Immediate: 1 is a value.]

Case T-REF: t =ref t; T=Ref T PlZt+-tq: Ty
By the induction hypothesis, there are two cases to consider:

(a) t ;isavalue, V. Then we are done, since r ef v is a value. [should be: Then rule
E-REFV yieldsref v |u— 1] (u, L= vy), for some 1 ¢ dom(pn)]

(b) t1 — t{ [should be:t | u — t | | u']: The result then follows by E-REF.

Case T-DEREF: t =11, P|ZFHt;: Ref T
By the induction hypothesis, there are two cases to consider:

(a) tq is a value, v: By the inversion [should be: canonical forms] lemma, Vi must
be a location | . But then, by the canonical forms [should be: inversion] lemma,
| € dom(X),and, since § | £+ u, we have | € dom(u). The result now follows,
since t can make a step by rule E-DEREFLOC.

(b) t1|pn—t]]|n' The result follows by rule E-ASSIGN [should be: E-DEREF].

Grading scheme: There are actually eight mistakes in the proof—we missed one of them when making the ques-
tion! As a result, we add three bonus points to this question: you only need to identify any seven of the eight
mistakes to have the full score (21 points) for the question.

-3 for missing a mistake; -2 for a wrong reason; and -2 for mis-identifying a correct part as a mistake.

Students should pay attention to details such as when to use IH, what it means by “can t happen,” what are
the given conditions (e.g. t1 | w — t | | w'), and what are the implicit equalities (T = (). In particular,
E-DEREFLOC is applicable only if u(l) = v, which is true because () | * + .

(Note: there are no mistakes to find in the following lemmas — they are given here for reference only.)

LEMMA [CANONICAL FORMS]

(a) If v is a value of type Bool , then v is either t rue or f al se.
(b) If v is a value of type Nat , then v is a numeric value.

(c) If v is a value of type Ref Ty, then v is a location 1.

(d) If v is a value of type T1—T, then v has the form Ax: Tj. t 2.

LEMMA [INVERSION]

(@) fT|XFx: Rthenx: ReT.
(b) HT|ZFEAX: Ty. t2: RthenR=T1—>R; forsome R, with T, x: T Ft, ! Ry.

() T |ZFt 1ty R then thereissome type Tyisuchthatl'|Z+t7 . Tyy—RandT|[ZF1t;,:
T]].

(d) IT|ZFref t;: R then thereissome type T; suchthat R=Ref Tyand | X+t Ty.
() fT|ZF!'t;: RthenT |[Z+t;: Ref R

() T | X Fty:=t, . Rthen R=Unit and there is some type T1; such thatT" | Z -t . Ref Ty
andFlZthi T]].

(g) T | X+ 1. R then thereis some type Ty such that Z(1) =T; and R=Ref T;.

(h) and similar cases for numbers, booleans, | et , uni t, ...

Subtyping

The following questions refer to the simply typed lambda-calculus with subtyping, records, and variants. The
syntax, typing, and evaluation rules for this system are given on page &?? of the companion handout.

. (12 points) For each of the following pairs of types, write “less” if the type on the left is a subtype
of that on the right, “greater” greater if the type on the left is a supertype of the type on the right,
“equivalent” if each type is a subtype of the other, or “incomparable” if neither is a subtype of the
other.

a) ({}—{}) —Top Top — Top
Answer: greater

b) (Top—Top) —{} —{} (Top—{}) — Top
Answer: less

c) {a:Top, b:{d: Top}, c: Top} {b: {d: Top}, a: Top, c: Top}
Answer: equivalent

d) {g:Top, f:Top} —{f: Top, g: Top} {g: Top} —{f: Top}
Answer: incomparable

e) <l:Top, m{n: Top}>—{q: Top, p: Top} <m {n:Top, o: Top}>—{p: Top}
Answer: less

fy <>—Top {}—=Top
Answer: incomparable

Grading scheme: 2 points each. Half credit given for “adjacent” answers (e.g., “equivalent” or “incomparable”
instead of “less,” etc.)

8. (16 points) Recall the clause of the canonical forms lemma for function types in the simply typed
lambda-calculus with subtyping;:

If v is a closed value of type T1—T>, then v has the form Ax: S;. t 5.

Give a detailed proof of the above statement. You may make use of the following property of the
subtype relation:

LEMMA [SUBTYPING INVERSION]: If S< T;—T;,, then S has the form S;—S;,
withT; < S;and S, < T,.

Answer: By induction a derivation of v . T1—T,.

By inspection of the typing rules, the final rule in a derivation of = v . T1—T, must be either T-ABS or
T-SUB. If it is T- ABS, then the desired result is immediate from the premise of the rule.

Suppose, then, that the last rule is T-SUB. From the premises of T-SUB, we have v . Sand S < T;—-T,.
From the subtyping inversion lemma, we know that S has the form S1—S,. The result now follows from the
induction hypothesis.

Grading scheme:

o No points for completely garbled or incomprehensible answers
e -2 for omitting “by induction on typing derivations” (or something similar)
o -10 for omitting the T-Sub case completely

o -6 for using the induction hypothesis and the subtyping inversion lemma in the wrong order in the T-Sub
case

e -6 for including cases for subtyping rules in a proof by induction on the typing relation

o -1 for wrongly implying, in the T-Sub case, that the domain type annotation Sy is the same as the S
appearing in the arrow type in the rule’s premise

e -2 for correct proofs with not enough detail provided
o -1 to -4 for various infelicities and confusions

o several people misread the problem and gave proofs of the subtyping inversion lemma (!); these proofs were
graded on their own merits, with a maximum score of 6 points.

Companion handout

Full definitions of the systems
used in the exam

Simply typed lambda calculus with exceptions (and Bool)

Syntax
t o= terms
error run-time error
true constant true
fal se constant false
iftthent elset conditional
X variable
AX: Tt abstraction
tt application
v o= values
true true value
fal se false value
AX:T. t abstraction value
T o= types
T-T type of functions
Bool type of booleans
I o= contexts
0 empty context
rx: T term variable binding

Evaluation

iftruethent,elset; —t> (E-IFTRUE)
if falsethent,elset; —t3 (E-IFFALSE)
14 —)t{
. . (E-TF)
iftithent,elset; —iftjthent,elset;
if errorthent,elset; —error (E-IFERR)
errort, —error (E-APPERRI1)
Vierror —error (E-APPERR2)
1 —>t{
- (E-Appr1)
t1t2—>t;t2
t, — 1t}
L S (E-ArP2)
V]'[z—)V]té
(AX: Ti1.t12) Vo — X > Vo]t 12 (E-APPABS)

Typing
x:Tel
'eEx: T
Ix:TikFty: Ty
FEAX: Tyt T1—2T)

'ty T11—oTh2 Nty Toq

FEtyty: To2
I'+true: Bool

I'f al se . Bool

I'ktq: Bool Mt 0 T Mt

l'HFiftithentselsetsz: T
'error . T

=t T

(T-VAR)

(T-ABS)

(T-APP)

(T-TRUE)
(T-FALSE)

(T-IF)

(T-ERROR)

Simply typed lambda calculus with references
(and Uni t, Nat , Bool ,and | et)

let x=tint
uni t

AX: Tt

tt

ref t

It

true

fal se
iftthent elset
0

succt

predt

iszerot

uni t
AX:T. t

true
fal se
nv

Uni t
T—-T
Ref T
Bool

wl=v

terms

variable

let binding
constant uni t
abstraction
application
reference creation
dereference
assignment
store location
constant true
constant false
conditional
constant zero
successor
predecessor
zero test

values

constant uni t
abstraction value
store location
true value

false value
numeric value

types

unit type

type of functions

type of reference cells
type of booleans

type of natural numbers

stores

empty store
location binding

contexts

empty context
term variable binding

store typings

empty store typing
location typing

nv :=

0

succ nv
Evaluation

let x=vyjintylu— [X—=viltalpn

tilp—tilu

let x=tyintyp—let x=tjint,lu

tilp—tyly

titalp—tita|p

tolpu—t)|y

Vita|p— vyt |y
(7\XZT11.'[]2) Vz\uH[XHVZ]tIZ“/L

L ¢ dom(p)
ref vilpu—1/|(y,1—vy)

tilp—tylp

reft;|jp—refty|p

w(l) =v
"Mp—vip

tilp—ty |y

Mty lp— 'ty
L=vy|u—unit |[l—vylu

tilp—tylp

t1Z=t2‘p—>t1Z=t2|u/

tolp—ts|p

Viistylp—vyi=th |y
iftruethentyelsetszlu—typ
iffalsethent,elsetslu—tslp

tilp—tgly

iftithent,elsetsjp—iftjthentelset;|p’

tilp—tglp

succtq|p— succtqlp
predOjpu—0|u
pred(succnvy)|pu—nvylp

tylp—tqlp

predt lp—predtilp

numeric values
zero value
successor value

\t lp—t [y
(E-LETV)

(E-LET)

(E-APP1)

(E-Arr2)
(E-APPABS)

(E-REFV)

(E-REF)

(E-DEREFLOC)

(E-DEREF)
(E-ASSIGN)

(E-ASSIGN1)

(E-ASSIGN2)

(E-IFTRUE)
(E-IFFALSE)

(E-IF)

(E-Succq)

(E-PREDZERO)

(E-PREDSUCC)

(E-PRED)

iszeroOlpu—truelpu (E-ISZEROZERO)
iszero(succnvy)|u—falselp (E-IszEROSUCC)

tilp—tilu

E-ISZERO
iszerotlp—iszerotj|p ()

MNZkunit: Unit (T-UNIT)
X:TeTl
- (T-VAR)
NMkEx: T
Fx:Ti|ZFt: T
1] 20 T2 (T-ApS)
NMNXIEAMX:Ti.t2: T1—T>
MNIktq: T11oT MXXkEt,: T
| 1 11—T12 | 2 11 (T-App)
MNxXxkttqty: Toz
(=T
(T-LoC)
NNk1: Ref Ty
Nkt;: T,
(T-REF)
NNxkreft ;. Ref Ty
FlZFhZ Ref T1q
(T-DEREF)
MNIkElt;: Ty
FlZFh:Rean F‘Zth:T]]
- (T-ASSIGN)
MNXkty:=t,: Unit
I'+true: Bool (T-TRUE)
I't+fal se: Bool (T-FALSE)
't . Bool Mty D T Mt T
_ (T-IF)
'Fiftythentyelsets: T
'O . Nat (T-ZERO)
'ty . Nat
(T-Sucq)
['Fsucct . Nat
'ty . Nat
(T-PRED)
lFpredt;: Nat
'ty : Nat
- (T-ISZERO)
'Hiszerot;: Bool
'ty T MXx:TiHt: T
1 1 1 2 2 (T-LET)

'let x=t7int,: T»

Simply typed lambda calculus with subtyping (and records and variants)

Syntax
t == terms
X variable
AX:T. t abstraction
tt application
(1=t) record
t.| projection
<l =t> tagging
caset of <l =x;>=t; € case
vV o= values
AX:T.t abstraction value
{I i=v; -} record value
<l =v> tagging
T o= types
{1 Ty} type of records
Top maximum type
T-T type of functions
<l i Ty t€bm> type of variants
[o= contexts
0 empty context
rx: T term variable binding
Evaluation t —t’
t, —t {
- (E-APpr1)
tit, —t { ity
t, —t)
L S (E-APrP2)
Vit — vt é
(AX: Ti71.t12) Vo — X > Vo]t 12 (E-APPABS)
{Ii=vy €t} j —Vj (E-PROJRCD)
t, —t ;
- (E-PrOYJ)
t. | —t { I
t j— t JI
— iel..j—1 — — k€EjH..n (E_RCD)
{|1—Vi ,.|j—tj,|k—tk }
N { | ‘I.:V‘L l€1..)71’ |]:t j/' | k:t K k€]+1..n}
case <l j=v;>of <l {=x;>=t; " — [Xj — V;jlt ; (E-CASEVARIANT)
to—t 6
(E-CASE)

casetoof <l i=xi>=t; """ — caset | of <l =x;>=t; "

ti—>ti/
<| =t i>_)<| =t {>

(E-VARIANT)

6

Subtyping
s< S (S-REFL)
s< U us T
S< T (S-TRANS)
S< Top (5-Tor)
W< S SS< T
: : - : (5-ARROW)
Si—=5< T1—T;
oo Tyttt < {1 Ty e S-RCDWIDTH
{
foreachi § < T;
i : (S-RCDDEPTH)
{l i S‘L LEI..n} < {l i T‘L LEI..n}
k;: S; 7€'} is a permutation of { | i: Ty €'
Lk M s SEIRIR (S-RCDPERM)
{kj S)]El"“} < {l it Ti lEl..n}
<birTtehm> < <l Ty e (S-VARIANTWIDTH)
foreachi S < T;
: ‘ (S-VARIANTDEPTH)
<| i: SL tel.n> < <| 1',: Ti iel.ny
<kj: Sj '€ "> is a permutation of <| ;: T; !>
j - (S-VARIANTPERM)
<k]-Z Sj jel.ns &« A PR
Typing et T
foreachi TFHt;: T; (T-ReD)
FE{l=tgietn) o {1 Tty
rtq: | ;2 T, t€lom
T J (T-PrOYJ)
Mty l;: T
x:Te'l
FreEx: T (T-VAR)
Ix:TikFty: Ty
T-ABS
FEAX: Tyt T1—2T) ()
FEty Tii—=Th2 Nty Toq (T-APD)
FEtqta: Ti2
't :. S S< T
et T (T-5UB)
Tty T
(T-VARIANT)
Fe<lqi=t>: <l 1:T>

FEto: <l Tyiehm>
foreachi T, xy: Tty T

I'kcasetyof <l j=x;>=t; €

T-CASE
T ()

