
CIS 500 — Software Foundations

Midterm II

Answer key
November 12, 2003

Simply typed lambda-calculus

The following questions refer to the simply typed lambda-calculus with booleans and exceptions. The syntax, typing,
and evaluation rules for this system are given on page ♠?? of the companion handout.

1. (4 points) In this question, you can use B as an abbreviation for the type Bool while drawing typing
derivation trees. For example, you can draw the derivation tree

T-TRUE
x:Bool ` true : Bool

T-ABS
` λx:Bool. true : Bool→Bool

as:

T-TRUE
x:B ` true : B

T-ABS
` λx:B. true : B→B

Draw the typing derivation tree for the following lambda-term:

λx:Bool→Bool. λy:Bool. x y

Answer:

x:B→B ∈ x:B→B,y:B
T-VAR

x:B→B,y:B ` x : B→B

y:B ∈ x:B→B,y:B
T-VAR

x:B→B,y:B ` y : B
T-APP

x:B→B,y:B ` x y : B
T-ABS

x:B→B ` λy:B. x y : B→B
T-ABS

` λx:B→B. λy:B. x y : (B→B)→B→B

Grading scheme: Three points off for deriving the wrong type, one point off for each tiny error.

1

2. (5 points) Consider the following terms:

t = λx:Bool.
try

(if x then
(λy:Bool. true)

else
((λz:____. z) error))

with
error

a = t true

b = t false

(a) What type must we put on the binder of z (in place of ___), in order for the whole term to be
well typed? Answer: Bool→Bool

(b) What is the type of t? Answer: Bool→(Bool→Bool)

(c) What does t evaluate to? Answer: itself

(d) What does a evaluate to? Answer: (λy:Bool. true)

(e) What does b evaluate to? Answer: error

Grading scheme: Binary

2

References

The following questions refer to the simply typed lambda-calculus with references (and Unit, Nat, Bool,
and let). The syntax, typing, and evaluation rules for this system are given on page ♠?? of the companion

handout.

3. (9 points) Evaluating the expression

let x = ref (λn:Nat. 0) in
let y = ref (λn:Nat. (!x) n) in
let z = ref (λn:Nat. (!y) n) in
(!z) 3

beginning in an empty store yields:

Result: 0 Store: l1 7→ λn:Nat. 0
l2 7→ λn:Nat. (!l1) n
l3 7→ λn:Nat. (!l2) n

Fill in the resulting values and final stores (when started with an empty store) for the following terms:

(a) let x = ref 0 in
let y = ref 1 in
let f = λz:Ref Nat. z := succ(!z) in
(f y); (!x)

Answer:

Result: 0 Store: l1 7→ 0
l2 7→ 2

(b) let x = ref 5 in
let y = x in
let z = ref (λa:Nat. y := a; pred (!x)) in
(!z) (!y)

Answer:

Result: 4 Store: l1 7→ 5
l2 7→ λa:Nat. (l1 := a; pred (!l1))

(c) let f = ref (λn:Nat. ref 999) in
f := λn:Nat. if iszero(n) then ref 0

else ref (!((!f) (pred n)));
(!f) 3

Answer:

Result: l5 Store: l1 7→ λn:Nat. if iszero(n) then (ref 0)
else ref (!((!l1)(pred n)))

l2 7→ 0
l3 7→ 0
l4 7→ 0
l5 7→ 0

Grading scheme: One point for the result, two points for the store.

3

4. (10 points)

Recall the following notations from the book:

Γ | Σ ` µ iff dom(Σ) = dom(µ) and Γ |Σ ` µ(l) : Σ(l) for every l ∈ µ.

Σ ⊆ Σ ′ iff dom(Σ) ⊆ dom(Σ ′) and we have Σ(l) = Σ ′(l) for every l ∈ dom(Σ).

State the preservation theorem for the simply typed lambda-calculus with references.

Answer: If

Γ | Σ ` t : T
Γ | Σ ` µ

t | µ −→ t ′ | µ ′

then, for some Σ ′ ⊇ Σ,

Γ | Σ ′ ` t ′ : T
Γ | Σ ′ ` µ ′.

Grading scheme:

• Minus two points if Σ ′ ⊇ Σ is missing.

• Minus for points if heap well-formedness (Γ | Σ ′ ` µ) is ignored or the heap is not part of the evaluation
relation.

• Minus two points if they make up notation and do not define it.

• Minus one point if they misstate the type of quantification or place the quantifiers in the wrong place.

• Minus four points if they are missing the well-formedness of the term.

• Minus one points for smaller notational mistakes (forgetting to put “If” and “then” or missing contexts)

• Minus for points if there is no mention of the evaluation relation.

4

5. (3 points) Suppose we delete the rule T-REF from the definition of the typing relation. How should
the statement of the preservation theorem be changed so that it is true for the modified system?

Answer: No change is needed—the theorem as stated is also true for the new system.

However, if we like, we can make the theorem a bit more precise by replacing µ ′ with µ, since in the new system
there is no way to extend the store by allocating new references.

Grading scheme: Three points for correct answers, one point for “almost correct” answers.

5

6. (21 points) There are seven mistakes in the following proof of the progress theorem for the simply-
typed lambda calculus with references. Circle each mistake and write an appropriate correction beside
it. Several cases (T-Var, T-Abs, T-App, etc.) are not shown and do not need correction. The (correct)
inversion and canonical forms lemmas are repeated on the next page, for reference.

THEOREM [PROGRESS]: Suppose t is a closed, well-typed term — that is, ∅ | Σ ` t : T for
some T and Σ. Then either t is a value or else, for any store µ such that ∅ | Σ ` µ, there are
some term t ′ and store µ ′ with t | µ −→ t ′ | µ ′.

PROOF: By induction on the structure of the term t [should be: the derivation of ∅ | Σ ` t : T]:

Case T-UNIT: t = unit T = Unit

Immediate: unit is a value.

Case T-LOC: t = l T = Σ(l) [should be: T = Ref Σ(l)]

Can’t happen because t is closed. [should be: Immediate: l is a value.]

Case T-REF: t = ref t1 T = Ref T1 ∅ | Σ ` t1 : T1

By the induction hypothesis, there are two cases to consider:

(a) t1 is a value, v1. Then we are done, since ref v1 is a value. [should be: Then rule
E-REFV yields ref v1 | µ −→ l | (µ, l 7→ v1), for some l /∈ dom(µ)]

(b) t1 −→ t ′

1 [should be: t1 | µ −→ t ′

1 | µ ′]: The result then follows by E-REF.

Case T-DEREF: t = !t1 ∅ | Σ ` t1 : Ref T

By the induction hypothesis, there are two cases to consider:

(a) t1 is a value, v1: By the inversion [should be: canonical forms] lemma, v1 must
be a location l. But then, by the canonical forms [should be: inversion] lemma,
l ∈ dom(Σ), and, since ∅ | Σ ` µ, we have l ∈ dom(µ). The result now follows,
since t can make a step by rule E-DEREFLOC.

(b) t1 | µ −→ t ′

1 | µ ′: The result follows by rule E-ASSIGN [should be: E-DEREF].

Grading scheme: There are actually eight mistakes in the proof–we missed one of them when making the ques-
tion! As a result, we add three bonus points to this question: you only need to identify any seven of the eight
mistakes to have the full score (21 points) for the question.

-3 for missing a mistake; -2 for a wrong reason; and -2 for mis-identifying a correct part as a mistake.

Students should pay attention to details such as when to use IH, what it means by “can t happen,” what are
the given conditions (e.g. t1 | µ −→ t ′

1 | µ ′), and what are the implicit equalities (Γ = ∅). In particular,
E-DEREFLOC is applicable only if µ(l) = v, which is true because ∅ | Σ ` µ.

6

(Note: there are no mistakes to find in the following lemmas — they are given here for reference only.)

LEMMA [CANONICAL FORMS]

(a) If v is a value of type Bool, then v is either true or false.

(b) If v is a value of type Nat, then v is a numeric value.

(c) If v is a value of type Ref T1, then v is a location l.

(d) If v is a value of type T1→T2, then v has the form λx:T1.t2.

LEMMA [INVERSION]

(a) If Γ | Σ ` x : R, then x:R ∈ Γ .

(b) If Γ | Σ ` λx:T1. t2 : R, then R = T1→R2 for some R2 with Γ , x:T1 ` t2 : R2.

(c) If Γ | Σ ` t1 t2 : R, then there is some type T11 such that Γ | Σ ` t1 : T11→R and Γ | Σ ` t2 :
T11.

(d) If Γ | Σ ` ref t1 : R, then there is some type T1 such that R = Ref T1 and Γ | Σ ` t1 : T1.

(e) If Γ | Σ ` !t1 : R, then Γ | Σ ` t1 : Ref R.

(f) If Γ | Σ ` t1:=t2 : R, then R = Unit and there is some type T11 such that Γ | Σ ` t1 : Ref T11

and Γ | Σ ` t2 : T11.

(g) If Γ | Σ ` l : R, then there is some type T1 such that Σ(l) = T1 and R = Ref T1.

(h) and similar cases for numbers, booleans, let, unit, ...

7

Subtyping

The following questions refer to the simply typed lambda-calculus with subtyping, records, and variants. The
syntax, typing, and evaluation rules for this system are given on page ♠?? of the companion handout.

7. (12 points) For each of the following pairs of types, write “less” if the type on the left is a subtype
of that on the right, “greater” greater if the type on the left is a supertype of the type on the right,
“equivalent” if each type is a subtype of the other, or “incomparable” if neither is a subtype of the
other.

a) ({}→{}) → Top Top → Top
Answer: greater

b) (Top→Top) → {} → {} (Top→{}) → Top
Answer: less

c) {a:Top, b:{d:Top}, c:Top} {b:{d:Top}, a:Top, c:Top}
Answer: equivalent

d) {g:Top, f:Top}→ {f:Top, g:Top} {g:Top} → {f:Top}
Answer: incomparable

e) <l:Top, m:{n:Top}>→ {q:Top, p:Top} <m:{n:Top, o:Top}> → {p:Top}
Answer: less

f) <> → Top {}→ Top
Answer: incomparable

Grading scheme: 2 points each. Half credit given for “adjacent” answers (e.g., “equivalent” or “incomparable”
instead of “less,” etc.)

8

8. (16 points) Recall the clause of the canonical forms lemma for function types in the simply typed
lambda-calculus with subtyping:

If v is a closed value of type T1→T2, then v has the form λx:S1.t2.

Give a detailed proof of the above statement. You may make use of the following property of the
subtype relation:

LEMMA [SUBTYPING INVERSION]: If S <: T1→T2, then S has the form S1→S2,
with T1 <: S1 and S2 <: T2.

Answer: By induction a derivation of ` v : T1→T2.

By inspection of the typing rules, the final rule in a derivation of ` v : T1→T2 must be either T-ABS or

T-SUB. If it is T-ABS, then the desired result is immediate from the premise of the rule.

Suppose, then, that the last rule is T-SUB. From the premises of T-SUB, we have ` v : S and S <: T1→T2.
From the subtyping inversion lemma, we know that S has the form S1→S2. The result now follows from the
induction hypothesis.

Grading scheme:

• No points for completely garbled or incomprehensible answers

• -2 for omitting “by induction on typing derivations” (or something similar)

• -10 for omitting the T-Sub case completely

• -6 for using the induction hypothesis and the subtyping inversion lemma in the wrong order in the T-Sub
case

• -6 for including cases for subtyping rules in a proof by induction on the typing relation

• -1 for wrongly implying, in the T-Sub case, that the domain type annotation S1 is the same as the S1

appearing in the arrow type in the rule’s premise

• -2 for correct proofs with not enough detail provided

• -1 to -4 for various infelicities and confusions

• several people misread the problem and gave proofs of the subtyping inversion lemma (!); these proofs were
graded on their own merits, with a maximum score of 6 points.

9

Companion handout

Full definitions of the systems
used in the exam

Simply typed lambda calculus with exceptions (and Bool)

Syntax

t ::= terms
error run-time error

true constant true
false constant false
if t then t else t conditional
x variable
λx:T.t abstraction
t t application

v ::= values
true true value

false false value
λx:T.t abstraction value

T ::= types
T→T type of functions
Bool type of booleans

Γ ::= contexts
∅ empty context

Γ , x:T term variable binding

Evaluation t −→ t ′

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t ′

1

if t1 then t2 else t3 −→ if t ′

1 then t2 else t3

(E-IF)

if error then t2 else t3 −→ error (E-IFERR)

error t2 −→ error (E-APPERR1)

v1 error −→ error (E-APPERR2)

t1 −→ t ′

1

t1 t2 −→ t ′

1 t2

(E-APP1)

t2 −→ t ′

2

v1 t2 −→ v1 t ′

2

(E-APP2)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-APPABS)

1

Typing Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T-VAR)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T-ABS)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-APP)

Γ `true : Bool (T-TRUE)

Γ `false : Bool (T-FALSE)

Γ `t1 : Bool Γ `t2 : T Γ `t3 : T

Γ `if t1 then t2 else t3 : T
(T-IF)

Γ ` error : T (T-ERROR)

2

Simply typed lambda calculus with references
(and Unit, Nat, Bool, and let)

Syntax

t ::= terms

x variable
let x=t in t let binding
unit constant unit
λx:T.t abstraction

t t application
ref t reference creation
!t dereference
t:=t assignment
l store location
true constant true
false constant false
if t then t else t conditional
0 constant zero

succ t successor
pred t predecessor
iszero t zero test

v ::= values

unit constant unit
λx:T.t abstraction value

l store location
true true value
false false value
nv numeric value

T ::= types

Unit unit type

T→T type of functions
Ref T type of reference cells
Bool type of booleans
Nat type of natural numbers

µ ::= stores

∅ empty store

µ, l = v location binding

Γ ::= contexts

∅ empty context
Γ , x:T term variable binding

Σ ::= store typings

∅ empty store typing
Σ, l:T location typing

3

nv ::= numeric values
0 zero value
succ nv successor value

Evaluation t | µ −→ t ′ | µ ′

let x=v1 in t2| µ −→ [x 7→ v1]t2| µ (E-LETV)

t1| µ −→ t ′

1| µ ′

let x=t1 in t2| µ −→ let x=t ′

1 in t2| µ ′
(E-LET)

t1 | µ −→ t ′

1 | µ ′

t1 t2 | µ −→ t ′

1 t2 | µ ′
(E-APP1)

t2 | µ −→ t ′

2 | µ ′

v1 t2 | µ −→ v1 t ′

2 | µ ′
(E-APP2)

(λx:T11.t12) v2 | µ −→ [x 7→ v2]t12 | µ (E-APPABS)

l /∈ dom(µ)

ref v1 | µ −→ l | (µ, l 7→ v1)
(E-REFV)

t1 | µ −→ t ′

1 | µ ′

ref t1 | µ −→ ref t ′

1 | µ ′
(E-REF)

µ(l) = v

!l | µ −→ v | µ
(E-DEREFLOC)

t1 | µ −→ t ′

1 | µ ′

!t1 | µ −→ !t ′

1 | µ ′
(E-DEREF)

l:=v2 | µ −→ unit | [l 7→ v2]µ (E-ASSIGN)

t1 | µ −→ t ′

1 | µ ′

t1:=t2 | µ −→ t ′

1:=t2 | µ ′
(E-ASSIGN1)

t2 | µ −→ t ′

2 | µ ′

v1:=t2 | µ −→ v1:=t ′

2 | µ ′
(E-ASSIGN2)

if true then t2 else t3| µ −→ t2| µ (E-IFTRUE)

if false then t2 else t3| µ −→ t3| µ (E-IFFALSE)

t1| µ −→ t ′

1| µ ′

if t1 then t2 else t3| µ −→ if t ′

1 then t2 else t3| µ ′
(E-IF)

t1| µ −→ t ′

1| µ ′

succ t1| µ −→ succ t ′

1| µ ′
(E-SUCC)

pred 0| µ −→ 0| µ (E-PREDZERO)

pred (succ nv1)| µ −→ nv1| µ (E-PREDSUCC)

t1| µ −→ t ′

1| µ ′

pred t1| µ −→ pred t ′

1| µ
(E-PRED)

4

iszero 0| µ −→ true| µ (E-ISZEROZERO)

iszero (succ nv1)| µ −→ false| µ (E-ISZEROSUCC)

t1| µ −→ t ′

1| µ ′

iszero t1| µ −→ iszero t ′

1| µ ′
(E-ISZERO)

Typing Γ | Σ ` t : T

Γ | Σ ` unit : Unit (T-UNIT)

x:T ∈ Γ

Γ | Σ ` x : T
(T-VAR)

Γ , x:T1 | Σ ` t2 : T2

Γ | Σ ` λx:T1.t2 : T1→T2

(T-ABS)

Γ | Σ ` t1 : T11→T12 Γ | Σ ` t2 : T11

Γ | Σ ` t1 t2 : T12

(T-APP)

Σ(l) = T1

Γ | Σ ` l : Ref T1

(T-LOC)

Γ | Σ ` t1 : T1

Γ | Σ ` ref t1 : Ref T1

(T-REF)

Γ | Σ ` t1 : Ref T11

Γ | Σ ` !t1 : T11

(T-DEREF)

Γ | Σ ` t1 : Ref T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(T-ASSIGN)

Γ `true : Bool (T-TRUE)

Γ `false : Bool (T-FALSE)

Γ `t1 : Bool Γ `t2 : T Γ `t3 : T

Γ `if t1 then t2 else t3 : T
(T-IF)

Γ `0 : Nat (T-ZERO)

Γ `t1 : Nat

Γ `succ t1 : Nat
(T-SUCC)

Γ `t1 : Nat

Γ `pred t1 : Nat
(T-PRED)

Γ `t1 : Nat

Γ `iszero t1 : Bool
(T-ISZERO)

Γ ` t1 : T1 Γ , x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2

(T-LET)

5

Simply typed lambda calculus with subtyping (and records and variants)

Syntax

t ::= terms
x variable
λx:T.t abstraction
t t application
{li=ti

i∈1..n} record
t.l projection

<l=t> tagging
case t of <li=xi>⇒ti

i∈1..n case

v ::= values
λx:T.t abstraction value
{li=vi

i∈1..n} record value
<l=v> tagging

T ::= types

{li:Ti
i∈1..n} type of records

Top maximum type
T→T type of functions
<li:Ti

i∈1..n> type of variants

Γ ::= contexts
∅ empty context
Γ , x:T term variable binding

Evaluation t −→ t ′

t1 −→ t ′

1

t1 t2 −→ t ′

1 t2

(E-APP1)

t2 −→ t ′

2

v1 t2 −→ v1 t ′

2

(E-APP2)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-APPABS)

{li=vi
i∈1..n}.lj −→ vj (E-PROJRCD)

t1 −→ t ′

1

t1.l −→ t ′

1.l
(E-PROJ)

tj −→ t ′

j

{li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}
−→ {li=vi

i∈1..j−1,lj=t ′

j,lk=tk
k∈j+1..n}

(E-RCD)

case <lj=vj> of <li=xi>⇒ti
i∈1..n −→ [xj 7→ vj]tj (E-CASEVARIANT)

t0 −→ t ′

0

case t0 of <li=xi>⇒ti
i∈1..n −→ case t ′

0 of <li=xi>⇒ti
i∈1..n

(E-CASE)

ti −→ t ′

i

<li=ti> −→ <li=t ′

i>
(E-VARIANT)

6

Subtyping S <: T

S <: S (S-REFL)

S <: U U <: T

S <: T
(S-TRANS)

S <: Top (S-TOP)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(S-ARROW)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RCDWIDTH)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RCDDEPTH)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RCDPERM)

<li:Ti
i∈1..n> <: <li:Ti

i∈1..n+k> (S-VARIANTWIDTH)

for each i Si <: Ti

<li:Si
i∈1..n> <: <li:Ti

i∈1..n>
(S-VARIANTDEPTH)

<kj:Sj
j∈1..n> is a permutation of <li:Ti

i∈1..n>

<kj:Sj
j∈1..n> <: <li:Ti

i∈1..n>
(S-VARIANTPERM)

Typing Γ ` t : T

for each i Γ ` ti : Ti

Γ ` {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T-RCD)

Γ ` t1 : {li:Ti
i∈1..n}

Γ ` t1.lj : Tj

(T-PROJ)

x:T ∈ Γ

Γ ` x : T
(T-VAR)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T-ABS)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-APP)

Γ ` t : S S <: T

Γ ` t : T
(T-SUB)

Γ ` t1 : T1

Γ ` <l1=t1> : <l1:T1>
(T-VARIANT)

Γ ` t0 : <li:Ti
i∈1..n>

for each i Γ , xi:Ti ` ti : T

Γ ` case t0 of <li=xi>⇒ti
i∈1..n : T

(T-CASE)

7

