
TOP
2004/12/21
page 0

CIS 500 — Software Foundations

Final Exam
Answer key

December 20, 2004

TOP
2004/12/21
page 1

True/False questions

For each of the following statements, circle T if the sentence is true or F otherwise.

1. (10 points)

(a) T F The untyped lambda calculus can encode any computable function on the natural
numbers.

(b) T F The simply-typed lambda calculus (not including fix) can encode any computable
function on the natural numbers.

(c) T F The simply-typed lambda calculus (not including fix) with references can encode any
computable function on the natural numbers.

(d) T F Featherweight Java can encode any computable function on the natural numbers.

(e) T F If the preservation theorem is true for a language, removing a typing rule may cause
it to become untrue.

(f) T F If the progress theorem is true for a language, removing a typing rule may cause it to
become untrue.

(g) T F The only way to prove that the preservation theorem holds for a language is by
induction on the structure of the typing derivation.

(h) T F For a given syntax and operational semantics, it is always possible to devise a set of
typing rules such that the preservation and progress theorems hold.

(i) T F Featherweight Java has the uniqueness of types property.

(j) T F The evaluation relation must be deterministic (i.e. for any term there should be only
way to evaluate it) to prove the progress theorem.

Grading scheme: Binary. 1 pt each.

1

TOP
2004/12/21
page 2

Untyped lambda-calculus

The following questions refer to the untyped lambda-calculus. The syntax and evaluation rules for this system
are given on page 1 of the companion handout.

2. (12 points)

Consider the following definition of the multi-step evaluation relation, t −→
∗ t ′:

t −→
∗ t (EV-DONE)

t −→ t ′ t ′ −→
∗ t ′′

t −→
∗ t ′′

(EV-STEP)

(a) Is the multi-step evaluation relation a partial function? In other words, for any t does there exist
at most one t ′ such that t −→

∗ t ′? If yes, briefly say why. If no, give a counterexample.
Answer: No, because (λx.x)(λy.y)−→

∗ (λx.x) and (λx.x)(λy.y)−→
∗ (λx.x)(λy.y)

Grading scheme: 3 points. 1 point partial credit for answering no, but providing a wrong counter-
example.

(b) For any t, does there exist at least one t ′ such that t −→
∗ t ′? If yes, briefly say why. If no, give a

counterexample.
Answer: Yes, because the relation is reflexive. Grading scheme: 3 points. 1 point partial credit for an-
swering yes, but providing the wrong reason.

(c) Show that the multi-step evaluation relation is transitive. In other words, prove that if t −→
∗ t ′

and t ′ −→
∗ t ′′ then t −→

∗ t ′′. Be explicit about each step of the proof, but do not include any
irrelevant information.
Answer: Proof is by induction on the structure of the derivation t −→

∗ t ′.

• Case EV-DONE. In this case, t=t ′. As t ′−→
∗ t ′′ by assumption, then t −→

∗ t ′′.
• Case EV-STEP. In this case t −→ t1 and t1 −→

∗ t ′. By induction t1 −→
∗ t ′′. By EV-STEP,

t −→
∗ t ′′.

Grading scheme: 6 points total.

2

TOP
2004/12/21
page 3

3. (10 points)

The following is yet another encoding of numbers in the untyped lambda calculus.

s0 = λz. λs. z

s1 = λz. λs. s s0

s2 = λz. λs. s s1

s3 = λz. λs. s s2

In general, sn+1 = λz. λs. s sn.

Below, circle the correct implementation of the following functions. Some of these implementations
use the following definitions from TAPL chapter 5:

pair = λf. λs. λb. b f s

fst = λp. p (λx. λy. x)

snd = λp. p (λx. λy. y)

fix = λf. (λx. f (λy. x y y)) (λx. f (λy. x y y))

(a) The successor function, where sscc sn = sn+1.

i. λx. λz. λs. x s z

ii. λx. λz. λs. x z s

iii. λx. λz. λs. s x

iv. λx. λz. λs. s (x z s)

v. λx. λz. λs. s x (x z s)

Answer: iii.

(b) The predecessor function, where sprd s0 = s0 and sprd sn+1 = sn.

i. λx. x s0 (λy.y)

ii. λx. x (λy.y) (λz.z)

iii. λx. snd (x (pair s0 s0)) (λp. pair (snd p) (sscc (snd p)))

iv. λx. fst (λp. pair (snd p) (sscc (snd p))) (x (pair s0 s0))

v. λx. fst (x (pair s0 s0)) (λp. pair (snd p) (sscc (snd p)))

Answer: i.

(c) The addition function, where splus sm sn = sn+m.

i. λm. λn. m n (λz.z)

ii. λm. λn. λz. λs. m (n z s) s

iii. λm. λn. n m (λx. sscc)

iv. fix (λplus. λm. λn. n m (plus (sscc m)))

v. λm. λn. fix (λplus. n m (sscc (λn. plus m (sprd n))))

Answer: iv.

Grading scheme: 3pts for a and b. 4 points for c.

3

TOP
2004/12/21
page 4

4. (12 points) Circle the normal forms of the following untyped lambda calculus terms. If a term has
no normal form, circle NOTHING. Recall that the normal form of a term t is some term t ′ such that
t −→

∗ t ′ and t ′ 6−→.

(a) (λx. λy. x y) (λz. λw. w)

i. λy. (λz. λw. w) y

ii. (λx. λy. x y) (λz. λw. w)

iii. λx. x (λz. λw. w)

iv. λy. λw. w

v. NOTHING

Answer: i.

(b) (λx. λy. x)(λx. y)

i. (λx. λy. x)(λx. y)

ii. (λx. λy. (λx. y))

iii. (λy. λx. y)

iv. (λw. λx. y)

v. NOTHING

Answer: iv.

(c) (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) (λg. g) (λh.h)

i. (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) (λg. g)

ii. λh.h

iii. (λx. (λg.g) (λy. x x y)) (λx. (λg.g) (λy. x x y))

iv. λx. (λg.g) (λy. x x y)

v. NOTHING

Answer: v.

(d) (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) (λg. λy. y) (λh.h)

i. (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) (λg. λy. y)

ii. λh.h

iii. (λx. (λg.λy.y) (λy. x x y)) (λx. (λg. λy. y) (λy. x x y))

iv. λx. (λg.λy.y) (λy. x x y)

v. NOTHING

Answer: ii.
Grading scheme: 3 points each.

4

TOP
2004/12/21
page 5

Simply typed lambda-calculus

The following questions refer to the simply typed lambda-calculus (with recursion and base type Bool). The
syntax, typing, and evaluation rules for this system are given on page 2 of the companion handout.

We can define the big-step evaluation relation for the simply typed lambda-calculus with recursion
and booleans using the following rules:

v ⇓ v (B-VALUE)

t1 ⇓ λx:T.t t2 ⇓ v2 [x 7→ v2]t ⇓ v

t1 t2 ⇓ v
(B-APP)

t1 ⇓ true t2 ⇓ v

if t1 then t2 else t3 ⇓ v
(B-IFTRUE)

t1 ⇓ false t3 ⇓ v

if t1 then t2 else t3 ⇓ v
(B-IFFALSE)

t ⇓ λx:T1.t1 [x 7→ fix (λx:T1.t1)]t1 ⇓ v

fix t ⇓ v
(B-FIX)

Jen Kennings, an eager assistant professor thought that it would be really great if the following propo-
sition were true about these rules:

Proposition: If ∅ ` t : T then there exists a v such that t ⇓ v and ∅ ` v : T.

5. (10 points)

(a) Unfortunately, this proposition is not true. Write down a counter-example where it fails. (i.e.,
find some closed, well typed term t such that either there is no v such that t ⇓ v, or there is a
such a v, but it doesn’t type check with the same type.)
Answer: Any term that doesn’t terminate.
Grading scheme: 3 points. 1 point partial credit for any answer mentioning fix in any way.

5

TOP
2004/12/21
page 6

(b) Not realizing that this proposition is false, professor Kennings started trying to prove it by in-
duction on the typing derivation. However, she made a serious mistake in one of the first three
cases, shown below. Briefly describe her error in one or two sentences. Note, professor Ken-
nings hasn’t yet attempted the cases for T-True, T-False, T-If or T-Fix, so those cases are not
shown.
Proposition: If ∅ ` t : T then there exists a v such that t ⇓ v and ∅ ` v : T.

Proof: Proof is induction on the typing derivation ∅ ` t : T.

Case T-VAR: t=x x:T ∈ ∅

This case is impossible as the context is assumed to be empty.

Case T-ABS: t=λx:T1.t2 T=T1 → T2 x:T1 ` t2: T2

This case is simple as λx:T1.t2 ⇓ λx:T1.t2 by B-VALUE, and ∅ ` λx:T1.t2 : T by assumption.

Case T-APP: t=t1 t2 ∅ ` t1 : T1 → T ∅ ` t2 : T1

By induction, there exists a v1 such that t1 ⇓ v1 and ∅ ` v1 : T1→T.
Also by induction, there exists a v2 such that t2 ⇓ v2 and ∅ ` v2 : T1.
By canonical forms, v1 is λx:T1.t11 and by inversion of the typing relation, x:T1 ` t11 : T.
By substitution, ∅ ` [x 7→ v2]t11 : T.
By induction, there exists a v such that [x 7→ v2]t11 ⇓ v and ∅ ` v : T.
Finally, by the evaluation rule B-APP, t1 t2 ⇓ v and we’ve already shown that ∅ ` v : T.

2

Note: In her proof attempt above, professor Kennings referred to the following lemmas about
the typed lambda-calculus with booleans and recursion. These lemmas are true, but she may or
may not have used them correctly.

LEMMA (INVERSION OF THE TYPING RELATION):
i. If Γ ` λx:T1.t2 : R then R=T1→R2 for some R2 with Γ,x:T1 ` t2 : R2.

LEMMA (CANONICAL FORMS): If v is a value of type T1 → T2 then v=λx:T1.t2.
LEMMA (SUBSTITUTION): If Γ,x:S ` t : T and Γ ` s : S then Γ ` [x 7→ s]t : T.

Answer: In the T-App case, the induction hypothesis does not apply to ∅ ` [x 7→ v2]t11 : T because it is
not a subderivation of the typing derivation.
Grading scheme: 7 points. 2 points partial credit for identifying the T-App case as the culprit. 2 points
deducted for insufficiently explicit answers.

6

TOP
2004/12/21
page 7

Simply typed lambda-calculus with algorithmic subtyping

The following questions refer to the pure simply typed lambda-calculus with algorithmic subtyping (with just
Top—no booleans or records). The syntax, typing and evaluation rule this system are given on page 4 of the
companion handout.

6. (30 points)

The preservation theorem for the system with algorithmic typing can be stated as:

THEOREM (PRESERVATION): If Γ Ì t : T and t −→ t ′ then Γ Ì t ′ : S where Ì S <: T.

(a) Unlike the system with declarative typing, we cannot state the preservation theorem for this
system as

If Γ Ì t : T and t −→ t ′ then Γ Ì t ′ : T.

This version of the theorem is false. Demonstrate why with a counter-example (i.e. find some
term t that steps to some t ′ that cannot be given the same type with the algorithmic typing
rules).
Answer: The term (λx:Top. x)(λy:Top.y) must be given the type Top. However, it single-steps to
(λy:Top.y) which has type Top→Top under the algorithmic typing rules.
Grading scheme: 5 points. No deduction for answers that weren’t technically in the language (involving
booleans or numbers). One point deducted for right idea, but example that doesn’t type check.

(b) Complete a precise and detailed proof of the preservation theorem on the next page. This proof
is by induction on the evaluation relation t −→ t ′. The case for E-APP1 has been done for you,
but you need to do the cases for E-APP2 and E-APPABS. Note that the system we are considering
in this problem, defined on page 4 of the handout, includes just Top and →; your proof need not
deal with other type constructors such as records. Do not include any extraneous information
(true or false) in your proof. If needed, you may refer [without proof] to the lemmas stated
below.

i. LEMMA (SUBTYPING RELATION INVERSION): If Ì S <: T1 → T2 then S = S1 → S2 with
Ì T1 <: S1 and Ì S2 <: T2.

ii. LEMMA (REFLEXIVITY OF SUBTYPING): Ì S <: S.
iii. LEMMA (TRANSITIVITY OF SUBTYPING): If Ì S <: T and Ì T <: U then Ì S <: U.
iv. LEMMA (TYPING RELATION INVERSION):

A. If Γ Ì t1t2 : T then Γ Ì t1 : T11→T and Γ Ì t2 : T2 and Ì T2 <: T11.
B. If Γ Ì λx:T1.t2 : T then T = T1 → T2 and Γ,x:T1 Ì t2 : T2.

v. LEMMA (SUBSTITUTION): If Γ,x:S Ì t : T and Γ Ì s : S ′ with Ì S ′ <: S then Γ Ì [x 7→

s]t : T ′ where Ì T ′ <: T.

7

TOP
2004/12/21
page 8

THEOREM (PRESERVATION): If Γ Ì t : T and t −→ t ′ then Γ Ì t ′ : S where Ì S <: T.

Proof: By induction on the evaluation relation, t −→ t ′.

Case E-APP1: t = t1 t2 t ′ = t ′

1 t2 t1 −→ t ′

1

By inversion of the typing relation, Γ Ì t1 : T11→T and Γ Ì t2 : T2 and Ì T2 <: T11.
By the induction hypothesis, Γ Ì t ′

1 : S for some Ì S <: T11→T.
By inversion of the subtyping relation, S = S1 → S2 where Ì T11 <: S1 and Ì S2 <: T.
By the transitivity of subtyping, Ì T2 <: S1.
By TA-APP, Γ Ì t ′

1 t2 : S2, where Ì S2 <: T as required.

Case E-APP2: t = v1 t2 t ′ = v1 t ′

2 t2 −→ t ′

2

Answer:
By inversion, Γ Ì v1 : T11→T and Γ Ì t2 : T2 and Ì T2 <: T11.
By induction, Γ Ì t ′

2 : S for some Ì S <: T2.
By transitivity, Ì S <: T11.
By TA-APP, then Γ Ì v1 t ′

2 : T.
By reflexivity of subtyping, Ì T <: T as required.
Grading scheme: Roughly 3 points per line. In particular, -3 for missing the use of reflexivity in the last
line or transitivity in the third line.

Case E-APPABS: t = (λx:T11.t12) v2 t ′ = [x 7→ v2]t12

Answer:
By inversion, Γ Ì λx:T11.t12 : S→T and Γ Ì v2 : T2 and Ì T2 <: S.
By inversion again, Γ,x:T11 Ì t12 : T and S→T = T11→T. Note that this means that T2 <: T11.
By substitution, Γ Ì [x 7→ v2]t12 : T ′ where Ì T ′ <: T.
Grading scheme: Roughly 3 points per line. -2 for using the first inversion lemma incorrectly, and saying
that λx:T11.t12 has type T11→T. We don’t know that the type of the argument is T11 until we use
inversion again.

2

8

TOP
2004/12/21
page 9

Simply typed lambda-calculus with subtyping, records, and references

The following questions refer to the simply typed lambda-calculus with subtyping, records, and references (and
base types Nat, Bool, and Unit). The syntax, typing, and evaluation rules for this system are given on page 5
of the companion handout.

7. (9 points)

(a) List all syntactically different supertypes of {a:Top,b:Top}. Note: S and T are syntactically
different types if they are written differently, even though it may be the case that S<:T and
T<:S.
Answer: There are six. {a:Top, b:Top}, {b:Top, a:Top}, {a:Top}, {b:Top}, {} and Top.

Grading scheme: 1 point for 1-2 answers, 2 points for 3-4 answers, and 3 points for 5-6 answers.

(b) Is there an infinite descending chain in the subtype relation—that is, an infinite sequence of types
S0, S1, etc. such that each Si+1 is a subtype of Si? Note: Trivial chains don’t count—each Si must
be different from all other types in the chain. If so, give an example. If not, describe why.
Answer: Yes, let S0 = {}

S1 = {a:Top}
S2 = {a:Top, b:Top}

Grading scheme: 3 points. Partial credit for answering yes, but providing an incorrect example.

(c) Is there an infinite ascending chain in the subtype relation? Again, trivial chains don’t count—
each Si must be different from all other types in the chain.If so, give an example. If not, describe
why.
Answer: Yes, let T0 = S0 → Top, T1 = S1 → Top, etc.
Grading scheme: 3 points. Partial credit for answering yes, but providing an incorrect example.

9

TOP
2004/12/21
page 10

8. (15 points)

What is the minimal (or principal) type of the following expressions in the simply-typed lambda-
calculus with subtyping, records and references? If a term does not type check, write NONE.

(a) λx:(Ref Bool) → Bool → Nat. x (ref true)

Answer: ((Ref Bool) → Bool → Nat) → Bool → Nat

(b) (λx:{a:Ref Top}. x) {a=ref (λy:Top. y)}

Answer: NONE

(c) (λx:{a:Nat}→Top. x {a=2}) (λy:{a:Top}. y.a)

Answer: Top

(d) if true then λx:Ref Top. { y={b=!x}, d=!x }
else λx:Ref Top. { y={a=2, b=3} }

Answer: (Ref Top) → {y:{b:Top}}

(e) if true then λx:Ref Top. !x
else λx:Nat. x

Answer: Top

Grading scheme: 3 points each. No partial credit for missing parens around the function argument in part (a).

10

TOP
2004/12/21
page 11

Featherweight Java

The following questions refer to the Featherweight Java language. The syntax, typing, and evaluation rules for
this system are given on page 9 of the companion handout.

9. (12 points)

Consider extending Featherweight Java with functional field update. Functional field update allows
programmers to easily create new objects that differ from existing objects only in the value of a single
field.

We formalize this extension by adding one new expression form to the syntax of FJ:

t ::= ...
t.f <= t functional field update

The computation rule for functional field update returns a new object where the value of field fi has
been replaced with the new value v ′.

fields(C) = C f

new C(v1, ..., vn).fi <= v ′ −→ new C(v1, ..., vi−1, v ′, vi+1, ..., vn)
(E-UPDATE)

The two congruence rules specify the order of evaluation.

t1 −→ t ′

1

t1.f <= t2 −→ t ′

1.f <= t2

(E-UPDATE-RECV)

t2 −→ t ′

2

v.f <= t2 −→ v.f <= t ′

2

(E-UPDATE-ARG)

For example, given the following class table

class A extends Object {
Object x;
Object y;
Object z;

}

class B extends Object {
}

A possible evaluation sequence is:

(new A(new Object(), new Object(), new Object()).y <= new B()).y

−→ new A(new Object(), new B(), new Object()).y

−→ new B()

11

TOP
2004/12/21
page 12

(a) Fill in the preconditions of the typing rule for functional field update so that the above exam-
ple type checks and the preservation and progress theorems of FJ still hold. Furthermore, the
type C must be the minimal type for the expression. (You do not need to do any proofs of these
properties.)

Answer: Γ ` t : C fields(C) = C f Γ ` ti : Ti Ti <: Ci

Γ ` t.fi <= ti : C
(T-UPDATE)

Answer: Also possible to replace fields(C) = C f with Γ ` t.fi : Ci

Grading scheme: 2pts per premise. -3 for common error, Γ ` ti : C.

(b) Recall the statement of the progress theorem for FJ:

THEOREM (PROGRESS): Suppose t is a closed, well-typed normal form. Then either
(1) t is a value, or (2) for some evaluation context E, we can express t as E[(C)(new D(v))],
with D6<:C.

This theorem relies on the following definition of evaluation contexts for FJ.
E ::=

[]

E.f
E.m(t)
v.m(v,E,t)
new C(v,E,t)
(C)E

What new evaluation contexts are required for functional field update?
Answer: E.f <= t and v.f <= E
Grading scheme: 2 pts per answer

12

TOP
2004/12/21
page 13

Companion handout

Full definitions of the systems
used in the exam

TOP
2004/12/21
page 1

Untyped lambda-calculus

Syntax

t ::= terms
x variable

λx.t abstraction
t t application

v ::= values
λx.t abstraction value

Evaluation t −→ t ′

t1 −→ t ′

1

t1 t2 −→ t ′

1 t2

(E-APP1)

t2 −→ t ′

2

v1 t2 −→ v1 t ′

2

(E-APP2)

(λx.t12) v2 −→ [x 7→ v2]t12 (E-APPABS)

1

TOP
2004/12/21
page 2

Simply typed lambda calculus (with Bool and recursion)

Syntax

t ::= terms
true constant true
false constant false
if t then t else t conditional
x variable
λx:T.t abstraction
t t application
fix t fixed point of t

v ::= values
true true value
false false value
λx:T.t abstraction value

T ::= types
Bool type of booleans
T→T type of functions

Γ ::= contexts
∅ empty context
Γ , x:T term variable binding

Evaluation t −→ t ′

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t ′

1

if t1 then t2 else t3 −→ if t ′

1 then t2 else t3

(E-IF)

t1 −→ t ′

1

t1 t2 −→ t ′

1 t2

(E-APP1)

t2 −→ t ′

2

v1 t2 −→ v1 t ′

2

(E-APP2)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-APPABS)

fix(λx:T1.t2) −→ [x 7→ fix (λx:T1.t2)]t2 (E-FIXBETA)

t1 −→ t ′

1

fix t1 −→ fix t ′

1

(E-FIX)

2

TOP
2004/12/21
page 3

Typing Γ ` t : T

Γ `true : Bool (T-TRUE)

Γ `false : Bool (T-FALSE)

Γ `t1 : Bool Γ `t2 : T Γ `t3 : T

Γ `if t1 then t2 else t3 : T
(T-IF)

x:T ∈ Γ

Γ ` x : T
(T-VAR)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T-ABS)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-APP)

Γ ` t1 : T1 → T1

Γ ` fix t1 : T1

(T-FIX)

3

TOP
2004/12/21
page 4

Pure simply typed lambda calculus with subtyping (no records) — algorithmic rules

Syntax

t ::= terms
x variable
λx:T.t abstraction
t t application

v ::= values
λx:T.t abstraction value

T ::= types
Top maximum type
T→T type of functions

Γ ::= contexts
∅ empty context
Γ , x:T term variable binding

Evaluation t −→ t ′

t1 −→ t ′

1

t1 t2 −→ t ′

1 t2

(E-APP1)

t2 −→ t ′

2

v1 t2 −→ v1 t ′

2

(E-APP2)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-APPABS)

Algorithmic subtyping Ì S <: T

Ì S <: Top (SA-TOP)

Ì T1 <: S1 Ì S2 <: T2

Ì S1→S2 <: T1→T2

(SA-ARROW)

Algorithmic typing Γ Ì t : T

x:T ∈ Γ

Γ Ì x : T
(TA-VAR)

Γ , x:T1 Ì t2 : T2

Γ Ì λx:T1.t2 : T1→T2

(TA-ABS)

Γ Ì t1 : T1 T1 = T11→T12

Γ Ì t2 : T2 Ì T2 <: T11

Γ Ì t1 t2 : T12

(TA-APP)

4

TOP
2004/12/21
page 5

Simply typed lambda calculus with subtyping
(and records, references, recursion, booleans, numbers)

Syntax

t ::= terms
x variable
λx:T.t abstraction
t t application
{li=ti

i∈1..n} record
t.l projection
unit constant unit
ref t reference creation
!t dereference
t:=t assignment
l store location
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test
let x=t in t let binding
fix t fixed point of t

v ::= values
λx:T.t abstraction value
{li=vi

i∈1..n} record value
unit constant unit
l store location
true true value
false false value
nv numeric value

T ::= types
{li:Ti

i∈1..n} type of records
Top maximum type
T→T type of functions
Unit unit type
Ref T type of reference cells
Bool type of booleans
Nat type of natural numbers

Γ ::= contexts
∅ empty context
Γ , x:T term variable binding

µ ::= stores
∅ empty store

5

TOP
2004/12/21
page 6

µ, l = v location binding

Σ ::= store typings
∅ empty store typing
Σ, l:T location typing

nv ::= numeric values
0 zero value
succ nv successor value

Evaluation t | µ −→ t ′ | µ ′

t1| µ −→ t ′

1| µ ′

t1 t2| µ −→ t ′

1 t2| µ ′
(E-APP1)

t2| µ −→ t ′

2| µ ′

v1 t2| µ −→ v1 t ′

2| µ ′
(E-APP2)

(λx:T11.t12) v2| µ −→ [x 7→ v2]t12| µ (E-APPABS)

{li=vi
i∈1..n}.lj| µ −→ vj| µ (E-PROJRCD)

t1| µ −→ t ′

1| µ ′

t1.l| µ −→ t ′

1.l| µ ′
(E-PROJ)

tj| µ −→ t ′

j | µ
′

{li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}| µ

−→ {li=vi
i∈1..j−1,lj=t ′

j,lk=tk
k∈j+1..n}| µ ′

(E-RCD)

l /∈ dom(µ)

ref v1 | µ −→ l | (µ, l 7→ v1)
(E-REFV)

t1 | µ −→ t ′

1 | µ ′

ref t1 | µ −→ ref t ′

1 | µ ′
(E-REF)

µ(l) = v

!l | µ −→ v | µ
(E-DEREFLOC)

t1 | µ −→ t ′

1 | µ ′

!t1 | µ −→ !t ′

1 | µ ′
(E-DEREF)

l:=v2 | µ −→ unit | [l 7→ v2]µ (E-ASSIGN)

t1 | µ −→ t ′

1 | µ ′

t1:=t2 | µ −→ t ′

1:=t2 | µ ′
(E-ASSIGN1)

t2 | µ −→ t ′

2 | µ ′

v1:=t2 | µ −→ v1:=t ′

2 | µ ′
(E-ASSIGN2)

if true then t2 else t3| µ −→ t2| µ (E-IFTRUE)

if false then t2 else t3| µ −→ t3| µ (E-IFFALSE)

t1| µ −→ t ′

1| µ ′

if t1 then t2 else t3| µ −→ if t ′

1 then t2 else t3| µ ′
(E-IF)

6

TOP
2004/12/21
page 7

t1| µ −→ t ′

1| µ ′

succ t1| µ −→ succ t ′

1| µ ′
(E-SUCC)

pred 0| µ −→ 0| µ (E-PREDZERO)

pred (succ nv1)| µ −→ nv1| µ (E-PREDSUCC)

t1| µ −→ t ′

1| µ ′

pred t1| µ −→ pred t ′

1| µ
(E-PRED)

iszero 0| µ −→ true| µ (E-ISZEROZERO)

iszero (succ nv1)| µ −→ false| µ (E-ISZEROSUCC)

t1| µ −→ t ′

1| µ ′

iszero t1| µ −→ iszero t ′

1| µ ′
(E-ISZERO)

let x=v1 in t2| µ −→ [x 7→ v1]t2| µ (E-LETV)

t1| µ −→ t ′

1| µ ′

let x=t1 in t2| µ −→ let x=t ′

1 in t2| µ ′
(E-LET)

fix (λx:T1.t2)| µ

−→ [x 7→ (fix (λx:T1.t2))]t2| µ
(E-FIXBETA)

t1| µ −→ t ′

1| µ ′

fix t1| µ −→ fix t ′

1| µ
(E-FIX)

Subtyping S <: T

S <: S (S-REFL)

S <: U U <: T

S <: T
(S-TRANS)

S <: Top (S-TOP)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(S-ARROW)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RCDWIDTH)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RCDDEPTH)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RCDPERM)

7

TOP
2004/12/21
page 8

Typing Γ | Σ ` t : T

for each i Γ | Σ ` ti : Ti

Γ | Σ ` {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T-RCD)

Γ | Σ ` t1 : {li:Ti
i∈1..n}

Γ | Σ ` t1.lj : Tj

(T-PROJ)

x:T ∈ Γ

Γ | Σ ` x : T
(T-VAR)

Γ , x:T1| Σ ` t2 : T2

Γ | Σ ` λx:T1.t2 : T1→T2

(T-ABS)

Γ | Σ ` t1 : T11→T12 Γ | Σ ` t2 : T11

Γ | Σ ` t1 t2 : T12

(T-APP)

Γ | Σ ` t : S S <: T

Γ | Σ ` t : T
(T-SUB)

Γ | Σ ` unit : Unit (T-UNIT)

Σ(l) = T1

Γ | Σ ` l : Ref T1

(T-LOC)

Γ | Σ ` t1 : T1

Γ | Σ ` ref t1 : Ref T1

(T-REF)

Γ | Σ ` t1 : Ref T11

Γ | Σ ` !t1 : T11

(T-DEREF)

Γ | Σ ` t1 : Ref T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(T-ASSIGN)

Γ | Σ ` true : Bool (T-TRUE)

Γ | Σ ` false : Bool (T-FALSE)

Γ | Σ ` t1 : Bool Γ | Σ ` t2 : T Γ | Σ ` t3 : T

Γ | Σ ` if t1 then t2 else t3 : T
(T-IF)

Γ | Σ `0 : Nat (T-ZERO)

Γ | Σ `t1 : Nat

Γ | Σ `succ t1 : Nat
(T-SUCC)

Γ | Σ `t1 : Nat

Γ | Σ `pred t1 : Nat
(T-PRED)

Γ | Σ `t1 : Nat

Γ | Σ `iszero t1 : Bool
(T-ISZERO)

Γ | Σ ` t1 : T1 Γ , x:T1| Σ ` t2 : T2

Γ | Σ ` let x=t1 in t2 : T2

(T-LET)

Γ | Σ ` t1 : T1→T1

Γ | Σ ` fix t1 : T1

(T-FIX)

8

TOP
2004/12/21
page 9

Featherweight Java

Syntax

CL ::= class declarations
class C extends C {C f; K M}

K ::= constructor declarations
C(C f) {super(f); this.f=f;}

M ::= method declarations
C m(C x) {return t;}

t ::= terms
x variable
t.f field access
t.m(t) method invocation
new C(t) object creation
(C) t cast

v ::= values
new C(v) object creation

Subtyping C<:D

C <: C

C <: D D <: E

C <: E

CT(C) = class C extends D {...}

C <: D

Field lookup fields(C) = C f

fields(Object) = •

CT(C) = class C extends D {C f; K M}
fields(D) = D g

fields(C) = D g, C f

Method type lookup mtype(m,C) = C→C

CT(C) = class C extends D {C f; K M}
B m (B x) {return t;} ∈ M

mtype(m,C) = B→B

CT(C) = class C extends D {C f; K M}
m is not defined in M

mtype(m,C) = mtype(m,D)

Method body lookup mbody(m,C) = (x,t)

9

TOP
2004/12/21
page 10

CT(C) = class C extends D {C f; K M}
B m (B x) {return t;} ∈ M

mbody(m,C) = (x,t)

CT(C) = class C extends D {C f; K M}
m is not defined in M

mbody(m,C) = mbody(m,D)

Valid method overriding override(m, D, C→C0)

mtype(m,D) = D→D0 implies C = D and C0 = D0

override(m, D, C→C0)

Evaluation t −→ t ′

fields(C) = C f

(new C(v)).fi −→ vi

(E-PROJNEW)

mbody(m,C) = (x,t0)

(new C(v)).m(u) −→ [x 7→ u, this 7→ new C(v)]t0

(E-INVKNEW)

C <: D

(D)(new C(v)) −→ new C(v)
(E-CASTNEW)

t0 −→ t ′

0

t0.f −→ t ′

0.f
(E-FIELD)

t0 −→ t ′

0

t0.m(t) −→ t ′

0.m(t)
(E-INVK-RECV)

ti −→ t ′

i

v0.m(v, ti, t)
−→ v0.m(v, t ′

i, t)

(E-INVK-ARG)

ti −→ t ′

i

new C(v, ti, t)
−→ new C(v, t ′

i, t)

(E-NEW-ARG)

t0 −→ t ′

0

(C)t0 −→ (C)t ′

0

(E-CAST)

Term typing Γ ` t : C

x:C ∈ Γ

Γ ` x : C
(T-VAR)

Γ ` t0 : C0 fields(C0) = C f

Γ ` t0.fi : Ci

(T-FIELD)

Γ ` t0 : C0

mtype(m,C0) = D→C
Γ ` t : C C <: D

Γ ` t0.m(t) : C
(T-INVK)

10

TOP
2004/12/21
page 11

fields(C) = D f
Γ ` t : C C <: D

Γ ` new C(t) : C
(T-NEW)

Γ ` t0 : D D <: C

Γ ` (C)t0 : C
(T-UCAST)

Γ ` t0 : D C <: D C 6= D

Γ ` (C)t0 : C
(T-DCAST)

Γ ` t0 : D C 6<: D D 6<: C
stupid warning
Γ ` (C)t0 : C

(T-SCAST)

Method typing M OK in C

x : C, this : C ` t0 : E0 E0 <: C0

CT(C) = class C extends D {...}
override(m, D, C→C0)

C0 m (C x) {return t0;} OK in C

Class typing C OK

K = C(D g, C f) {super(g); this.f = f;}
fields(D) = D g M OK in C

class C extends D {C f; K M} OK

11

