
CIS 500 — Software Foundations

Midterm I, Review Questions

With answers



Untyped lambdacalculus

1. (2 points) We have seen that a linear expression like λx. λy. x y x is shorthand for an abstract syntax

tree that can be drawn like this:

λx

λy

apply

rrrr
FFFF

apply

ww
ww

MMMMM
x

x y

Draw the abstract syntax trees corresponding to the following expressions:

(a) a b c

Answer:

apply

rr
rr

FFFF

apply

ww
ww

LL
LL

LL
c

a b

(b) (λx. b) (c d)

Answer:

apply

vv
vv LLL

L

λx apply

rr
rr

rr
GG

GG

b c d

2. (10 points) Write down the normal forms of the following λterms:

(a) (λt. λf. t) (λt. λf. f) (λx. x)

Answer: λt. λf. f

(b) (λx. x) (λx. x) (λx. x) (λx. x)

Answer: λx. x

(c) λx. x (λx. x) (λx. x)

Answer: λx. x (λx. x) (λx. x)

(d) (λx. x (λx. x)) (λx. x (λx. x x))

Answer: λx. x x

(e) (λx. x x x) (λx. x x x)

Answer: No normal form

1



3. (4 points) Recall the following abbreviations from Chapter 5:

tru = λt. λf. t

fls = λt. λf. f

not = λb. b fls tru

Complete this definition of a lambda term that takes two church booleans, b and c, and returns the

logical “exclusive or” of b and c.

xor = λb. λc. ___________________________________________

Some possible answers:

xor = λb. λc. b (not c) c

xor = λb. λc. b (c fls tru) c

4. (8 points) A list can be represented in the lambdacalculus by its fold function. (OCaml’s name for this

function is fold_right; it is also sometimes called reduce.) For example, the list [x,y,z] becomes a

function that takes two arguments c and n and returns c x (c y (c z n))). The definitions of nil and

cons for this representation of lists are as follows:

nil = λc. λn. n;

cons = λh. λt. λc. λn. c h (t c n);

Suppose we now want to define a λterm append that, when applied to two lists l1 and l2, will append

l1 to l2 — i.e., it will return a λterm representing a list containing all the elements of l1 and then

those of l2. Complete the following definition of append.

append = λl1. λl2. λc. λn. ________________________________________________________

Answer:

append = λl1. λl2. λc. λn. l1 c (l2 c n)

2



5. (6 points) Recall the callbyvalue fixedpoint combinator from Chapter 5:

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

We can use fix to write a function sumupto that, given a Church numerals m, calculates the sum of all

the numbers less than or equal to m, as follows.

g = λf. λm.

(iszro m)

(λx. c0)

(λx. plus _________ (_________ (prd m)))

tru;

sumupto = fix g;

Fill in the two omitted subterms.

Answer:

g = λf. λm.

(iszro m)

(λx. c0)

(λx. plus m (f (prd m)))

tru;

3



Nameless representation of terms

6. (4 points) Suppose we have defined the naming context Γ = a,b,c,d. What are the deBruijn represen

tations of the following λterms?

(a) λx. λy. x y d

Answer: λ. λ. 1 0 2

(b) λx. c (λy. (c y) x) d

Answer: λ. 2 (λ. (3 0) 1) 1

7. (4 points) Write down (in deBruijn notation) the terms that result from the following substitutions.

(a) [0, λ.0]((λ. 0 1) 1)

Answer: (λ. 0 (λ.0)) 1

(b) [0, λ. 0 1]((λ. 0 1) 0)

Answer: (λ. 0 (λ. 0 2)) (λ. 0 1)

4



Typed arithmetic expressions

The full definition of the language of typed arithmetic and boolean expressions is reproduced, for your

reference, on page 10.

8. (9 points) Suppose we add the following new rule to the evaluation relation:

succ true -→ pred (succ true)

Which of the following properties will remain true in the presence of this rule? For each one, write

either “remains true” or else “becomes false,” plus (in either case) a onesentence justification of your

answer.

(a) Termination of evaluation (for every term t there is some normal form t′ such that t -→∗ t′)

Answer: Becomes false. For example, the term succ true has no normal form.

(b) Progress (if t is well typed, then either t is a value or else t -→ t′ for some t′)

Answer: Remains true. Adding a new evaluation rule can only make it easier for the progress

property to hold.

(c) Preservation (if t has type T and t -→ t′, then t′ also has type T)

Answer: Remains true: succ true is not well typed (nor is any term containing it), so it doesn’t

matter what it evaluates to.

9. (9 points) Suppose, instead, that we add this new rule to the evaluation relation:

t -→ if true then t else succ false

Which of the following properties remains true? (Answer in the same style as the previous question.)

(a) Termination of evaluation (for every term t there is some normal form t′ such that t -→∗ t′)

Answer: Becomes false. For any term t, we can evaluate t -→ if true then t else succ false -→

t -→ . . .

(b) Progress (if t is well typed, then either t is a value or else t -→ t′ for some t′)

Answer: Remains true. As above, adding a new evaluation rule can only make it easier for the

progress property to hold.

(c) Preservation (if t has type T and t -→ t′, then t′ also has type T)

Answer: Becomes false: a well typed term like zero can now evaluate to the illtyped term

if true then zero else succ false.

5



10. (9 points) Suppose, instead, that we add a new type, Funny, and add this new rule to the typing

relation:

if true then false else false : Funny

Which of the following properties remains true? (Answer in the same style as the previous question.)

(a) Termination of evaluation (for every term t there is some normal form t′ such that t -→∗ t′)

Answer: Remains true. Adding typing rules doesn’t change the evaluation relation or its properties.

(b) Progress (if t is well typed, then either t is a value or else t -→ t′ for some t′)

Answer: Remains true. This rule doesn’t make any new terms well typed.

(c) Preservation (if t has type T and t -→ t′, then t′ also has type T)

Answer: Becomes false: for example, the term if true then false else false has type Funny,

but reduces to false, which does not have type Funny.

6



Simply typed lambdacalculus

The definition of the simply typed lambdacalculus with booleans is reproduced for your reference on

page 12.

11. (6 points) Write down the types of each of the following terms (or “ill typed” if the term has no type).

(a) λx:Bool. x x

Answer: ill typed

(b) λf: Bool→Bool. λg:Bool→Bool. g (f (g true))

Answer: (Bool→Bool)→(Bool→Bool)→Bool

(c) λh:Bool. (λi:Bool→Bool. i false) (λk:Bool.true)

Answer: Bool→Bool

7



Operational semantics

12. (9 points) Recall the rules for “bigstep evaluation” of arithmetic and boolean expressions from HW 3.

v ⇓ v

t1 ⇓ true t2 ⇓ v2

if t1 then t2 else t3 ⇓ v2

t1 ⇓ false t3 ⇓ v3

if t1 then t2 else t3 ⇓ v3

t1 ⇓ nv1

succ t1 ⇓ succ nv1

t1 ⇓ 0

pred t1 ⇓ 0

t1 ⇓ succ nv1

pred t1 ⇓ nv1

t1 ⇓ 0

iszero t1 ⇓ true

t1 ⇓ succ nv1

iszero t1 ⇓ false

The following OCaml definitions implement this evaluation relation almost correctly, but there are

three mistakes in the eval function—one each in the TmIf, TmSucc, and TmPred cases of the outer

match. Show how to change the code to repair these mistakes. (Hint: all the mistakes are omissions.)

let rec isnumericval t = match t with

TmZero(_) → true

| TmSucc(_,t1) → isnumericval t1

| _ → false

let rec isval t = match t with

TmTrue(_) → true

| TmFalse(_) → true

| t when isnumericval t → true

| _ → false

let rec eval t = match t with

v when isval v → v

| TmIf(_,t1,t2,t3) →

(match t1 with

TmTrue _ → eval t2

| TmFalse _ → eval t3

| _ → raise NoRuleApplies)

| TmSucc(fi,t1) →

(match eval t1 with

nv1 → TmSucc (dummyinfo, nv1)

| _ → raise NoRuleApplies)

| TmPred(fi,t1) →

(match eval t1 with

TmZero _ → TmZero(dummyinfo)

| _ → raise NoRuleApplies)

| TmIsZero(fi,t1) →

(match eval t1 with

TmZero _ → TmTrue(dummyinfo)

| TmSucc(_, _) → TmFalse(dummyinfo)

| _ → raise NoRuleApplies)

| _ → raise NoRuleApplies

8



Answer:

• In the TmIf clause, match t1 with should be match (eval t1) with.

• In the TmSucc clause, the guard nv1 → ... should be

nv1 when isnumericval nv1 → ... — or, equivalently, the body of the clause,

TmSucc (dummyinfo, nv1), should be replaced by

if isnumericval nv1 then TmSucc (dummyinfo, nv1) else raise NoRuleApplies

• In the TmPred clause, the whole case

| TmSucc(_, nv1) → nv1

is missing from the inner match (it should follow the TmZero case).

9


