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Announcements

Review recitations start this week. You may go to any recitation section

that you wish. You do not need to register for the section, nor do you

need to attend the same section the entire semester. If you need help

finding a study group, we will match people up in recitation sections this

week.

Wed 3:30-5:00 PM DRLB 4E9 review

Thurs 1:30-3 PM Towne 321 review

Thurs 10:30-12 PM Towne 307 review

Fri 9:30-11 AM Towne 307 review

There will be no advanced recitation this week. It will start next week.

Wed 3:30-5:00 PM DRLB 4C2 advanced

First homework assignment is due one week from today.
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Structural Induction (continued)
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Review: Proof by Induction
� Suppose we have a set � and we want to show that some property

� holds of each of its members.

� Suppose that � is ordered, so that, for each element � of � , it makes

sense to talk about “the elements of � immediately smaller than � .”

� Prove the following implication for each element � :

If � holds of all the elements of � immediately smaller than � ,

then it is also true of � .

� Apply the principle of induction to conclude that � holds of every

element of � .

N.b.: this is a slightly rough sketch; we will see it more rigorously next

time.
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Boolean terms: Syntax

Recall the definition of the language � :
� � � � � � � �

� � 	 
 �

� � � �

 � � � � � � � � 	 
 � �

This was a short hand notation for the definition of the set � .

The set � of boolean terms is the smallest set such that

1. � � � � � � � � 	 
 � � � � ;

2. if � � � � , then � � � � � � � ;

3. if � � � � , � � � � , and � � � � , then  � � � � � � � � � � 	 
 � � � � � .
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Boolean terms: Ordering

Note that the way we have constructed the set of boolean terms gives

rise to a natural notion of “the set of terms smaller than a given term.”

� the set of terms immediately smaller than � � � � is � � (the empty set)

� the set of terms immediately smaller than � � 	 
 � is � �

� the set of terms immediately smaller than � � � � � is � � � �

� the set of terms immediately smaller than  � � � � � � � � � � 	 
 � � � is

� � � � � � � � � � .
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Boolean terms: Induction Principle (I)

Instantiating the general principle of induction with the specific ordering

on boolean terms, we obtain a specific induction principle for boolean

terms:

� Suppose we want to show that some property � holds of all boolean

terms.

� Prove the following implication:

� for each boolean term � , if � holds of every element of the set of

terms immediately smaller than � , then it holds of �

� Conclude that � holds of all boolean terms.

Since the definition of the set of boolean terms has several cases, we can

split the implication to be checked into four separate implications:
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Boolean terms: Induction Principle (II)
� Prove the following implications:

� for each boolean term � , if � has the form � � � � and � holds of
every element of the set of terms immediately smaller than � , then
it holds of �

� for each boolean term � , if � has the form � � � � and � holds of
every element of the set of terms immediately smaller than � , then
it holds of �

� for each boolean term � , if � has the form � � � � � and � holds of
every element of the set of terms immediately smaller than � , then
it holds of �

� for each boolean term � , if � has the form  � � � � � � � � � � 	 
 � � �

and � holds of every element of the set of terms immediately
smaller than � , then it holds of � .

� Conclude that � holds of all boolean terms.
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Combining this with the actual definition of “immediately smaller” from a

few slides ago...
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Boolean terms: Induction Principle (III)
� Prove the following:

� for each boolean term � of the form � � � � , � holds of �

� for each boolean term � of the form � � 	 
 � , � holds of �

� for each boolean term � of the form � � � � � , if � holds of � � , then

it holds of �

� for each boolean term � of the form  � � � � � � � � � � 	 
 � � � , if �

holds of � � , � � , and � � , then it holds of � .

� Conclude that � holds of all boolean terms.
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Applying a few more logical simplifications...
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Boolean terms: Induction Principle (Final Form)
� Prove the following:

� � holds of � � � �

� � holds of � � 	 
 �

� for each boolean term � � , if � holds of � � , then it holds of � � � � �

� for each triple of boolean terms � � , � � , and � � , if � holds of � � , � � ,

and � � , then it holds of  � � � � � � � � � � 	 
 � � � .

� Conclude that � holds of all boolean terms.
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Boolean terms: Semantics

We defined the semantics of � using the relation Eval. If

�

� � � � � � � Eval

then � � is the meaning of � � . Recall that Eval is the smallest set closed

under the following rules:

1.

�

� � � � � � � � � � � Eval

2.

�

� � 	 
 � � � � 	 
 � � � Eval

3.

�

� � � � � � � � � � � Eval when �

� � � � 	 
 � � � Eval

4.

�

� � � � � � � 	 
 � � � Eval when �

� � � � � � � � Eval

5.

�

 � � � � � � � � � � 	 
 � � � � � � � Eval when either:

� �

� � � � � � � � � Eval and �

� � � � � � Eval

� �

� � � � � 	 
 � � � Eval and �

� � � � � � Eval
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Tidying the Notation

We’re going to be writing a lot of definitions like Eval throughout the

semester, so it’s convenient to establish some shorthand notations for

defining relations (just like we did with BNF for defining sets of abstract

syntax trees).
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Alternate notation: Inference rules

A more compact notation for the same definition:

�

� � � � � � � � � � � Eval �

� � 	 
 � � � � 	 
 � � � Eval

�

� � � � � � � � � Eval
�

� � � � � � � � 	 
 � � � Eval

�

� � � � � 	 
 � � � Eval

�

� � � � � � � � � � � � Eval

�

� � � � � � � � � Eval �

� � � � � � Eval

�

 � � � � � � � � � � 	 
 � � � � � � � Eval

�

� � � � � 	 
 � � � Eval �

� � � � � � Eval

�

 � � � � � � � � � � 	 
 � � � � � � � Eval

Note that, just as in the BNF notation, “the smallest set closed under...” is

implied (but often not stated explicitly).

Terminology:

� axiom vs. rule

� concrete rule vs. rule scheme
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Alternate notation: relational symbols

If we abbreviate

�

� � �
�

� � Eval as � � �
� we can write these rules even

more succinctly:

� � � � � � � � � � � 	 
 � � � � 	 
 �

� � � � � � �

� � � � � � � � 	 
 �

� � � � � 	 
 �

� � � � � � � � � �

� � � � � � � � � � �

 � � � � � � � � � � 	 
 � � � � �

� � � � � 	 
 � � � � �

 � � � � � � � � � � 	 
 � � � � �

The notation � � �
� is read as “ � evaluates to � � ”.

We will often abbreviate relations using symbols such as � , � , � , etc.
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Naming the rules

It is also useful to give names to each rule, so that we can refer to them
later.

� � � � � � � � � B-True

� � 	 
 � � � � 	 
 � B-False

� � � � � � �

� � � � � � � � 	 
 �

B-NotTrue

� � � � � 	 
 �

� � � � � � � � � �

B-NotFalse

� � � � � � � � � � �

 � � � � � � � � � � 	 
 � � � � �

B-IfTrue

� � � � � 	 
 � � � � �

 � � � � � � � � � � 	 
 � � � � �

B-IfFalse
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Derivations

The inference rule notation leads to a convenient notation for showing

why a pair of terms is in the evaluation relation.

Say someone asked you to prove that

 � � � � � � � � �

�

� � � � � 	 
 �
�

� 	 
 �

�

� � � � � � �
� � � � � �

[on board]

CIS 500, Induction; Operational Semantics 18



Proving properties about evaluation

Last time we showed that the evaluation relation was a function.

i.e. for all � there is at most one �
� such that � � �
� .

Today we will show a related property: that evaluation is total.

i.e. for all � there is at least one �
� such that � � �
� .

How to prove this property?
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Use structural induction

Again we will use the structural induction principle for terms in � :

P holds for all � in � if we can show

� P �

� � � �
�

and P

�

� � 	 
 �
�

hold

� for all � � � � , if P

�

� � � holds, then P �

� � � � � � holds.

� for all � � � � � � � � � � , if P

�

� � � , P �

� � � and P �

� � � hold, then

P

�

 � � � � � � � � � � 	 
 � � � � holds.

In this case, to show that evaluation is total, we choose the property

P

�

�
�

to be “there exists some �
� such that � � �
� ”.

Instantiating the induction principle with this � ...
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Use structural induction (II)

If we can prove...

� there is some �
� such that � � � � � �
�

� there is some �
� such that � � 	 
 � � �
�

� if there is some �
�

� such that � � � �
�

� , then there is some �
� such that

� � � � � � �
�

� if there are some �
�

� , �
�

� , and �
�

� such that � � � �
�

� and � � � �
�

� and

� � � �
�

� , then there is some �
� such that  � � � � � � � � � � 	 
 � � � � �
�

...then we can conclude that, for every � in � , there is some �
� such

that � � �
� .

[on board]
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A Difficulty

Oops: We cannot show P

�

� � � � � � , given P �

� � � .

P

�

� � � tells us that � � evaluates to some �
� , but (according to the

definition) � � � � � only evaluates further if �
� is � � � � or � � 	 
 � , and we

haven’t proved that.

What to do now? Are we stuck?

CIS 500, Induction; Operational Semantics 22



Strengthing the induction principle

The solution is to prove a property that implies the property that we

want.

Instead of showing

“for all � there exists a �
� such that � � �
� ”

we will show

“for all � either � � � � � � or � � � � 	 
 � ”

Proving the second property implies that the first one is also true.

To show the second property we choose �
�

�
�

to be “either � � � � � � or

� � � � 	 
 � ”.
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New instance of structural induction principle

If we can prove...

� � � � � � � � � � or � � � � � � � 	 
 �

� � � 	 
 � � � � � � or � � 	 
 � � � � 	 
 �

� if either � � � � � � � or � � � � � 	 
 � , then either � � � � � � � � � � or

� � � � � � � � 	 
 �

� if either � � � � � � � or � � � � � 	 
 � , then either � � � � � � � � � � or

� � � � � � � � 	 
 �

� if either � � � � � � � or � � � � � 	 
 � and either � � � � � � � or � � � � � 	 
 �

and either � � � � � � � or � � � � � 	 
 � , then either

 � � � � � � � � � � 	 
 � � � � � � � � or  � � � � � � � � � � 	 
 � � � � � � 	 
 � .

...then we can conclude that, for every � in � , either � � � � � � or

� � � � 	 
 � .

[on board]
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A larger language
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Growing a language

The boolean language is an extremely simple language. There is not a lot

that you can say with it.

At the same time, it is pretty easy to prove properties about it.

As we add to the expressiveness of a language, it usually becomes more

difficult to show that the same properties are true.

In fact, some properties that are true for simple languages are not true

for more expressive languages.
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The language Arith

Consider a larger language, called Arith, that includes both booleans and

natural numbers:

� � � � � � � �

� � 	 
 �

 � � � � � � � � 	 
 � �

�

 � � � �

� � � � �

 
 � � � � �

What is the structural induction principle for this language?
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Derived forms (informally)

This language does not include the term form � � � � .

However, all is not lost. Whenever we want to say � � � � , we can instead

write  � � � � � � � � 	 
 � � 	 
 � � � � � .

Leaving out � � � means that our induction principle (and therefore our

proofs) are shorter.
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Semantics of Arith

To define the semantics of Arith, we will first define a subset of the terms

of Arith that can be the results of evaluation.

These are called the values.

� � � � � �
� �

� � � � � � � � �

� � 	 
 �

� � � � � �

 � � � � �

We use the metavariable � to denote terms that are also values.

CIS 500, Induction; Operational Semantics 29



Semantics of Arith

Old rules:

� � � � � � � � � B-True

� � 	 
 � � � � 	 
 � B-False

� � � � � � � � � � �

 � � � � � � � � � � 	 
 � � � � �

B-IfTrue

� � � � � 	 
 � � � � �

 � � � � � � � � � � 	 
 � � � � �

B-IfFalse
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New rules:

� � � B-Zero

� � � � �


 � � � � � � 
 � � � � �

B-Succ

� � � �

� � � � � � � �

B-PredZero
� � � 
 � � � � �

� � � � � � � � �

B-PredSucc
� � � �

 
 � � � � � � � � � � �
B-IsZeroZero

� � � 
 � � � � �

 
 � � � � � � � � � 	 
 �

B-IsZeroSucc
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Metavariables are useful

Since we have adopted the convention that the metavariable � denotes

values, we can replace three rules

� � � � � � � � � B-True

� � 	 
 � � � � 	 
 � B-False

� � � B-Zero

with one rule:

� � � B-Value
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Properties of Arith

We proved two properties of � , above. Are these same properties true

of Arith?

� Evaluation is deterministic: for all � , there is at most one �
� such that

� � �
� .

� Evaluation is total: for all � , either � � � � � � or � � � � 	 
 � .

The second is obviously false. What if we rephrase it as:

� Evaluation is total: for all � , � � � .
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Evaluation is not total

Evaluation is total: for all � , � � � .

There is a counterexample to this claim: What does 
 � � � � � 	 
 � evaluate

to?

If we try to use induction to prove this claim, where does the proof

break down?

Some terms, like 
 � � � � � 	 
 � , are “meaningless” in our semantics.
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Stuck terms

It’s a little unsettling that evaluation is not total.

� We want to know the meaning of all terms.

� We intend the evaluation relation to (abstractly) describe the
execution of a computer. But then we would expect that


 � � � � � 	 
 �

and

 � � � � � � � � �

�


 � � � � � 	 
 �
�

� 	 
 � � � 	 
 �

should behave differently (the first is immediately stuck; the second
does a little work and then gets stuck). But our evaluation relation
treats them the same: neither evaluates to a value.

� Later: Some languages contain infinite loops.

� Those terms won’t have meanings either.

� Want to distinguish loops from errors like 
 � � � � � 	 
 � .

CIS 500, Induction; Operational Semantics 35



Small-step semantics
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Small-step semantics
� Most of the evaluation relations we will define in this course will be in

a style called small-step operational semantics.

� Core idea: describe evaluation as a sequence of “state changes” of

an abstract machine.

� An abstract machine consists of:

� a set of states

� a transition relation on states, written �
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Small-step semantics
� Small-step evaluation, written � � �
� , is the one-step execution of the

abstract machine. The states of the machine are just terms.

� Multi-step evaluation, written � � �

�
� , is the reflexive, transitive

closure of small-step evaluation. That is:

� if � � �
� then � � �

�
�

� � � �

� for every �

� if � � �

�
� and �
� � �

�
� � then � � �

�
� � .

I.e., a term � is related (by the multi-step evaluation relation) to every

term that can be obtained from � by “turning the crank” of

single-step evaluation zero or more times.
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Normal forms
� A normal form is a term that cannot be evaluated any further – i.e.

a term � is a normal form (or is “in normal form”) is there is no �
�

such that � � �
�

� A normal form is a state where the abstract machine is halted – it

can be regarded as a “result” of evaluation.

� We can say that the meaning of a term � in a small-step semantics is

a term �
� , such that � � �

�
� and �
� is a normal form.

We say that �
� “is the normal form of” � .
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Normal forms
� For Arith, not all normal forms are values, but every value is a

normal form.

� A term like 
 � � � � � 	 
 � that is a normal form, but is not a value, is

“stuck”.
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Small-step semantics

Booleans:
 � � � � � � � � � � � � 	 
 � � � � � �  � � � 	 
 � � � � � � � � 	 
 � � � � � �

� � � �
�

�

 � � � � � � � � � � 	 
 � � � �  � �
�

� � � � � � � � 	 
 � � �

Natural numbers:

� � � �
�

�


 � � � � � � 
 � � � �
�

�

� � � � � � � � � � � �


 � � � � � � � � � � �

Both:

 
 � � � � � � � � � �  
 � � � �

�


 � � � � � � � � � � 	 
 �

� � � �
�

�

 
 � � � � � � �  
 � � � � �
�

�
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Terminology

Computation rules:
 � � � � � � � � � � � � 	 
 � � � � � �  � � � 	 
 � � � � � � � � 	 
 � � � � � �

Congruence rules:

� � � �
�

�

 � � � � � � � � � � 	 
 � � � �  � �
�

� � � � � � � � 	 
 � � �

Computation rules perform “real” computation steps.

Congruence rules determine where computation rules can be applied

next.

What about the other rules?
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Digression

The small-step semantics of Arith tells us exactly in which order the

sub-terms of a given term will get evaluated.

Suppose we wanted to change the evaluation strategy so that the � � � �

and � 	 
 � branches of an  � get evaluated (in that order) before the

guard. How would we need to change the rules?

Suppose, moreover, that, if the evaluation of the � � � � and � 	 
 � branches

leads to the same value, we want to immediately produce that value

(“short-circuiting” the evaluation of the guard). How would we need to

change the rules?

Of the rules we just invented, which are computation rules and which are

congruence rules?
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Properties of this semantics
� (Homework): This small-step semantics “agrees” with the large-step

semantics for terms that do not get stuck. In other words, � � � if

and only if � � �

� .

� The � relation is deterministic. If � � �
� and � � �
� � then �
�
� �
� � .

� Evaluation is deterministic: There is at most one normal form for a

term � . (Easy to prove: Follows because the � relation is

deterministic).

� Evaluation is total: There is at least one normal form for a term � .

(More difficult to prove: Must show that there are no infinite

sequences of small-step evaluation.)
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