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Announcements

Upcoming CIS Colloquia related to programming languages

Tuesdays, 3:00-4:30, Levine 101

� Oct 19 - Andy Gordon, MSR Cambridge

� Nov 16 - Greg Morrisett, Harvard University

� Nov 23 - Jeanette Wing, CMU
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Today

� Encoding recursion

� Proving properties by induction

� Variable substitution and alpha-equivalence

� Program equivalence
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Recursion in the Lambda Calculus
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Iterated Application

Suppose f is some λ-abstraction, and consider the following term:

Yf = (λx. f (x x)) (λx. f (x x))
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Iterated Application

Suppose f is some λ-abstraction, and consider the following term:

Yf = (λx. f (x x)) (λx. f (x x))

Now the “pattern of divergence” becomes more interesting:

Yf

=

(λx. f (x x)) (λx. f (x x))

−→

f ((λx. f (x x)) (λx. f (x x)))

−→

f (f ((λx. f (x x)) (λx. f (x x))))

−→

f (f (f ((λx. f (x x)) (λx. f (x x)))))

−→

· · ·
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Yf is still not very useful, since (like omega), all it does is diverge.

Is there any way we could “slow it down”?
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Delaying Divergence

poisonpill = λy. omega

Note that poisonpill is a value — it it will only diverge when we actually

apply it to an argument. This means that we can safely pass it as an argument

to other functions, return it as a result from functions, etc.

(λp. fst (pair p fls) tru) poisonpill

−→

fst (pair poisonpill fls) tru

−→
∗

poisonpill tru

−→

omega

−→

· · ·
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A delayed variant of omega

Here is a variant of omega in which the delay and divergence are a bit more

tightly intertwined:

omegav = λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y

Note that omegav is a normal form. However, if we apply it to any argument v,

it diverges:

omegav v

=

(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

−→

(λx. (λy. x x y)) (λx. (λy. x x y)) v

−→

(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

=

omegav v
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Another delayed variant

Suppose f is a function. Define

Zf = λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

This term combines the “added f” from Yf with the “delayed divergence” of

omegav.
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If we now apply Zf to an argument v, something interesting happens:

Zf v

=

(λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

−→

(λx. f (λy. x x y)) (λx. f (λy. x x y)) v

−→

f (λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

=

f Zf v

Since Zf and v are both values, the next computation step will be the reduction

of f Zf — that is, before we “diverge,” f gets to do some computation.

Now we are getting somewhere.
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Recursion

Let

f = λfct.

λn.

if n=0 then 1

else n * (fct (pred n))

f looks just the ordinary factorial function, except that, in place of a recursive

call in the last time, it calls the function fct, which is passed as a parameter.

N.b.: for brevity, this example uses “real” numbers and booleans, infix syntax,

etc. It can easily be translated into the pure lambda-calculus (using Church

numerals, etc.).

CIS 500, 29 September 11
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We can use Z to “tie the knot” in the definition of f and obtain a real recursive

factorial function:

Zf 3

−→
∗

f Zf 3

=

(λfct. λn. ...) Zf 3

−→ −→

if 3=0 then 1 else 3 * (Zf (pred 3))

−→
∗

3 * (Zf (pred 3)))

−→

3 * (Zf 2)

−→
∗

3 * (f Zf 2)

· · ·
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A Generic Z

If we define

Z = λf. Zf

i.e.,

Z = λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

then we can obtain the behavior of Zf for any f we like, simply by applying Z

to f.

Z f −→ Zf
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For example:

fact = Z ( λfct.

λn.

if n=0 then 1

else n * (fct (pred n)) )
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Technical note:

The term Z here is essentially the same as the fix discussed the book.

Z = λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

Z is hopefully slightly easier to understand, since it has the property that

Z f v −→
∗

f (Z f) v, which fix does not (quite) share.

CIS 500, 29 September 15



'

&

$

%

Proofs about the Lambda Calculus
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Two induction principles

Like before, we have mentioned two ways to prove properties are true of the

untyped lambda calculus.

� Structural induction

� Induction on derivation of t → t ′.

Let’s do an example of the latter.
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Induction principle

Recall the induction principle for the small-step evaluation relation.

We can show a property P is true for all derivations of t → t ′, when

� P holds for all derivations that use the rule E-AppAbs.

� P holds for all derivations that end with a use of E-App1 assuming that P

holds for all subderivations.

� P holds for all derivations that end with a use of E-App2 assuming that P

holds for all subderivations.
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Example

We can formally define the set of free variables in a λ-term as follows:

FV(x) = {x}

FV(λx.t1) = FV(t1)/{x}

FV(t1 t2) = FV(t1) ∪ FV(t2)

Theorem: if t → t ′ then FV(t) ⊇ FV(t ′).
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Induction on derivation

We want to prove, for all derivations of t→ t ′, that FV(t) ⊇ FV(t ′).

We have three cases.
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Induction on derivation

We want to prove, for all derivations of t→ t ′, that FV(t) ⊇ FV(t ′).

We have three cases.

� The derivation of t → t ′ could just be a use of E-AppAbs. In this case, t

is (λx.u)v which steps to [x7→v]u.

FV(t) = FV((λx.u)v)

= FV(u)/{x} ∪ FV(v)

⊇ FV([x7→v]u)

= FV(t ′)
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� The derivation could end with a use of E-App1. In other words, we have a

derivation of t1 → t ′

1 and we use it to show that t1 t2 → t ′

1 t2 .

By induction FV(t1) ⊇ FV(t ′

1).

FV(t) = FV(t1 t2)

= FV(t1) ∪ FV(t2)

⊇ FV(t ′

1) ∪ FV(t2)

= FV(t ′

1 t2)

= FV(t ′)
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� The derivation could end with a use of E-App1. In other words, we have a

derivation of t1 → t ′

1 and we use it to show that t1 t2 → t ′

1 t2 .

By induction FV(t1) ⊇ FV(t ′

1).

FV(t) = FV(t1 t2)

= FV(t1) ∪ FV(t2)

⊇ FV(t ′

1) ∪ FV(t2)

= FV(t ′

1 t2)

= FV(t ′)

� The derivation could end with a use of E-App2. Here, we have a derivation

of t2 →t ′

2 and we use it to show that t1 t2 →t1 t ′

2 . This case is

analogous to the previous case.
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More about bound variables
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Substitution

Our definition of evaluation was based on the substitution of values for free

variables within terms.

E-AppAbs

(λx.t12) v2 → [x 7→ v2]t12

But what is substitution, really? How do we define it?
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Formalizing Substitution

Consider the following definition of substitution:

[x 7→ s]x = s

[x 7→ s]y = y if x 6= y

[x 7→ s](λy.t1) = λy. ([x 7→ s]t1)

[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?
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Formalizing Substitution

Consider the following definition of substitution:

[x 7→ s]x = s

[x 7→ s]y = y if x 6= y

[x 7→ s](λy.t1) = λy. ([x 7→ s]t1)

[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?

It substitutes for free and bound variables!

[x 7→ y](λx. x) = λx.y

This is not what we want.

CIS 500, 29 September 24-a
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Substitution, take two

[x 7→ s]x = s

[x 7→ s]y = y if x 6= y

[x 7→ s](λy.t1) = λy. ([x 7→ s]t1) if x 6= y

[x 7→ s](λx.t1) = λx. t1

[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?
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Substitution, take two

[x 7→ s]x = s

[x 7→ s]y = y if x 6= y

[x 7→ s](λy.t1) = λy. ([x 7→ s]t1) if x 6= y

[x 7→ s](λx.t1) = λx. t1

[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?

It suffers from variable capture!

[x 7→ y](λy.x) = λx. x

This is also not what we want.
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Substitution, take three

[x 7→ s]x = s

[x 7→ s]y = y if x is not y

[x 7→ s](λy.t1) = λy. ([x 7→ s]t1) if x 6= y, y 6∈ FV(s)

[x 7→ s](λx.t1) = λx. t1

[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?

CIS 500, 29 September 26

'

&

$

%

Substitution, take three

[x 7→ s]x = s

[x 7→ s]y = y if x is not y

[x 7→ s](λy.t1) = λy. ([x 7→ s]t1) if x 6= y, y 6∈ FV(s)

[x 7→ s](λx.t1) = λx. t1

[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?

Now substition is a partial function!

[x 7→ y](λy.x) is undefined.

But we want an answer for every substitution.
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Bound variable names shouldn’t matter

It’s annoying that that the names of bound variables are causing trouble with

our definition of substitution.

Intuition tells us that there shouldn’t be a difference between the functions

λx.x and λy.y. Both of these functions will do the same thing.

Because they differ only in the names of their bound variables, we’d like to

think that these are the same function.

We call such terms alpha-equivalent.

CIS 500, 29 September 27
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Alpha-equivalence classes

In fact, we can create equivalence classes of terms that differ only in the names

of bound variables.

When working with the lambda calculus, it is convenient to think about these

equivalence classes, instead of raw terms.

For example, when we write λx.x we mean not just this term, but the class of

terms that includes λy.y and λz.z.

Unfortunately, we have to be more clever when implementing the lambda

calculus in ML... (cf. TAPL chapters 6 and 7)
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Substitution, for alpha-equivalence classes

Now consider substitution as an operation over alpha-equivalence classes of

terms:

[x 7→ s]x = s

[x 7→ s]y = y if x 6= y

[x 7→ s](λy.t1) = λy. ([x 7→ s]t1) if x 6= y, y 6∈ FV(s)

[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

Examples:

� [x 7→ y](λy.x) must give the same result as [x 7→ y](λz.x). We know

the latter is λz.y, so that is what we will use for the former.

� [x 7→ y](λx.z) must give the same result as [x 7→ y](λw.z). We know

the latter is λw.z so that is what we use for the former.
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Equivalence of Lambda Terms
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Program Equivalence

� Syntactic equivalence - Are the terms the same “letter by letter”? Not

that useful.

� Alpha-equivalence - Are the terms equivalent up to renaming of bound

variables?

� Beta/eta-equivalence - Can we use specific program transformations to

convert one term into another?

� Behavioral equivalence - If both terms are placed in the same context, will

they produce the same result?
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Why is program equivalence important?
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Why is program equivalence important?

� Used to catch cheaters in low-level programming classes.

� Used to prove the correctness of embeddings. (Why should we believe that

Church encodings represent natural numbers?)

� Used to prove the correctness of compiler optimizations.

� Used to show that updates to a program do not break it.
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Representing Numbers

We have seen how certain terms in the lambda-calculus can be used to

represent natural numbers.

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

Other lambda-terms represent common operations on numbers:

scc = λn. λs. λz. s (n s z)

CIS 500, 29 September 33
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Representing Numbers

We have seen how certain terms in the lambda-calculus can be used to

represent natural numbers.

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

Other lambda-terms represent common operations on numbers:

scc = λn. λs. λz. s (n s z)

In what sense can we say this representation is “correct”?

In particular, on what basis can we argue that scc on church numerals

corresponds to ordinary successor on numbers?
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The naive approach

One possibility:

For each n, the term scc cn evaluates to cn+1 .

CIS 500, 29 September 34
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The naive approach... doesn’t work

One possibility:

For each n, the term scc cn evaluates to cn+1 .

Unfortunately, this is false.

E.g.:

scc c2 = (λn. λs. λz. s (n s z)) (λs. λz. s (s z))

−→ λs. λz. s ((λs. λz. s (s z)) s z)

6= λs. λz. s (s (s z))

= c3

CIS 500, 29 September 34-a
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A better approach

Recall the intuition behind the church numeral representation:

� a number n is represented as a term that “does something n times to

something else”

� scc takes a term that “does something n times to something else” and

returns a term that “does something n + 1 times to something else”

I.e., what we really care about is that scc c2 behaves the same as c3 when

applied to two arguments.

CIS 500, 29 September 35
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scc c2 v w = (λn. λs. λz. s (n s z)) (λs. λz. s (s z)) v w

−→ (λs. λz. s ((λs. λz. s (s z)) s z)) v w

−→ (λz. v ((λs. λz. s (s z)) v z)) w

−→ v ((λs. λz. s (s z)) v w)

−→ v ((λz. v (v z)) w)

−→ v (v (v w))

c3 v w = (λs. λz. s (s (s z))) v w

−→ (λz. v (v (v z))) w

−→ v (v (v w)))
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A More General Question

We have argued that, although scc c2 and c3 do not evaluate to the same

thing, they are nevertheless “behaviorally equivalent.”

What, precisely, does behavioral equivalence mean?
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Intuition

Roughly,

terms s and t are behaviorally equivalent

should mean:

there is no “test” that distinguishes s and t — i.e., no way to use them in

the same context and obtain different results.
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Some test cases

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

fls = λt. λf. f

omega = (λx. x x) (λx. x x)

poisonpill = λx. omega

placebo = λx. tru

Yf = (λx. f (x x)) (λx. f (x x))

Which of these are behaviorally equivalent?

CIS 500, 29 September 39
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Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of

normalizability to define a simple way of testing terms.

Two terms s and t are said to be observationally equivalent if either both

are normalizable (i.e., they reach a normal form after a finite number of

evaluation steps) or both are divergent.

I.e., our primitive notion of “observing” a term’s behavior is simply running it

on our abstract machine.
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Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of

normalizability to define a simple way of testing terms.

Two terms s and t are said to be observationally equivalent if either both

are normalizable (i.e., they reach a normal form after a finite number of

evaluation steps) or both are divergent.

I.e., our primitive notion of “observing” a term’s behavior is simply running it

on our abstract machine.

Aside:

� Is observational equivalence a decidable property?

CIS 500, 29 September 40-a
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Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of

normalizability to define a simple way of testing terms.

Two terms s and t are said to be observationally equivalent if either both

are normalizable (i.e., they reach a normal form after a finite number of

evaluation steps) or both are divergent.

I.e., our primitive notion of “observing” a term’s behavior is simply running it

on our abstract machine.

Aside:

� Is observational equivalence a decidable property?

� Does this mean the definition is ill-formed?

CIS 500, 29 September 40-b
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Examples

� omega and tru are not observationally equivalent

CIS 500, 29 September 41
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Examples

� omega and tru are not observationally equivalent

� tru and fls are observationally equivalent
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Behavioral Equivalence

This primitive notion of observation now gives us a way of “testing” terms for

behavioral equivalence

Terms s and t are said to be behaviorally equivalent if, for every finite

sequence of values v1, v2, ..., vn , the applications

s v1 v2 ... vn

and

t v1 v2 ... vn

are observationally equivalent.
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Examples

These terms are behaviorally equivalent:

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

So are these:

omega = (λx. x x) (λx. x x)

Yf = (λx. f (x x)) (λx. f (x x))

These are not behaviorally equivalent (to each other, or to any of the terms

above):

fls = λt. λf. f

poisonpill = λx. omega

placebo = λx. tru
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