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Midterm 1 is next Wednesday

� Today’s lecture will not be covered by the midterm.

� Next Monday, review class.

� Old exams and review questions on webpage.

� No recitation sections next week.

� New office hours next week, watch newsgroup for details.
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Plans

Where we’ve been:

� Inductive definitions
� abstract syntax

� inference rules

� Proofs by structural induction

� Operational semantics

� The lambda-calculus

� Typing rules and type soundness

Where we’re going:

� “Simple types” for the lambda-calculus

� Formalizing more features of real-world languages (records, datatypes,

references, exceptions, etc.)

� Subtyping

� Objects
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The Simply Typed Lambda-Calculus
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Lambda-calculus with booleans

t ::= terms

x variable

λx.t abstraction

t t application

true constant true

false constant false

if t then t else t conditional

v ::= values

λx.t abstraction value

true true value

false false value
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“Simple Types”

T ::= types

Bool type of booleans

T→T types of functions
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Typing rules

Γ `

true : Bool (T-True)

Γ `

false : Bool (T-False)

Γ `

t1 : Bool

Γ `

t2 : T

Γ `

t3 : T

Γ `

if t1 then t2 else t3 : T
(T-If)

x:T ∈ Γ

Γ `x : T
(T-Var)

Γ, x:T1 `t2 : T2

Γ `λx:T1.t2 : T1→T2

(T-Abs)

Γ `t1 : T11→T12 Γ `t2 : T11

Γ `t1 t2 : T12

(T-App)
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Typing Derivations

What derivations justify the following typing statements?

� ` (λx:Bool.x) true : Bool

� f:Bool→Bool ` f (if false then true else false) : Bool

� f:Bool→Bool ` λx:Bool. f (if x then false else x) : Bool→Bool
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Properties of λ→

As before, the fundamental property of the type system we have just defined is

soundness with respect to the operational semantics.

1. Progress: A closed, well-typed term is not stuck

If ` t : T, then either t is a value or else t −→ t ′ for some t ′.

2. Preservation: Types are preserved by one-step evaluation

If Γ ` t : T and t −→ t ′, then Γ ` t ′
: T.
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Proving progress

Same steps as before...

� inversion lemma for typing relation

� canonical forms lemma

� progress theorem
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Typing rules again (for reference)

Γ ` true : Bool (T-True)

Γ ` false : Bool (T-False)

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T
(T-If)

x:T ∈ Γ

Γ `x : T
(T-Var)

Γ, x:T1 `t2 : T2

Γ `λx:T1.t2 : T1→T2

(T-Abs)

Γ `t1 : T11→T12 Γ `t2 : T11

Γ `t1 t2 : T12

(T-App)
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Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and

Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that Γ ` t1 : T11→R

and Γ ` t2 : T11.
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Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.
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Canonical Forms

Lemma:

1. If v is a value of type Bool, then

v is either true or false.
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Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T for some T).

Then either t is a value or else there is some t ′ with t −→ t ′.

Proof: By induction

on typing derivations. The cases for boolean constants

and conditions are the same as before. The variable case is trivial (because t is

closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where t = t1 t2 with ` t1 : T11→T12 and

` t2 : T11. By the induction hypothesis, either t1 is a value or else it can

make a step of evaluation, and likewise t2. If t1 can take a step, then rule

E-App1 applies to t. If t1 is a value and t2 can take a step, then rule E-App2

applies. Finally, if both t1 and t2 are values, then the canonical forms lemma

tells us that t1 has the form λx:T11.t12, and so rule E-AppAbs applies to t.
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Proving Preservation

Theorem: If Γ ` t : T and t −→ t ′, then Γ ` t ′
: T.

Proof: By induction

on typing derivations.

[Which case is the hard one?]

Case T-App: Given t = t1 t2

Γ `t1 : T11→T12

Γ `t2 : T11

T = T12

Show Γ ` t ′
: T12

By the inversion lemma for evaluation, there are three subcases...

Subcase: t1 = λx:T11. t12

t2 a value v2

t ′ = [x 7→ v2]t12

Uh oh.
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The “Substitution Lemma”

Lemma: Types are preserved under substitition.

If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: ...
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On to real programming languages...
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The Unit type

t ::= ... terms

unit constant unit

v ::= ... values

unit constant unit

T ::= ... types

Unit unit type

New typing rules Γ ` t : T

Γ ` unit : Unit (T-Unit)
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Sequencing

t ::= ... terms

t1;t2

t1 −→ t ′

1

t1;t2 −→ t ′

1;t2

(E-Seq)

unit;t2 −→ t2 (E-SeqNext)

Γ ` t1 : Unit Γ ` t2 : T2

Γ ` t1;t2 : T2

(T-Seq)
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Derived forms

� Syntatic sugar

� Internal language vs. external (surface) language
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Sequencing as a derived form

t1;t2

def

= (λx:Unit.t2) t1

where x /∈ FV(t2)
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Equivalence of the two definitions

[board]
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Ascription

New syntactic forms

t ::= ... terms

t as T ascription

New evaluation rules t −→ t ′

v1 as T −→ v1 (E-Ascribe)

t1 −→ t ′

1

t1 as T −→ t ′

1 as T
(E-Ascribe1)

New typing rules Γ ` t : T

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)
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Ascription as a derived form

t as T
def

= (λx:T. x) t
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Let-bindings

New syntactic forms

t ::= ... terms

let x=t in t let binding

New evaluation rules t −→ t ′

let x=v1 in t2 −→ [x 7→ v1]t2 (E-LetV)

t1 −→ t ′

1

let x=t1 in t2 −→ let x=t ′

1 in t2

(E-Let)

New typing rules Γ ` t : T

Γ ` t1 : T1 Γ, x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2

(T-Let)
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Pairs

t ::= ... terms

{t,t} pair

t.1 first projection

t.2 second projection

v ::= ... values

{v,v} pair value

T ::= ... types

T1 × T2 product type

CIS 500, 6 October 26
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Evaluation rules for pairs

{v1,v2}.1 −→ v1 (E-PairBeta1)

{v1,v2}.2 −→ v2 (E-PairBeta2)

t1 −→ t ′

1

t1.1 −→ t ′

1.1
(E-Proj1)

t1 −→ t ′

1

t1.2 −→ t ′

1.2
(E-Proj2)

t1 −→ t ′

1

{t1,t2} −→ {t ′

1,t2}
(E-Pair1)

t2 −→ t ′

2

{v1,t2} −→ {v1,t
′

2}
(E-Pair2)
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Typing rules for pairs

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` {t1,t2} : T1 × T2

(T-Pair)

Γ ` t1 : T11 × T12

Γ ` t1.1 : T11

(T-Proj1)

Γ ` t1 : T11 × T12

Γ ` t1.2 : T12

(T-Proj2)
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Tuples

t ::= ... terms

{ti
i∈1..n} tuple

t.i projection

v ::= ... values

{vi
i∈1..n} tuple value

T ::= ... types

{Ti
i∈1..n} tuple type

CIS 500, 6 October 29
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Evaluation rules for tuples

{vi
i∈1..n}.j −→ vj (E-ProjTuple)

t1 −→ t ′

1

t1.i −→ t ′

1.i
(E-Proj)

tj −→ t ′

j

{vi
i∈1..j−1,tj,tk

k∈j+1..n}

−→ {vi
i∈1..j−1,t ′

j,tk
k∈j+1..n}

(E-Tuple)
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'

&

$

%

Typing rules for tuples

for each i Γ ` ti : Ti

Γ ` {ti
i∈1..n} : {Ti

i∈1..n}
(T-Tuple)

Γ ` t1 : {Ti
i∈1..n}

Γ ` t1.j : Tj

(T-Proj)
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Records

t ::= ... terms

{li=ti
i∈1..n} record

t.l projection

v ::= ... values

{li=vi
i∈1..n} record value

T ::= ... types

{li:Ti
i∈1..n} type of records
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Evaluation rules for records

{li=vi
i∈1..n}.lj −→ vj (E-ProjRcd)

t1 −→ t ′

1

t1.l −→ t ′

1.l
(E-Proj)

tj −→ t ′

j

{li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}

−→ {li=vi
i∈1..j−1,lj=t

′

j,lk=tk
k∈j+1..n}

(E-Rcd)
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Typing rules for records

for each i Γ ` ti : Ti

Γ ` {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T-Rcd)

Γ ` t1 : {li:Ti
i∈1..n}

Γ ` t1.lj : Tj

(T-Proj)

CIS 500, 6 October 34
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Discussion
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Intro vs. elim forms

An introduction form for a given type gives us a way of constructing elements

of this type.

An elimination form for a type gives us a way of using elements of this type.

What typing rules are introduction forms? What are elimination forms?
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The Curry-Howard Correspondence

In constructive logics, a proof of P must provide evidence for P.

� “law of the excluded middle” — P ∨ ¬P — not recognized.

A proof of P ∧ Q is a pair of evidence for P and evidence for Q.

A proof of P ⊃ Q is a procedure for transforming evidence for P into evidence

for Q.
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Propositions as Types

Logic Programming languages

propositions types

proposition P ⊃ Q type P→Q

proposition P ∧ Q type P× Q

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)

proof simplification evaluation

(a.k.a. “cut elimination”)

CIS 500, 6 October 38
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Propositions as Types

Logic Programming languages

propositions types

proposition P ⊃ Q type P→Q

proposition P ∧ Q type P× Q

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)

proof simplification

evaluation

(a.k.a. “cut elimination”)
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Propositions as Types

Logic Programming languages

propositions types

proposition P ⊃ Q type P→Q

proposition P ∧ Q type P× Q

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)

proof simplification evaluation

(a.k.a. “cut elimination”)
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Erasure

erase(x) = x

erase(λx:T1. t2) = λx. erase(t2)

erase(t1 t2) = erase(t1) erase(t2)
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Typability

An untyped λ-term m is said to be typable if there is some term t in the simply

typed lambda-calculus, some type T, and some context Γ such that

erase(t) = m and Γ ` t : T.

Cf. type reconstruction in OCaml.
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