/ Midterm 1 is next Wednesday

¢ Today’s lecture will not be covered by the midterm.
¢ Next Monday, review class.
¢ Old exams and review questions on webpage.

¢ No recitation sections next week.

_

¢ New office hours next week, watch newsgroup for details.

CIS 500, 6 October

-

4 CIS 500)

Software Foundations

Fall 2004

k 6 October J

_

CIS 500, 6 October

/ Plans

Where we’ve been:
¢ Inductive definitions
¢ abstract syntax
¢ inference rules
¢ Proofs by structural induction
¢ Operational semantics
¢ The lambda-calculus
¢ Typing rules and type soundness
Where we're going:
¢ “Simple types” for the lambda-calculus

¢ Formalizing more features of real-world languages (records, datatypes,

references, exceptions, etc.)

¢ Subtyping

\0 Objects

CIS 500, 6 October

w

/ Plans

Where we’ve been:
¢ Inductive definitions
¢ abstract syntax
¢ inference rules
¢ Proofs by structural induction
¢ Operational semantics
¢ The lambda-calculus
¢ Typing rules and type soundness

_

CIS 500, 6 October

/ Lambda-calculus with booleans

Ax.t

tt

true

false

if t then t else t

Ax.t
true

false

_

terms

variable
abstraction
application
constant true
constant false

conditional

values

abstraction value
true value

false value

CIS 500, 6 October

ot

-

[The Simply Typed Lambda-Calculus

_

CIS 500, 6 October

Typing rules

~

true : Bool (T-TruUE)
false : Bool (T-FALSE)
t1 : Bool t2 : T t3 : T
(T-Ir)
if t1 then t2 else t3 : T
CIS 500, 6 October 7
/ “Simple Types” \
T == types
Bool type of booleans
T—T types of functions

_

CIS 500, 6 October

_

Typing rules

-~

true : Bool (T-TRUE)
false : Bool (T-FALSE)
t1 : Bool t2 ¢ T t3 @
(T-Ir)
if t1 then tz else t3 : T
x:TeT
— (T-VAR)
Nex: T
CIS 500, 6 October
Typing rules
true : Bool (T-TRrUE)
false : Bool (T-FALSE)
t1 : Bool t2 ¢ T t3 @
(T-Ir)
if t1 then t2 else t3 : T
(T-VAR)

_

CIS 500, 6 October

~

/

7-b

~

_

Typing rules

I" Ftrue : Bool

I' Ffalse : Bool

I"+t7 : Bool Nkt 0 T I'kt3

I"'Hif t; then t2 else t3 : T
x:TeT
Nex: T

' x:Ty Ft2 : T2

IN'EAx:T1.t2 ¢ T1—2T2

~

(T-TRUE)
(T-FALSE)

(T-Ir)
(T-VAR)

(T-ABs)

/

CIS 500, 6 October

7-d

-~

_

Typing rules

I" Ftrue : Bool

I' Ffalse : Bool

I"+t7 : Bool Nkt 0 T I'kt3 ¢

I"'Hif t; then t2 else t3 : T
x:TeT
Nex: T

~

(T-TRUE)
(T-FALSE)

(T-Ir)

(T-VAR)

CIS 500, 6 October

/ Typing Derivations \

What derivations justify the following typing statements?
¢ F (Ax:Bool.x) true : Bool
¢ f:Bool—Bool + f (if false then true else false) : Bool

¢ f:Bool—Bool F Ax:Bool. f (if x then false else x) : Bool—Bool

_ /

CIS 500, 6 October 8

/ Typing rules \

I' Ftrue : Bool (T-TRUE)
I' Hfalse : Bool (T-FALSE)
I't7 : Bool Mty @ T Mkt3 @ T
(T-Ir)
I"'Hif t; then t2 else t3 : T
x:TeT
E— (T-VAR)
Nex: T
' x:Ty Ft2 : T2
(T-ABs)
IN'FAx:Ty.t2 : T1—T2
FkHty @ T11—Ti2 | I v I S
(T-ApP)

FHt1 t2 : T12

_ /

CIS 500, 6 October 7-e

/ Properties of A_, \

As before, the fundamental property of the type system we have just defined is

soundness with respect to the operational semantics.
1. Progress: A closed, well-typed term is not stuck

If - t : T, then either t is a value or else t — t’ for some t’.

2. Preservation: Types are preserved by one-step evaluation

frt:Tandt — t’,then TH1t’ : T.

_ /

CIS 500, 6 October 9-a

/ Properties of A_, \

As before, the fundamental property of the type system we have just defined is

soundness with respect to the operational semantics.

_ /

CIS 500, 6 October 9

/ Proving progress \ / Inversion \

Same steps as before... Lemma:
¢ inversion lemma for typing relation 1. If T' - true : R, then R = Bool.
¢ canonical forms lemma 2. If T F false : R, then R = Bool.
¢ progress theorem 3. T F if t1 then t2 else t3 : R, then ' t; : Bool and
'kEt2,t3 : R.

_ AN /

CIS 500, 6 October 10-a CIS 500, 6 October 12

/ Proving progress \ / Typing rules again (for reference) \

Same steps as before...

I' - true : Bool (T-TRUE)
I' - false : Bool (T-FALSE)
' t7 : Bool F+t2 : T F+t3 : T
(T-1F)
' if t1 then t2 else t3 : T
x:TeTl
_ (T-VAR)
Mex : T
I' x:T1 Ft2 : T2
(T-ABs)
IN'FAx:T1.t2 : T1—T2
Ity @ T11—T12 Nty @ T11q
(T-ApP)

Nkt t2 @ T2

_ AN /

CIS 500, 6 October 10 CIS 500, 6 October 11

-~

12-b

Inversion
Lemma:
1. If Tk true : R, then R = Bool.
2. If T+ false : R, then R = Bool.
3. If '+ if t7 then t2 else t3 : R,then '+ t7 : Bool and
'k t2,t3 : R.
4. fTHx : R, thenx:R€eT.
CIS 500, 6 October
/ Inversion
Lemma:
1. If Tk true : R, then R = Bool.
2. If T+ false : R, then R = Bool.
3. If '+ if t7 then t2 else t3 : R,then '+ ty : Bool and
'k t2,t3 : R.
4. If T+ x : R, then

_

CIS 500, 6 October

12-a

-~

Inversion

Lemma:

1.
2.

_

If '+ true : R, then R = Bool.

If '+ false : R, then R = Bool.

. IfTF if t1 then t2 else t3 : R,then ' t71 : Bool and

rl—tz,t3 : R.

IfT'-x:R,thenx:ReT.

CIfTH Ax:Ty.t2 @ R, then R = T71—R2 for some Ry with I, x:T1 F t2

: Ra.

CIS 500, 6 October

12-d

-~

Inversion

Lemma:

1.
2.
3.

_

If '+ true : R, then R = Bool.

If '+ false : R, then R = Bool.

IfI'F if t1 then t2 else t3 : R,then 'F t7 : Bool and
'k t2,t3 : R.

If''-x:R,thenx:ReT.

T Ax:Ty.t2 @ R, then

CIS 500, 6 October

12-c

-~

Lemma:

1.
2.

6.

_

. IfTF if t1 then t2 else t3 : R,then ' t7 : Bool and

.IfTFx : R, thenx:R€T.

. If T Ax:T1.t2 : R, then R = T71—R2 for some R2 with I', x:T1 F t2 : Ra.

Inversion \

If '+ true : R, then R = Bool.

If '+ false : R, then R = Bool.

rl—tz,t3 : R.

If '+ ty t2 : R, then there is some type T11 such that ' -ty : T11—R
and T t2 @ Tq1.

/

CIS 500, 6 October 12-f

-~

Lemma:

1.
2.

6.

_

. IfTF if t1 then t2 else t3 : R,then 'F t;1 : Bool and

.IfTFx : R, thenx:R€T.

. If T Ax:T1.t2 : R, then R = T1—R2 for some R2 with I', x:T1 F t2 : Ra.

Inversion \

If '+ true : R, then R = Bool.

If '+ false : R, then R = Bool.

rl—tz,t3 : R.

If "'+ ty t2 : R, then

CIS 500, 6 October 12-e

-~

Lemma:

Canonical Forms

1. If v is a value of type Bool, then

_

CIS 500, 6 October

13-a

-~

Lemma:

_

Canonical Forms

CIS 500, 6 October

13

/ Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1—T2, then

_

CIS 500, 6 October

13-c

/ Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

_

/ Progress

Theorem: Suppose t is a closed, well-typed term (that is, - t :

Then either t is a value or else there is some t’ with t — t’.

Proof: By induction

CIS 500, 6 October

13-b

_

~

T for some T).

CIS 500, 6 October

14

/ Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

_

2. If v is a value of type T1—T2, then v has the form Ax:Ty.t>.

CIS 500, 6 October

13-d

/ Progress \

Theorem: Suppose t is a closed, well-typed term (that is, -t : T for some T).
Then either t is a value or else there is some t’ with t — t”.

Proof: By induction on typing derivations. The cases for boolean constants
and conditions are the same as before. The variable case is trivial (because t is
closed). The abstraction case is immediate, since abstractions are values.

_ /

CIS 500, 6 October 14-b

/ Progress \

Theorem: Suppose t is a closed, well-typed term (that is, -t : T for some T).
Then either t is a value or else there is some t’ with t — t”.

Proof: By induction on typing derivations.

_ /

CIS 500, 6 October 14-a

/ Progress \

Theorem: Suppose t is a closed, well-typed term (that is, -t : T for some T).
Then either t is a value or else there is some t’ with t — t”.

Proof: By induction on typing derivations. The cases for boolean constants
and conditions are the same as before. The variable case is trivial (because t is
closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where t = t1 tz with - t7 : T11—>Ty2 and
F t2 : T11. By the induction hypothesis, either t7 is a value or else it can

make a step of evaluation, and likewise t2.

_ /

CIS 500, 6 October 14-d

/ Progress \

Theorem: Suppose t is a closed, well-typed term (that is, -t : T for some T).
Then either t is a value or else there is some t’ with t — t”.

Proof: By induction on typing derivations. The cases for boolean constants
and conditions are the same as before. The variable case is trivial (because t is
closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where t = t1 tz with - t7 : T11—Ty2 and
Ft2 @ T17.

_ /

CIS 500, 6 October 14-c

/ Proving Preservation \

Theorem: If "'t : Tandt — t’, then Tt/ : T.

Proof: By induction

_ /

CIS 500, 6 October 15

/ Progress \

Theorem: Suppose t is a closed, well-typed term (that is, -t : T for some T).
Then either t is a value or else there is some t’ with t — t”.

Proof: By induction on typing derivations. The cases for boolean constants
and conditions are the same as before. The variable case is trivial (because t is
closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where t = t1 tz with - t7 : T11—>Tq2 and
F t2 : T11. By the induction hypothesis, either t7 is a value or else it can
make a step of evaluation, and likewise t2. If t1 can take a step, then rule
E-App1 applies to t. If t1 is a value and t2 can take a step, then rule E-App2
applies. Finally, if both t1 and t, are values, then the canonical forms lemma
tells us that t1 has the form Ax:Ty1.t12, and so rule E-APPABS applies to t.

_ /

CIS 500, 6 October 14-e

/ Proving Preservation

Proof: By induction on typing derivations.
[Which case is the hard one?]
Case T-Appr: Given t=1t7 t2
FkEty @ T11—Ti2
Ntz @ Tiq
T="Ti2
Show T Ft’:Tq2

_

Theorem: If "'t : Tandt — t’, then Tt/ : T.

CIS 500, 6 October

/ Proving Preservation

Proof: By induction on typing derivations.
[Which case is the hard one?]

_

Theorem: If "'t : Tandt — t’, then Tt/ : T.

CIS 500, 6 October

15-a

/ Proving Preservation \ / The “Substitution Lemma”

Theorem: If T+t : Tand t — t’, then T ¢’ : T. Lemma: Types are preserved under substitition.

Proof: By induction on typing derivations. Il x:8Ht:TandTk s : 8 thenTH[x st : T.

[Which case is the hard one?]

Case T-ArpP: Given t=t1 t2
FEty @ T11—Ti2
Mty @ T
T="Ti2

Show Tt : T2
By the inversion lemma for evaluation, there are three subcases...

Subcase: t1 =Ax:T11. t12
t2 a value vz

t’ =[x v2lti2

_ AN

CIS 500, 6 October 15-d CIS 500, 6 October
/ Proving Preservation \ / Proving Preservation
Theorem: If "'t : Tandt — t’, then T -t/ : T. Theorem: If "'t : Tandt — t’, then Tt/ : T.
Proof: By induction on typing derivations. Proof: By induction on typing derivations.
[Which case is the hard one?] [Which case is the hard one?]
Case T-ArP: Given t=1t71 t2 Case T-ArP: Given t=1t71 t2
FEty @ T11—Ti2 FkEty @ T11—Ti2
Mty @ T Mty @ T
T="Ti2 T=Ti2
Show Tt : T2 Show Tt : T2
By the inversion lemma for evaluation, there are three subcases... By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 =Ax:T11. ti12
t2 a value vz
t’ =[x v2lti2
Uh oh.

_ AN

CIS 500, 6 October 15-c CIS 500, 6 October

[On to real programming languages...]

_ /

CIS 500, 6 October 17

/ The “Substitution Lemma” \

Lemma: Types are preserved under substitition.

Ifl' x:SEt: TandTTks : S, then " [x— s]t : T.

Proof: ...

_ /

CIS 500, 6 October 16-a

/ Sequencing

t = terms
ti1;5t2
CIS 500, 6 October 19
/ The Unit type \
t = terms
unit constant unit
v ou= values
unit constant unit
T u= types
Unit unit type

New typing rules

I'F unit : Unit

_

=+ :T

(T-Un1t)

CIS 500, 6 October

18

/ Derived forms \

¢ Syntatic sugar

¢ Internal language vs. external (surface) language

_ /

CIS 500, 6 October 20

/ Sequencing \

t = .. terms
ti1;5t2
t1 — t1

_ (E-SEQ)

t13t2 — t];t2

unit;t; — t2 (E-SEQNEXT)

'k t7 : Unit Tt : T2

(T-SEQ)

Nk t1;t2 @ T2

-

[board]

_ /

CIS 500, 6 October 19-a

_

Equivalence of the two definitions

CIS 500, 6 October

22

-

_

Sequencing as a derived form

t1;5t2

(Ax:Unit.t2) t1
where x € FV(t2)

CIS 500, 6 October

21

_

Ascription as a derived form

24

-~

~

’

def
tasT = (Ax:T. x) t
CIS 500, 6 October
Ascription
New syntactic forms
t o= terms
tas T ascription
New evaluation rules t—t
vi as T — v1 (E-ASCRIBE)
t1 — t1

New typing rules

_

t1 as Tﬁt{ as T

(E-ASCRIBEL)

'kt

e+t:

T

e+t : T

as T: T

(T-ASCRIBE)

/

CIS 500, 6 October

23

t =
{t,t}
t.1
t.2
v =
{v,v}
T =
T1 X T2

_

Pairs

terms
pair
first projection
second projection

values

pair value

types
product type

CIS 500, 6 October

-~

New syntactic forms
t =

let x=t in t

Let-bindings

terms

let binding

New evaluation rules t— t
let x=v7 in t2 — [x — vilt2 (E-LETV)
t1 — t1
(E-LET)
let x=t7 in t2 — let x=t1’ in t2
New typing rules rt:T
Tty : Ty MNx:Ti Ft2: T2
(T-LET)
'k let x=t7 in t2 : T2

_

CIS 500, 6 October

26

/ Typing rules for pairs

't : T FEt2 : T2

N {t1,t2} : T1 X T2

NEt7 :T11 XTi2

FE+t71.1: Ty

'Et1 :T11 XTi2

F't7.2: T2

_

(T-PAIR)

(T-ProJl)

(T-ProJ2)

/

CIS 500, 6 October

28

/ Evaluation rules for pairs

{vi,v2}.1 — w1

{vi,v2}.2 — v2

_

~

(E-PAIRBETAL)
(E-PAIRBETA2)

t1 — t1
_— (E-Proil)
t1.1—t7.1
t1 — t1/
_— (E-PrOJ2)
t1.2 — 7.2
t1 — t1/
(E-PAIR1)
{t1,t2} — {t7,t22}
ty — té
(E-PAIR2)
{v1,t2} — {v1,t3}
CIS 500, 6 October 27

_

Evaluation rules for tuples \

v € — (E-PrROJTUPLE)

t1 — t]
_ (E-Proy)
t1.i— t7.1
tj — t]
! d (E-TuPLE)

i€1..j—1 KEj+1 ..
{vi 1€ ,t5,Tk & "}

ier..j—1 ’ kEj+1..
— {Vi tEL ,tJ A% € “}

CIS 500, 6 October

30

-~

_

t =
{ti i€1.
t.i
v =
{Vi i€1.
T =
{Ti i€1.

.n}

,n}

Tuples \

terms

tuple
projection

values

tuple value

types
tuple type

CIS 500, 6 October

29

/ Records

t =
{li=t; € "}
t.1
V =
{1i=Vi ieI..n}
T =

{li :Ti iEI..n}

_

terms

record

projection

values

record value

types
type of records

CIS 500, 6 October

32

/ Typing rules for tuples

foreachi T hFt;: T

r l_ {ti ielun} . {Tl iEIHn}

Tkt ot {T €0}

' t1.j T

_

(T-TuPLE)

(T-ProJ)

CIS 500, 6 October

31

_

Typing rules for records

foreachi T hFt;: T

r‘ |_ {li,:ti ielun} . {li:Ti iEIHn}

bty @ {1;:T; '€ ")

F}—t1.1,~ T

(T-Rcb)

(T-ProJ)

/

CIS 500, 6 October

34

-~

_

Evaluation rules for records

{li=vi iE1"“]’.1;' — Vj

t1 — t]

t1.1 — t7.1

tj — t

{1;=v; ‘€11 ,1i=tj, L=ty K€+ .my

{1;=v; ‘€11 ,1j=tjl L=ty K€y

~

(E-ProJRCD)

(E-Proy)

(E-Rcp)

CIS 500, 6 October

33

/ Intro vs. elim forms

of this type.
An elimination form for a type gives us a way of using elements of this type.

What typing rules are introduction forms? What are elimination forms?

_

An introduction form for a given type gives us a way of constructing elements

~

CIS 500, 6 October

36

-~

[Discussion

_

Propositions as Types

Logic PROGRAMMING LANGUAGES
propositions types

proposition P D Q type P—Q

proposition P A Q type P X Q

proof of proposition P

proposition P is provable

CIS 500, 6 October

_

term t of type P
type P is inhabited (by some term)

CIS 500, 6 October

/ The Curry-Howard Correspondence

for Q.

_

In constructive logics, a proof of P must provide evidence for P.

¢ “law of the excluded middle” — P VV —P — not recognized.

A proof of P A\ Q is a pair of evidence for P and evidence for Q.

A proof of P D Q is a procedure for transforming evidence for P into evidence

CIS 500, 6 October

38

37

Propositions as Types

Logic PROGRAMMING LANGUAGES
propositions types

proposition P D Q type P—Q

proposition P A Q type P X Q

proof of proposition P

proposition P is provable

term t of type P
type P is inhabited (by some term)

proof simplification evaluation
(a.k.a. “cut elimination”)
CIS 500, 6 October
/ Propositions as Types
Logic PROGRAMMING LANGUAGES
propositions types
proposition P D Q type P—Q
proposition P A Q type P X Q

proof of proposition P

proposition P is provable

_

term t of type P
type P is inhabited (by some term)

evaluation

CIS 500, 6 October

38-b

38-a

/ Typability

typed lambda-calculus, some type T, and some context I" such that
erase(t) =mand '+t : T.

Cf. type reconstruction in OCaml.

_

An untyped A-term m is said to be typable if there is some term t in the simply

~

CIS 500, 6 October

40

/ Erasure

erase(x) = x
erase(Ax:T1. t2) = Ax. erase(t2)
erase(t1 t2) = erase(t1) erase(t2)

_

CIS 500, 6 October

39

