Midterm 1 is next Wednesday

- Today's lecture will not be covered by the midterm.
- Next Monday, review class.Old exams and review questions on webpage.No recitation sections next week.New office hours next week, watch newsgroup for details.

Where we've been:

- Inductive definitions
- abstract syntax
- inference rules
- Proofs by structural induction
- Operational semantics
- The lambda-calculus
- Typing rules and type soundness

Where we're going:

- "Simple types" for the lambda-calculus
- Formalizing more features of real-world languages (records, datatypes, references, exceptions, etc.)
- Subtyping
- Objects

CIS 500, 6 October

Typing Derivations

What derivations justify the following typing statements?
$\bullet \vdash(\lambda x: B o o l . x)$ true : Bool

- $\mathrm{f}:$ Bool \rightarrow Bool $\vdash \mathrm{f}$ (if false then true else false) : Bool
- $\mathrm{f}:$ Bool \rightarrow Bool $\vdash \mathrm{\lambda}:$ Bool. $f($ if x then false else x) : Bool \rightarrow Bool

Properties of $\boldsymbol{\lambda}$

As before, the fundamental property of the type system we have just defined is soundness with respect to the operational semantics.

1. Progress: A closed, well-typed term is not stuck If $\vdash \mathrm{t}: \mathrm{T}$, then either t is a value or else $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$ for some t^{\prime}.
2. Preservation: Types are preserved by one-step evaluation If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.

CIS 500, 6 October

Properties of $\boldsymbol{\lambda} \rightarrow$

As before, the fundamental property of the type system we have just defined is soundness with respect to the operational semantics.

Proving progress

Same steps as before...

- inversion lemma for typing relation
- canonical forms lemma
- progress theorem

Lemma:

1. If $\Gamma \vdash$ true : R, then $R=$ Bool.
2. If $\Gamma \vdash$ false $: R$, then $R=B o o l$.
3. If $\Gamma \vdash$ if t_{1} then t_{2} else $\mathrm{t}_{3}: \mathrm{R}$, then $\Gamma \vdash \mathrm{t}_{1}:$ Bool and $\Gamma \vdash \mathrm{t}_{2}, \mathrm{t}_{3}: \mathrm{R}$.

Typing rules again (for reference)

$$
\begin{array}{cr}
\Gamma \vdash \text { true }: \text { Bool } \\
\Gamma \vdash \text { false }: \text { Bool } \\
\mathrm{t}_{1}: \text { Bool } \Gamma \vdash \mathrm{t}_{2}: \mathrm{T} \quad \Gamma \vdash \mathrm{t}_{3}: \mathrm{T} \\
\Gamma \vdash \text { if } \mathrm{t}_{1} \text { then } \mathrm{t}_{2} \text { else } \mathrm{t}_{3}: \mathrm{T} & \text { (T-TRUE) } \\
\frac{\mathrm{x}: \mathrm{T} \in \Gamma}{\Gamma \vdash \mathrm{x}: \mathrm{T}} & \text { (T-FALSE) } \\
\frac{\Gamma, \mathrm{x}: \mathrm{T}_{1} \vdash \mathrm{t}_{2}: \mathrm{T}_{2}}{\Gamma \vdash \lambda_{\mathrm{x}}: \mathrm{T}_{1} \cdot \mathrm{t}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}} \\
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}} & \text { (T-VAR) } \tag{T-ABS}\\
\text { (T-ABS) } \\
\text { (T-APP) }
\end{array}
$$

Lemma:

1. If $\Gamma \vdash$ true : R, then $R=$ Bool.
2. If $\Gamma \vdash$ false : R, then $R=$ Bool.
3. If $\Gamma \vdash$ if t_{1} then t_{2} else $\mathrm{t}_{3}: \mathrm{R}$, then $\Gamma \vdash \mathrm{t}_{1}:$ Bool and $\Gamma \vdash \mathrm{t}_{2}, \mathrm{t}_{3}: \mathrm{R}$.
4. If $\Gamma \vdash x: R$, then $x: R \in \Gamma$.

Inversion

Lemma:

1. If $\Gamma \vdash$ true : R, then $R=$ Bool.
2. If $\Gamma \vdash$ false : R, then $R=$ Bool.
3. If $\Gamma \vdash$ if t_{1} then t_{2} else $\mathrm{t}_{3}: \mathrm{R}$, then $\Gamma \vdash \mathrm{t}_{1}:$ Bool and $\Gamma \vdash \mathrm{t}_{2}, \mathrm{t}_{3}: \mathrm{R}$.
4. If $\Gamma \vdash \mathrm{x}: \mathrm{R}$, then

Lemma:

1. If $\Gamma \vdash$ true : R, then $R=$ Bool.
2. If $\Gamma \vdash$ false : R, then $R=$ Bool.
3. If $\Gamma \vdash$ if t_{1} then t_{2} else $t_{3}: R$, then $\Gamma \vdash t_{1}:$ Bool and $\Gamma \vdash \mathrm{t}_{2}, \mathrm{t}_{3}: \mathrm{R}$.
4. If $\Gamma \vdash x: R$, then $x: R \in \Gamma$.
5. If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{T}_{1} . \mathrm{t}_{2}: \mathrm{R}$, then $\mathrm{R}=\mathrm{T}_{1} \rightarrow \mathrm{R}_{2}$ for some R_{2} with $\Gamma, \mathrm{x}: \mathrm{T}_{1} \vdash \mathrm{t}_{2}: \mathrm{R}_{2}$.
6. If $\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{R}$, then there is some type T_{11} such that $\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{R}$ and $\Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}$.

Lemma:

1. If v is a value of type Bool, then

Canonical Forms

Lemma:

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.
2. If v is a value of type $T_{1} \rightarrow T_{2}$, then

CIS 500, 6 October

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash \mathrm{t}: \mathrm{T}$ for some T). Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.

Proof: By induction

CIS 500, 6 October

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.
2. If v is a value of type $T_{1} \rightarrow T_{2}$, then v has the form $\lambda x: T_{1} . t_{2}$.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash \mathrm{t}: \mathrm{T}$ for some T). Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash \mathrm{t}: \mathrm{T}$ for some T). Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.

Proof: By induction on typing derivations.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash \mathrm{t}: \mathrm{T}$ for some T). Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.
Consider the case for application, where $t=t_{1} t_{2}$ with $\vdash t_{1}: T_{11} \rightarrow T_{12}$ and
$\vdash \mathrm{t}_{2}: \mathrm{T}_{11}$. By the induction hypothesis, either t_{1} is a value or else it can make a step of evaluation, and likewise t_{2}.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash \mathrm{t}: \mathrm{T}$ for some T). Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.
Consider the case for application, where $t=t_{1} t_{2}$ with $\vdash t_{1}: T_{11} \rightarrow T_{12}$ and $\vdash \mathrm{t}_{2}: \mathrm{T}_{11}$.

Proving Preservation

Theorem: If $\Gamma \vdash t: T$ and $t \longrightarrow t^{\prime}$, then $\Gamma \vdash t^{\prime}: T$.
Proof: By induction

CIS 500, 6 October

Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash \mathrm{t}: \mathrm{T}$ for some T). Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.
Consider the case for application, where $t=t_{1} t_{2}$ with $\vdash t_{1}: T_{11} \rightarrow T_{12}$ and $\vdash \mathrm{t}_{2}: \mathrm{T}_{11}$. By the induction hypothesis, either t_{1} is a value or else it can make a step of evaluation, and likewise t_{2}. If t_{1} can take a step, then rule E-App1 applies to t. If t_{1} is a value and t_{2} can take a step, then rule E-App2 applies. Finally, if both t_{1} and t_{2} are values, then the canonical forms lemma tells us that t_{1} has the form $\lambda \mathrm{x}: \mathrm{T}_{11} \cdot \mathrm{t}_{12}$, and so rule E-AppABS applies to t .

Proving Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Proof: By induction on typing derivations.
[Which case is the hard one?]
Case T-App: Given $\quad t=t_{1} t_{2}$
$\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12}$
$\Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}$
$\mathrm{T}=\mathrm{T}_{12}$
Show $\quad \Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}_{12}$

CIS 500, 6 October

Proving Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Proof: By induction on typing derivations.
[Which case is the hard one?]

Proving Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Proof: By induction on typing derivations.
[Which case is the hard one?]
Case T-App: Given $\quad t=t_{1} \quad t_{2}$
$\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12}$
$\Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}$
$\mathrm{T}=\mathrm{T}_{12}$
Show $\quad \Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}_{12}$
By the inversion lemma for evaluation, there are three subcases...
Subcase: $\quad t_{1}=\lambda x: T_{11} . t_{12}$

$$
\mathrm{t}_{2} \text { a value } \mathrm{v}_{2}
$$

$$
\mathrm{t}^{\prime}=\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

CIS 500, 6 October

The "Substitution Lemma"

Lemma: Types are preserved under substitition.
If $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$ and $\Gamma \vdash \mathrm{s}: \mathrm{S}$, then $\Gamma \vdash[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}: \mathrm{T}$.

Proving Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Proof: By induction on typing derivations.
[Which case is the hard one?]
Case T-App: Given $\quad t=t_{1} t_{2}$
$\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12}$
$\Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}$
$\mathrm{T}=\mathrm{T}_{12}$
Show $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}_{12}$
By the inversion lemma for evaluation, there are three subcases...
Subcase: $t_{1}=\lambda x: T_{11} . t_{12}$
t_{2} a value v_{2}

$$
\mathrm{t}^{\prime}=\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

Uh oh.

Derived forms

- Syntatic sugar
- Internal language vs. external (surface) language

Equivalence of the two definitions
[board]

CIS 500, 6 October

Intro vs. elim forms

An introduction form for a given type gives us a way of constructing elements of this type.

An elimination form for a type gives us a way of using elements of this type.
What typing rules are introduction forms? What are elimination forms?

Propositions as Types

Logic	Programming Languages
propositions	types
proposition $\mathbf{P} \supset \mathbf{Q}$	type $\mathrm{P} \rightarrow \mathbf{Q}$
proposition $\mathbf{P} \wedge \mathbf{Q}$	type $\mathrm{P} \times \mathbf{Q}$
proof of proposition \mathbf{P}	term t of type P
proposition \mathbf{P} is provable	type P is inhabited (by some term)

CIS 500, 6 October

The Curry-Howard Correspondence

In constructive logics, a proof of \mathbf{P} must provide evidence for \mathbf{P}.

- "law of the excluded middle" - $\mathbf{P} \vee \neg \mathbf{P}-$ not recognized.

A proof of $\mathbf{P} \wedge \mathbf{Q}$ is a pair of evidence for \mathbf{P} and evidence for \mathbf{Q}.

A proof of $\mathbf{P} \supset \mathbf{Q}$ is a procedure for transforming evidence for \mathbf{P} into evidence for \mathbf{Q}.

Propositions as Types

Logic	Programming languages
propositions	types
proposition $\mathbf{P} \supset \mathbf{Q}$	type $\mathrm{P} \rightarrow \mathbf{Q}$
proposition $\mathbf{P} \wedge \mathbf{Q}$	type $\mathrm{P} \times \mathbf{Q}$
proof of proposition \mathbf{P}	term t of type P
proposition \mathbf{P} is provable	type P is inhabited (by some term)
proof simplification	evaluation
$\quad($ a.k.a. "cut elimination")	

CIS 500, 6 October
38-b

Typability

An untyped $\boldsymbol{\lambda}$-term m is said to be typable if there is some term t in the simply typed lambda-calculus, some type T, and some context Γ such that $\operatorname{erase}(\mathrm{t})=\mathrm{m}$ and $\Gamma \vdash \mathrm{t}: \mathrm{T}$.

Cf. type reconstruction in OCaml.

CIS 500, 6 October

Erasure

```
erase(x) = x
erase}(\boldsymbol{\lambdax:}\mp@subsup{\textrm{T}}{1}{}.\mp@subsup{\textrm{t}}{2}{})=\boldsymbol{\lambda}\mathbf{x}.\operatorname{erase}(\mp@subsup{\textrm{t}}{2}{}
erase(\mp@subsup{t}{1}{}}\mp@subsup{\textrm{t}}{2}{})=\operatorname{erase}(\mp@subsup{\textrm{t}}{1}{})\operatorname{erase}(\mp@subsup{\textrm{t}}{2}{}
```

