\ Announcements /

¢ Homework 7 out.

¢ Error in grading problem 8(b) of the exam:
¢ Correct answer: plus = \Am. \An. n (\Ax. succ x) m
¢ Incorrect answer: plus = \Am. \An. \As. \Az. n s (m s z)

3 extra points to people who missed the problem or gave the first answer.
¢ Extended Midterm 1 regrade requests: send to Levine 502 by Nov. 21.
¢ No office hours for Stephanie this week.

¢ No advanced recitation this week.

_ /

CIS 500, 1/3 November

a N

4 CIS 500)

Software Foundations

Fall 2004

\ 1/3 November)

_ /

CIS 500, 1/3 November

\ Mutability /

¢ In most programming languages, variables are mutable — i.e., a variable
provides both

¢ a name that refers to a previously calculated value, and
¢ the possibility of overwriting this value with another (which will be
referred to by the same name)
4 In some languages (e.g., OCaml), these two features are kept separate

¢ variables are only for naming — the binding between a variable and its

value is immutable

¢ introduce a new class of mutable values (called reference cells or
references) with type Ref T.

¢ at any given moment, a reference holds a value that can be
dereferenced to obtain the value (Notation: !r)

¢ a new value may be assigned to a reference (Notation: r:=v)

_ /

CIS 500, 1/3 November

a O

H References

_ /

CIS 500, 1/3 November

\ Basic Examples / \ Aliasing all around us /

r=ref 5 Reference cells are not the only language feature that introduces the possibility
' of aliasing.

r =7

(r:=succ(!'r); 'r) ¢ arrays

(r:=succ(!r); r:=succ(!r); r:=succ(!r); r:=succ(!r); !'r) ¢ communication channels
ie., ¢ I/0 devices (disks, etc.)

((((r:=succ('r); r:=succ(!r)); r:=succ(!r)); r:=succ('r)); 'r)

_ AN /

CIS 500, 1/3 November 5-a CIS 500, 1/3 November 7

\ Basic Examples / \ Aliasing /

A value of type Ref T is a pointer to a cell holding a value of type T.
'r
r =7 e
(r:=succ(!r); !'r)

(r:=succ('r); r:=succ(!r); r:=succ(!r); r:=succ(!r); !r)

If this value is “copied” by assigning it to another variable, the cell pointed to
is not copied.

So we can change r by assigning to s:
(s:=6; !'r)

_ AN /

CIS 500, 1/3 November 5 CIS 500, 1/3 November

\ The benefits of aliasing /

The problems of aliasing have led some language designers simply to disallow it
(e.g., Haskell).

But there are good reasons why most languages do provide constructs

involving aliasing:

¢ efficiency (e.g., arrays)

4 “action at a distance” (e.g., symbol tables)
¢ shared resources (e.g., locks) in concurrent systems
¢

etc.

_ /

CIS 500, 1/3 November 9

\ The difficulties of aliasing /

The possibility of aliasing invalidates all sorts of useful forms of reasoning
about programs, both by programmers...
The function
Ar:Ref Nat. As:Ref Nat. (r:=2; s:=3; !r)
always returns 2 unless r and s are aliases for the same cell.
...and by compilers:

Code motion out of loops, common subexpression elimination,
allocation of variables to registers, and detection of uninitialized
variables all depend upon the compiler knowing which objects a load

or a store operation could reference.

High-performance compilers spend significant energy on alias analysis to try to

establish when different variables cannot possibly refer to the same storage.

_ /

CIS 500, 1/3 November 8

R@.ﬁ newcounter =

A_:Unit.
let ¢ = ref O in

[¢]

_

let incc = Ax:Unit. (¢ := succ (!c);
let decc = Ax:Unit. (c := pred (!c);

let o = {i = incc, d = decc} in

Ic) in

Ic) in

CIS 500, 1/3 November

11

-~

c =ref O

incc = Ax:Unit. (c

decc Ax:Unit. (c
incc unit

decc unit

_

Example

succ (lc); lc)

pred (!c); !'c)

o = {i = incc, d = decc}

CIS 500, 1/3 November

10

\ Typing Rules /

'ty : Ty

(T-REF)
' ref t1 : Ref Ty
'ty : Ref Ty

_— (T-DEREF)

1t : Ty

'ty : Ref T Net2 : Ty

(T-AsSIGN)

' t7:=t2 : Unit

_ /

CIS 500, 1/3 November 13

\ Syntax J

t = terms
unit unit constant
X variable
Ax:T.t abstraction
tt application
ref t reference creation
1t dereference
t:=t assignment

T u= types
Unit unit
T— T function
Ref T reference to T

/ plus other familiar types, in examples. k

CIS 500, 1/3 November 12

\ Evaluation

What is the value of the expression ref 07

_

CIS 500, 1/3 November

15

\ Another example
NatArray = Ref (Nat—Nat);

newarray = A_:Unit. ref (An:Nat.0);
Unit — NatArray

lookup = Aa:NatArray. An:Nat. ('a) n;
NatArray — Nat — Nat

update = Aa:NatArray. Am:Nat. Av:Nat.
let oldf = 'a in
a := (An:Nat. if equal m n then v else oldf n);
NatArray — Nat — Nat — Unit

_

CIS 500, 1/3 November

14

\ Evaluation

What is the value of the expression ref 07

Crucial observation: evaluating ref 0 must do something.

Otherwise,
r =ref O
s = ref O
and
r =ref O
s =r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and yield a
reference (or pointer) to that storage.

_

CIS 500, 1/3 November

\ Evaluation

What is the value of the expression ref 07

Crucial observation: evaluating ref 0 must do something.

Otherwise,
r =ref O
s = ref O
and
r =ref O
s =r

would behave the same.

_

CIS 500, 1/3 November

\ The Store /

A reference names a location in the store (also known as the heap or just the

memory).

What is the store?

_ /

CIS 500, 1/3 November 16

\ Evaluation /

What is the value of the expression ref 07

Crucial observation: evaluating ref 0 must do something.

Otherwise,
r =ref O
s = ref O
and
r =ref O
s =r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and yield a
reference (or pointer) to that storage.

So what is a reference?

_ /

CIS 500, 1/3 November 15-¢

\ The Store J

A reference names a location in the store (also known as the heap or just the

memory).
What is the store?
¢ Concretely: An array of 32-bit words, indexed by 32-bit integers.

¢ More abstractly: an array of values

_ /

CIS 500, 1/3 November

16-b

\ The Store J

A reference names a location in the store (also known as the heap or just the

memory).
What is the store?

¢ Concretely: An array of 32-bit words, indexed by 32-bit integers.

_ /

CIS 500, 1/3 November

16-a

\ Locations J

Syntax of values:

v oou= values
unit unit constant
Ax:T.t abstraction value
1 store location

/ ... and since all values are .855&

CIS 500, 1/3 November 17

\ The Store J

A reference names a location in the store (also known as the heap or just the

memory).

What is the store?
¢ Concretely: An array of 32-bit words, indexed by 32-bit integers.
¢ More abstractly: an array of values

¢ Even more abstractly: a partial function from locations to values.

_ /

CIS 500, 1/3 November 16-c

\ Aside / \ Evaluation /

Does this mean we are going to allow programmers to write explicit locations An assignment t7:=t; first evaluates t1 and t, until they become values...
in their programs??

! ’
No: This is just a modeling trick. We are enriching the “source language” to t1lp—ty|p

(E-AssiGNl)
include some run-time structures, so that we can continue to formalize tri=tz | u— t7:=t2 | u’

evaluation as a relation between source terms.

7

u

t2 | p—t3

(E-AssIGN2)
vii=ta | U — vy “H.nm | n

... and then returns unit and updates the store:

l:=v2 | 0 — unit | [l = v2]u (E-ASSIGN)

Aside: If we formalize evaluation in the big-step style, then we can add

locations to the set of values (results of evaluation) without adding them to the

/mn of terms. \ // \

CIS 500, 1/3 November 19 CIS 500, 1/3 November 21

\ Syntax of Terms / \ Evaluation /

£ = terms The result of evaluating a term now depends on the store in which it is

) evaluated. Moreover, the result of evaluating a term is not just a value — we
unit unit constant
) must also keep track of the changes that get made to the store.
bq variable

Ax:T.t abstraction Le., the evaluation relation should now map a term and a store to a reduced

tt application term and a new store.

ref t reference creation

’ ’
't dereference tlu—tp
t:=t asstgnment

1 store location
We use the metavariable p to range over stores.

_ AN /

CIS 500, 1/3 November 18 CIS 500, 1/3 November 20

QHQE 1t first evaluates in t7 until it becomes a value... /

t1lp— oty |y

(E-DEREF)
o1 | — 'ty |’

... and then looks up this value (which must be a location, if the original term
was well typed) and returns its contents in the current store:

) =v

- (E-DEREFLOC)
njp—vip

_ /

CIS 500, 1/3 November 23

Q term of the form ref t; first evaluates inside t1 until it becomes a <m_co:./

t1lu—ty |

(E-REF)
ref t1 | u— ref t] | n’

... and then chooses (allocates) a fresh location 1, augments the store with a
binding from 1 to v1, and returns 1:

L g dom(u)

ref vi |lu— 1] (u, 1= vy)

(E-REFV)

_

CIS 500, 1/3 November

N

[
(V)

\ Aside: garbage collection /

Note that we are not modeling garbage collection — the store just grows
without bound.

_ /

CIS 500, 1/3 November

V)
it

QA&E.@SOS rules for function abstraction and application are augmented ,i;/
stores, but don’t do anything with them directly.

t1lp— eyl u’

(E-APpP1)
t1 t2l u— t] t2|p’
t2lp — t3
(E-APP2)
viot2| p— v oty
(Ax:Ty71.t12) v2l b — [x = v2lti2| 1 (E-APPABS)

_ /

CIS 500, 1/3 November 24

\ J \ Typing Locations J

Q: What is the type of a location?

A: Tt depends on the store!
H Store H%Uiﬂmm E.g., in the store (13 +— unit, 1> + unit), the term !1l, has type Unit.

But in the store (13 + unit, 12 +— Ax:Unit.x), the term !l, has type
Unit—Unit.

_ AN /

CIS 500, 1/3 November CIS 500, 1/3 November 28-a

N
3

\ Aside: pointer arithmetic / \ Typing Locations /

We can’t do any! Q: What is the type of a location?

_ AN /

CIS 500, 1/3 November 26 CIS 500, 1/3 November

Roughly:

NEp(l) @ Ty

F'E1: Ref Ty

More precisely:

FipkEp): T

Il uk1:Ref Ty

Le., typing is now a four-place relation (between contexts, stores, terms, and
types).

\ Typing Locations — first try J

_ /

CIS 500, 1/3 November

29-a

\ Typing Locations — first try J

Roughly:

NEp(l) @ Ty

F'E1: Ref Ty

_ /

CIS 500, 1/3 November

\ Problem! J

But wait... it gets worse. Suppose

(k=1 — Ax:Nat. 'l2 x,

L2 — Ax:Nat. !l x),

Now how big is the typing derivation for '1,7?

_ /

CIS 500, 1/3 November 31

\ Problem J

However, this rule is not completely satisfactory. For one thing, it can make
typing derivations very large!

E.g., if
(=1 +— Ax:Nat. 999,
1, = Ax:Nat. 'l (L1 %),
13 — Ax:Nat. !l ('l %),
1y — Ax:Nat. !'l3 ('l3 %),
ls — Ax:Nat. !l (Mg x)),
then how big is the typing derivation for !1l5?

_ /

CIS 500, 1/3 November 30

Qm; for /

u=(l; — Ax:Nat. 999,
l2 — Ax:Nat. !'l; ('l %),
I3 — Ax:Nat. !'l2 (!'l2 x),
ls — Ax:Nat. !'l3 (!'l3 x),
s — Ax:Nat. 'ls ('ls %)),

A reasonable store typing would be

Y = (14 — Nat—Nat,
1, — Nat—Nat,
13 — Nat—Nat,
1y +— Nat—Nat,

15 +— Nat—Nat)

_ /

CIS 500, 1/3 November 33

\ Store Typings J

Observation: The typing rules we have chosen for references guarantee that a
given location in the store is always used to hold values of the same type.

These intended types can be collected into a store typing — a partial function
from locations to types.

_ /

CIS 500, 1/3 November 32

\ Final typing rules /

() =T
(T-Loc)
I XkET1: Ref Ty
r 7 Ht 1T
(T-REF)
I X+ ref t1 : Ref Ty
I Xk ty :Ref Tyq
(T-DEREF)
FXkE 1t : Ty
' Xkt :Ref Tq1 NXktz: Ty
(T-ASSIGN)
I Xk ty:=t2 : Unit

_ /

CIS 500, 1/3 November 35

Qo%q suppose we are given a store typing X describing the store p in which @
intend to evaluate some term t. Then we can use X to look up the types of
locations in t instead of calculating them from the values in u.

() =T

(T-Loc)
' ZH1:Ref Ty

ILe., typing is now a four-place relation between between contexts, store
typings, terms, and types.

_ /

CIS 500, 1/3 November 34

\On Where do these store typings come from? /

A: When we first typecheck a program, there will be no explicit locations, so

we can use an empty store typing.

So, when a new location is created during evaluation,

1L ¢ dom(u)

ref vi |u— 1] (u, 1= vy)

(E-REFV)

we can observe the type of vi and extend the “current store typing”

appropriately.

_ /

CIS 500, 1/3 November 36-a

\O\“ Where do these store typings come from? /

_ /

CIS 500, 1/3 November 36

[on board]

_

Safety

CIS 500, 1/3 November

