
'

&

$

%

CIS 500

Software Foundations

Fall 2004

10 November

CIS 500, 10 November 1

'

&

$

%

Administrivia

Reminder: Midterm II is next Wednesday, November 17th.

Covering all material we’ve seen so far, up through Chapter 14 of TAPL (but

omitting Chapters 6,7,9 and 12). Emphasizing material covered since the last

midterm.

Exams from last two years on website. Ignore questions on subtyping.

CIS 500, 10 November 2

'

&

$

%

Subtyping

CIS 500, 10 November 3

'

&

$

%

Polymorphism

The T-App rule is very restrictive.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

A polymorphic function may be applied to many different types of data.

Varieties of polymorphism:

� Parametric polymorphism (ML-style)

� Subtype polymorphism (OO-style)

� Ad-hoc polymorphism (overloading)

CIS 500, 10 November 4

'

&

$

%

Motivation

With our usual typing rule for applications

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

the term

(λr:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

This is silly: all we’re doing is passing the function a better argument than it

needs.

CIS 500, 10 November 5

'

&

$

%

Motivation

With our usual typing rule for applications

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

the term

(λr:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

This is silly: all we’re doing is passing the function a better argument than it

needs.

CIS 500, 10 November 5-a

'

&

$

%

Subsumption

More generally: some types are better than others, in the sense that a value of

one can always safely be used where a value of the other is expected.

We can formalize this intuition by introducing

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of type S can

also be regarded as having type T

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

CIS 500, 10 November 6

'

&

$

%

Example

We will define subtyping between record types so that, for example,

{x:Nat, y:Nat} <: {x:Nat}

So, by subsumption,

` {x=0,y=1} : {x:Nat}

and hence

(λr:{x:Nat}. r.x) {x=0,y=1}

is well typed.

CIS 500, 10 November 7

'

&

$

%

The Subtype Relation: General rules

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

CIS 500, 10 November 8

'

&

$

%

The Subtype Relation: Records

“Width subtyping” (forgetting fields on the right):

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

Intuition: {x:Nat} is the type of all records with at least a numeric x field.

Note that the record type with more fields is a subtype of the record type with

fewer fields.

Reason: the type with more fields places a stronger constraint on values, so it

describes fewer values.

CIS 500, 10 November 9

'

&

$

%

“Depth subtyping” within fields:

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

CIS 500, 10 November 10

'

&

$

%

Example

S-RcdWidth
{a:Nat,b:Nat} <: {a:Nat}

S-RcdWidth
{m:Nat} <: {}

S-RcdDepth
{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}

CIS 500, 10 November 11

'

&

$

%

The Subtype Relation: Records

Permutation of fields:

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

By using S-RcdPerm together with S-RcdWidth and S-Trans, we can drop

arbitrary fields within records.

CIS 500, 10 November 12

'

&

$

%

Variations

Real languages often choose not to adopt all of these record subtyping rules.

For example, in Java,

� A subclass may not change the argument or result types of a method of its

superclass (i.e., no depth subtyping)

� Each class has just one superclass (“single inheritance” of classes)

−→ each class member (field or method) can be assigned a single

index, adding new indices “on the right” as more members are

added in subclasses

(i.e., no permutation for classes)

� A class may implement multiple interfaces (“multiple inheritance” of

interfaces)

I.e., permutation is allowed for interfaces.

CIS 500, 10 November 13

'

&

$

%

The Subtype Relation: Arrow types

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(S-Arrow)

Note the order of T1 and S1 in the first premise. The subtype relation is

contravariant in the left-hand sides of arrows and covariant in the right-hand

sides.

Intuition: if we have a function f of type S1→S2, then we know that f accepts

elements of type S1; clearly, f will also accept elements of any subtype T1 of

S1. The type of f also tells us that it returns elements of type S2; we can also

view these results belonging to any supertype T2 of S2. That is, any function f

of type S1→S2 can also be viewed as having type T1→T2.

CIS 500, 10 November 14

'

&

$

%

The Subtype Relation: Top

It is convenient to have a type that is a supertype of every type. We introduce

a new type constant Top, plus a rule that makes Top a maximum element of

the subtype relation.

S <: Top (S-Top)

Cf. Object in Java.

CIS 500, 10 November 15

'

&

$

%

Properties of Subtyping

CIS 500, 10 November 16

'

&

$

%

Safety

Statements of progress and preservation theorems are unchanged from λ→.

Proofs become a bit more involved, because the typing relation is no longer

syntax directed.

Given a derivation, we don’t always know what rule was used in the last step.

CIS 500, 10 November 17

'

&

$

%

Preservation

Theorem: If Γ ` t : T and t −→ t ′, then Γ ` t ′
: T.

Proof: By induction on typing derivations.

(Which cases are hard?)

CIS 500, 10 November 18

'

&

$

%

Subsumption case

Case T-Sub: t : S S <: T

By the induction hypothesis, Γ ` t ′
: S. By T-Sub, Γ ` t : T.

Not hard!

CIS 500, 10 November 19

'

&

$

%

Subsumption case

Case T-Sub: t : S S <: T

By the induction hypothesis, Γ ` t ′
: S. By T-Sub, Γ ` t : T.

Not hard!

CIS 500, 10 November 19-a

'

&

$

%

Subsumption case

Case T-Sub: t : S S <: T

By the induction hypothesis, Γ ` t ′
: S. By T-Sub, Γ ` t : T.

Not hard!

CIS 500, 10 November 19-b

'

&

$

%

Application case

Case T-App:

t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

By the inversion lemma for evaluation, there are three rules by which t −→ t ′

can be derived: E-App1, E-App2, and E-AppAbs. Proceed by cases.

Subcase E-App1: t1 −→ t ′

1 t ′ = t ′

1 t2

The result follows from the induction hypothesis and T-App.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

t1 −→ t ′

1

t1 t2 −→ t ′

1 t2

(E-App1)

CIS 500, 10 November 20

'

&

$

%

Application case

Case T-App:

t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

By the inversion lemma for evaluation, there are three rules by which t −→ t ′

can be derived: E-App1, E-App2, and E-AppAbs. Proceed by cases.

Subcase E-App1: t1 −→ t ′

1 t ′ = t ′

1 t2

The result follows from the induction hypothesis and T-App.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

t1 −→ t ′

1

t1 t2 −→ t ′

1 t2

(E-App1)

CIS 500, 10 November 20-a

'

&

$

%

Case T-App (continued):

t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-App2: t1 = v1 t2 −→ t ′

2 t ′ = v1 t ′

2

Similar.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

t2 −→ t ′

2

v1 t2 −→ v1 t ′

2

(E-App2)

CIS 500, 10 November 21

'

&

$

%

Case T-App (continued):

t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-AppAbs: t1 = λx:S11. t12 t2 = v2 t ′ = [x 7→ v2]t12

By the inversion lemma for the typing relation...

T11 <: S11 and

Γ, x:S11 ` t12 : T12.

By T-Sub, Γ ` t2 : S11.

By the substitution lemma, Γ ` t ′
: T12, and we are done.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

CIS 500, 10 November 22

'

&

$

%

Case T-App (continued):

t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-AppAbs: t1 = λx:S11. t12 t2 = v2 t ′ = [x 7→ v2]t12

By the inversion lemma for the typing relation... T11 <: S11 and

Γ, x:S11 ` t12 : T12.

By T-Sub, Γ ` t2 : S11.

By the substitution lemma, Γ ` t ′
: T12, and we are done.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

CIS 500, 10 November 22-a

'

&

$

%

Case T-App (continued):

t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-AppAbs: t1 = λx:S11. t12 t2 = v2 t ′ = [x 7→ v2]t12

By the inversion lemma for the typing relation... T11 <: S11 and

Γ, x:S11 ` t12 : T12.

By T-Sub, Γ ` t2 : S11.

By the substitution lemma, Γ ` t ′
: T12, and we are done.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

CIS 500, 10 November 22-b

'

&

$

%

Case T-App (continued):

t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-AppAbs: t1 = λx:S11. t12 t2 = v2 t ′ = [x 7→ v2]t12

By the inversion lemma for the typing relation... T11 <: S11 and

Γ, x:S11 ` t12 : T12.

By T-Sub, Γ ` t2 : S11.

By the substitution lemma, Γ ` t ′
: T12, and we are done.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

CIS 500, 10 November 22-c

'

&

$

%

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and Γ, x:S1 ` s2 : T2.

Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does not apply

(we do not know that U is an arrow type). Need another lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1 and

U2 <: T2. (Proof: by induction on subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.

The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.

From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.

From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives Γ, x:S1 ` s2 : T2, and

we are done.

CIS 500, 10 November 23

'

&

$

%

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and Γ, x:S1 ` s2 : T2.

Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does not apply

(we do not know that U is an arrow type).

Need another lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1 and

U2 <: T2. (Proof: by induction on subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.

The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.

From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.

From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives Γ, x:S1 ` s2 : T2, and

we are done.

CIS 500, 10 November 23-a

'

&

$

%

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and Γ, x:S1 ` s2 : T2.

Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does not apply

(we do not know that U is an arrow type). Need another lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1 and

U2 <: T2. (Proof: by induction on subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.

The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.

From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.

From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives Γ, x:S1 ` s2 : T2, and

we are done.

CIS 500, 10 November 23-b

'

&

$

%

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and Γ, x:S1 ` s2 : T2.

Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does not apply

(we do not know that U is an arrow type). Need another lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1 and

U2 <: T2. (Proof: by induction on subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.

The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.

From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.

From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives Γ, x:S1 ` s2 : T2, and

we are done.

CIS 500, 10 November 23-c

'

&

$

%

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and Γ, x:S1 ` s2 : T2.

Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does not apply

(we do not know that U is an arrow type). Need another lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1 and

U2 <: T2. (Proof: by induction on subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.

The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.

From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.

From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives Γ, x:S1 ` s2 : T2, and

we are done.

CIS 500, 10 November 23-d

'

&

$

%

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and Γ, x:S1 ` s2 : T2.

Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does not apply

(we do not know that U is an arrow type). Need another lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1 and

U2 <: T2. (Proof: by induction on subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.

The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.

From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.

From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives Γ, x:S1 ` s2 : T2, and

we are done.

CIS 500, 10 November 23-e

'

&

$

%

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and Γ, x:S1 ` s2 : T2.

Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does not apply

(we do not know that U is an arrow type). Need another lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1 and

U2 <: T2. (Proof: by induction on subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.

The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.

From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.

From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives Γ, x:S1 ` s2 : T2, and

we are done.

CIS 500, 10 November 23-f

'

&

$

%

Subtyping with Other Features

CIS 500, 10 November 24

'

&

$

%

Ascription and Casting

Ordinary ascription:

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

v1 as T −→ v1 (E-Ascribe)

Casting (cf. Java):

Γ ` t1 : S

Γ ` t1 as T : T
(T-Cast)

` v1 : T

v1 as T −→ v1

(E-Cast)

CIS 500, 10 November 25

'

&

$

%

Ascription and Casting

Ordinary ascription:

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

v1 as T −→ v1 (E-Ascribe)

Casting (cf. Java):

Γ ` t1 : S

Γ ` t1 as T : T
(T-Cast)

` v1 : T

v1 as T −→ v1

(E-Cast)

CIS 500, 10 November 25-a

'

&

$

%

Subtyping and Variants

<li:Ti
i∈1..n> <: <li:Ti

i∈1..n+k> (S-VariantWidth)

for each i Si <: Ti

<li:Si
i∈1..n> <: <li:Ti

i∈1..n>
(S-VariantDepth)

<kj:Sj
j∈1..n> is a permutation of <li:Ti

i∈1..n>

<kj:Sj
j∈1..n> <: <li:Ti

i∈1..n>
(S-VariantPerm)

Γ ` t1 : T1

Γ ` <l1=t1> : <l1:T1>
(T-Variant)

CIS 500, 10 November 26

'

&

$

%

Subtyping and Lists

S1 <: T1

List S1 <: List T1

(S-List)

I.e., List is a covariant type constructor.

CIS 500, 10 November 27

'

&

$

%

Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1

(S-Ref)

I.e., Ref is not a covariant (nor a contravariant) type constructor.

Why?

� When a reference is read, the context expects a T1, so if S1 <: T1 then an

S1 is ok.

� When a reference is written, the context provides a T1 and if the actual

type of the reference is Ref S1, someone else may use the T1 as an S1. So

we need T1 <: S1.

CIS 500, 10 November 28

'

&

$

%

Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1

(S-Ref)

I.e., Ref is not a covariant (nor a contravariant) type constructor.

Why?

� When a reference is read, the context expects a T1, so if S1 <: T1 then an

S1 is ok.

� When a reference is written, the context provides a T1 and if the actual

type of the reference is Ref S1, someone else may use the T1 as an S1. So

we need T1 <: S1.

CIS 500, 10 November 28-a

'

&

$

%

Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1

(S-Ref)

I.e., Ref is not a covariant (nor a contravariant) type constructor.

Why?

� When a reference is read, the context expects a T1, so if S1 <: T1 then an

S1 is ok.

� When a reference is written, the context provides a T1 and if the actual

type of the reference is Ref S1, someone else may use the T1 as an S1. So

we need T1 <: S1.

CIS 500, 10 November 28-b

'

&

$

%

Subtyping and Arrays

Similarly...

S1 <: T1 T1 <: S1

Array S1 <: Array T1

(S-Array)

S1 <: T1

Array S1 <: Array T1

(S-ArrayJava)

This is regarded (even by the Java designers) as a mistake in the design.

CIS 500, 10 November 29

'

&

$

%

Subtyping and Arrays

Similarly...

S1 <: T1 T1 <: S1

Array S1 <: Array T1

(S-Array)

S1 <: T1

Array S1 <: Array T1

(S-ArrayJava)

This is regarded (even by the Java designers) as a mistake in the design.

CIS 500, 10 November 29-a

'

&

$

%

References again

Observation: a value of type Ref T can be used in two different ways: as a

source for values of type T and as a sink for values of type T.

Idea: Split Ref T into three parts:

� Source T: reference cell with “read cabability”

� Sink T: reference cell with “write cabability”

� Ref T: cell with both capabilities

CIS 500, 10 November 30

'

&

$

%

References again

Observation: a value of type Ref T can be used in two different ways: as a

source for values of type T and as a sink for values of type T.

Idea: Split Ref T into three parts:

� Source T: reference cell with “read cabability”

� Sink T: reference cell with “write cabability”

� Ref T: cell with both capabilities

CIS 500, 10 November 30-a

'

&

$

%

Modified Typing Rules

Γ | Σ ` t1 : Source T11

Γ | Σ ` !t1 : T11

(T-Deref)

Γ | Σ ` t1 : Sink T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(T-Assign)

CIS 500, 10 November 31

'

&

$

%

Subtyping rules

S1 <: T1

Source S1 <: Source T1

(S-Source)

T1 <: S1

Sink S1 <: Sink T1

(S-Sink)

Ref T1 <: Source T1 (S-RefSource)

Ref T1 <: Sink T1 (S-RefSink)

CIS 500, 10 November 32

'

&

$

%

Capabilities

Other kinds of capabilities (e.g., send and receive capabilities on

communication channels, encrypt/decrypt capabilities of cryptographic keys,

...) can be treated similarly.

CIS 500, 10 November 33

'

&

$

%

Intersection Types

The inhabitants of T1 ∧ T2 are terms belonging to both S and T—i.e., T1 ∧ T2

is an order-theoretic meet (greatest lower bound) of T1 and T2.

T1 ∧ T2 <: T1 (S-Inter1)

T1 ∧ T2 <: T2 (S-Inter2)

S <: T1 S <: T2

S <: T1 ∧ T2

(S-Inter3)

S→T1 ∧ S→T2 <: S→(T1∧T2) (S-Inter4)

CIS 500, 10 November 34

'

&

$

%

Intersection Types

Intersection types permit a very flexible form of finitary overloading.

+ : (Nat→Nat→Nat) ∧ (Float→Float→Float)

This form of overloading is extremely powerful.

Every strongly normalizing untyped lambda-term can be typed in the

simply typed lambda-calculus with intersection types.

−→ type reconstruction problem is undecidable

Intersection types have not been used much in language designs (too

powerful!), but are being intensively investigated as type systems for

intermediate languages in highly optimizing compilers (cf. Church project).

CIS 500, 10 November 35

'

&

$

%

Union types

Union types are also useful.

T1 ∨ T2 is an untagged (non-disjoint) union of T1 and T2

No tags −→ no case construct. The only operations we can safely perform on

elements of T1\/T2 are ones that make sense for both T1 and T2.

N.b.: untagged union types in C are a source of type safety violations precisely

because they ignores this restriction, allowing any operation on an element of

T1 ∨ T2 that makes sense for either T1 or T2.

Union types are being used recently in type systems for XML processing

languages (cf. XDuce, Xtatic).

CIS 500, 10 November 36

'

&

$

%

Metatheory of Subtyping

(Preview)

CIS 500, 10 November 37

'

&

$

%

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule can be

“read from bottom to top” in a straightforward way.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

If we are given some Γ and some t of the form t1 t2, we can try to find a type

for t by

1. finding (recursively) a type for t1

2. checking that it has the form T11→T12

3. finding (recursively) a type for t2

4. checking that it is the same as T11

CIS 500, 10 November 38

'

&

$

%

Technically, the reason this works is that We can divide the “positions” of the

typing relation into input positions (Γ and t) and output positions (T).

� For the input positions, all metavariables appearing in the premises also

appear in the conclusion (so we can calculate inputs to the “subgoals”

from the subexpressions of inputs to the main goal)

� For the output positions, all metavariables appearing in the conclusions

also appear in the premises (so we can calculate outputs from the main

goal from the outputs of the subgoals)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

CIS 500, 10 November 39

'

&

$

%

Syntax-directed sets of rules

The second important point about the simply typed lambda-calculus is that

the set of typing rules is syntax-directed, in the sense that, for every “input” Γ

and t, there one rule that can be used to derive typing statements involving t.

E.g., if t is an application, then we must proceed by trying to use T-App. If

we succeed, then we have found a type (indeed, the unique type) for t. If it

fails, then we know that t is not typable.

−→ no backtracking!

CIS 500, 10 November 40

'

&

$

%

Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects of

syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be used to give a

type to terms of a given shape (the old one plus T-Sub)

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

2. Worse yet, the new rule T-Sub itself is not syntax directed: the inputs to

the left-hand subgoal are exactly the same as the inputs to the main goal!

(Hence, if we translated the typing rules naively into a typechecking

function, the case corresponding to T-Sub would cause divergence.)

CIS 500, 10 November 41

'

&

$

%

Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either.

1. There are lots of ways to derive a given subtyping statement.

2. The transitivity rule

S <: U U <: T

S <: T
(S-Trans)

is badly non-syntax-directed: the premises contain a metavariable (in an

“input position”) that does not appear at all in the conclusion.

To implement this rule naively, we’d have to guess a value for U!

CIS 500, 10 November 42

'

&

$

%

What to do?

1. Observation: We don’t need 1000 ways to prove a given typing or

subtyping statement — one is enough.

−→ Think more carefully about the typing and subtyping systems to see

where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic” (i.e.,

syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as” the original ones in

an appropriate sense.

CIS 500, 10 November 43

'

&

$

%

What to do?

1. Observation: We don’t need 1000 ways to prove a given typing or

subtyping statement — one is enough.

−→ Think more carefully about the typing and subtyping systems to see

where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic” (i.e.,

syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as” the original ones in

an appropriate sense.

CIS 500, 10 November 43-a

