
CIS 500 � Software Foundations

Final Exam

Answer key

May 6, 2009

Coq

1. (5 points) Brie�y describe the di�erence between a proof object and a tactic script. How are the two
related? (Your answer should not be longer than two or three sentences.)

Answer: A proof object is a functional program that can be intepreted as evidence for a particular
proposition (which is its type). A tactic script is a sequence of commands which constructs a proof
object (and which, if well written, helps the user understand the structure of the proof).

Grading scheme: 1 point for saying that a proof object is (or manipulates) evidence. 1 point for saying
that proof objects are evidence for propositions/lemmas/theorems/etc. 1 point for saying that a tactic
is not itself evidence. 2 points for saying that tactics generate proof objects.

2. (5 points) Coq's built-in programming language is restricted so that all Fixpoint de�nitions terminate.

To make Coq more suitable for general-purpose programming, we might think of removing this
restriction�i.e., removing the requirement that Fixpoint de�nitions be annoted with a {struct ...}
declaration and the check that the designated argument is structurally decreasing on all recursive calls.

Would there be any disadvantages to doing this? Brie�y explain.

Answer: Removing this restriction would make Coq's logic inconsistent: every proposition would become
provable. Indeed, we could write a function

Fixpoint bogus_proof_of (P : Prop) : P := fix P.

such that bogus_proof_of P has type P, for any P�i.e., bogus_proof_of P would be evidence for
proposition P, no matter what P is!

Grading scheme: 1 point for mentioning nontermination. (Up to) 2 points for saying that this makes
programs harder to reason about or connecting the nontermination with di�culty in reasoning. (Up to)
2 points for explaining inconsistency. Points were also awarded if the answer demonstrated knowledge
about the rami�cations without mentioning inconsistency directly (e.g. if they said something like "all
proofs involving �xpoints would need an additional proof of termination to be valid".

1

Logic

3. (12 points) Suppose we make the following inductive de�nition:

Inductive foo (X:Set) : Set :=
| c1 : foo X
| c2 : X → foo X → foo X
| c3 : list (foo X) → foo X.

Fill in the blanks to complete the induction principle that will be generated by Coq.

foo_ind
: forall (X : Set) (P : foo X → Prop),

___ →

(forall (x : X) (f : foo X), __________________________________) →

(___) →

foo_ind
: forall (X : Set) (P : foo X → Prop),
P (c1 X) →
(forall (x : X) (f : foo X), P f → P (c2 X x f)) →
(forall l : list (foo X), P (c3 X l)) →
forall f2 : foo X, P f2

Grading scheme: By line:

• 1 point each for P, c1, X

• 1 point each for P f, P, c2, and X x f

• 1 point each for P, c3, and X l

• 1 point each for foo X and P f2

2

While programs and Hoare Logic

4. (5 points) State the de�nition of program equivalence for while programs.

Answer: Two while programs c1 and c2 are said to be equivalent when c1 maps st to st′ i� c2 does,
for every pair of states st and st′.

Grading scheme: -2 points for a de�nition which doesn't handle non-termination properly. -1 or -2
points for unclear or imprecise answers.

5. (6 points) Which of the following pairs of programs are equivalent? Write �yes� or �no� for each one.

(a) while (A1 <<= !X) do X ::= !X +++ A1

and

while (A2 <<= !X) do X ::= !X +++ A1

Answer: No. (When started in a state where variable X has value 1, the �rst program diverges
while the second one halts.)

(b) while BTrue do (while BFalse do X ::= !X +++ A1)

and

while BFalse do (while BTrue do X ::= !X +++ A1)

Answer: No. (The �rst program always diverges; the second always halts.))

Grading scheme: 3 points (binary) each. (Just writing "No" was enough. When there was a com-
mentary, we corrected it if it was wrong, but still gave all the points if the "No" was clearly present at
the beginning. Everything else received zero.)

3

6. (8 points) Give the weakest precondition for each of the following commands. (Use the informal
notation for assertions rather than Coq notation�i.e., write X = 5, not fun st => st X = 5.)

(a) {{ ? }} X ::= A5 {{ X = 6 }}

Answer: False

(b) {{ ? }}
testif !X <<= !Y
then skip
else Z ::= !Y; Y ::= !X; X ::= !Z

{{ X <= Y }}

Answer: True

(c) {{ ? }} while BNot (!Y === A5) do Y ::= !Y +++ A1 {{ Y = 5 }}

Answer: True

(d) {{ ? }} while !X === A0 do Y ::= A1 {{ Y = 5 }}

Answer: X=0 ∨ Y=5

Grading scheme: 2 points (binary) for a, b, c. 1 or 2 points for d. If the answer was logically
equivalent to the correct one, then the whole points (2 points) were given. For d, we gave one point for
some �close� answers: X<>0 ∧ Y=5, X=0, or Y=5.

4

7. (8 points) For each of the while programs below, we have provided a precondition and postcondition.
In the blank before each loop, �ll in an invariant that would allow us to annotate the rest of the
program. Assume X, Y and Z are distinct program variables.

(a) { True }
X ::= ANum n;
Y ::= A1;

{ _______________________________________ }
while (BNot (!X === A0)) do (

Y ::= !Y *** A2;
X ::= !X --- A1

)
{ Y = 2^n }

Answer: Y = 2^(n-X)

(b) { True }
X ::= ANum x;
Y ::= ANum y;
Z ::= A0;

{ _______________________________________ }
while (BAnd (BNot (!X === A0)) (BNot (!Y === A0))) do (

X ::= !X --- A1;
Y ::= !Y --- A1;
Z ::= !Z +++ A1

)
{ Z = min(x,y) }

(where min is the mathematical �minimum� function)

Answer: Z = min(x,y) - min(X,Y)

Grading scheme: We used the same schema for both parts. We checked if the given �invariant�
held in the following cases: before the while (1 point), for a step of the while, assuming the invariant
held before (1 point), and for the implication of the postcondition, using the condition and invariant (2
points). In cases that seemed confused about the concept of invariant, we gave no points. (For example:
writting the postcondition of the variables' initialisation. In some particular cases, the right answer was
surrounded by some garbage, sometimes representing the postcondition of the variables' initialisation.)
For example: (a) X=n ∧ Y=1: 0 points. (a) X=n or Y=2^(n-X): 4 points (b) x = X + Z ∧ y = Y + Z:
4 points. (b) Z = min(x-X, y-Y): 2 points.

5

Small-Step and Big-Step Operational Semantics

8. (6 points) Brie�y explain the di�erence between big-step and small-step styles of operational semantics.
What are the advantages of each style?

Answer: The big-step style directly relates a term to the �nal result of its evaluation; the small-step
style relates a term to a �slightly more reduced� term in which a single subphrase has taken a single
step of computation. Big-step de�nitions tend to be shorter and are sometimes easier to read; their
major disadvantage is that they con�ate terms that have no result because they diverge and terms
that have no result because their evaluation encounters an unde�ned state. Small-step de�nitions are
sometimes preferred because they are closer to implementations; in particular, they explicitly expose
order of evaluation.

Grading scheme: 1 point for saying that big steps relate terms to �nal values. 1 point for an advan-
tage (e.g. big step semantics are often more concise). 1 for saying that that small steps describe the
intermediate states of computation. 1 point for advantage (e.g. that it doesn't con�ate "nonterminat-
ing" with "stuck"). 2 "fudge points" for not saying anything bogus and for giving clear and precise
explanations of the above.

6

Simply Typed Lambda-Calculus

In this section of the exam, we consider the simply typed lambda-calculus with natural numbers,
product types, and the �xpoint operator fix (but not records). The formal de�nition of this system is
given in the accompanying handout.

9. (4 points)

(a) Is there a type T that makes

x:T |- if0 ((\x:nat. pred x) x.fst) then x.snd else (x.fst, x.fst) : (nat * nat)

provable? If so, what is it?

Answer: Yes: T = nat * (nat * nat).

(b) Are there types S and T that make

empty |- (\x:T. \y:T. x y) : S

provable? If so, what are they?

Answer: No; it would have to be the case that T = T → S, but there can be no such (�nite) type
T.

7

10. (9 points)

(a) Suppose we add a term foo with the following evaluation rules:

(\x:A. x) ~~> foo (ST_Foo1)

foo ~~> 0 (ST_Foo2)

Do progress and preservation continue to hold after this change, or does one (or do both) fail?
Why?

Answer: Preservation fails, since we have no typing rules for foo but \x:A. x has type A→A.
Progress still holds: we are only adding to the step relation, and this can never damage progress.

(b) Suppose we add a term zap, with the following evaluation rule

t ~~> zap (ST_Zap)

and the following typing rule:

Gamma |- zap : T (T_Zap)

Do progress and preservation continue to hold after this change, or does one (or do both) fail?
Why?

Answer: Both properties continue to hold. Progress holds trivially: every term can take a step to
zap! Preservation holds because zap can have any type.

(c) Suppose we change ST_AppAbs to the following rule:

(\x:T. t12) t2 ~~> (subst x t2 t12) (ST_AppAbs’)

Do progress and preservation continue to hold after this change, or does one (or do both) fail?
Why?

Answer: Both properties continue to hold. (Substitution preserves typing irrespective of whether
the term being substituted into another term is a value or not.)

Grading scheme: There were 3 subproblems. Each asked about whether (a) preservation holds (b)
why? (c) whether progress holds, and (d) why? Each part (a)-(d) was worth 0.75 points; we rounded
to get an integral score.

11. (6 points) Give a term in the simply typed lambda-calculus with succ, pred, 0, if0, and fix that
adds numbers � that is, give a term add of type nat→nat→nat such that add m n reduces to the
sum of m and n.

Please use informal notation (\x:T.t, not tm_abs x T t).

Answer:

add =
fix (\a:nat→nat→nat.

\m:nat. \n:nat.
if0 m then n else a (pred m) (succ n))

Grading scheme: 1 point for a's type, 2 points for properly using fix, and 3 poitns for the right recursive
logic

8

12. (20 points) Here is the statement of the preservation theorem for the simply typed lambda-calculus
with products and fix, along with the statement of the substitution lemma, on which it immediately
depends. Fill in the blanks in the proof of preservation. (You do not have to prove the substitution
lemma.)

Lemma substitution_preserves_typing : forall Gamma x U v t S,
has_type (extend Gamma x U) t S

→ has_type empty v U
→ has_type Gamma (subst x v t) S.

Theorem preservation : forall t t’ T,
has_type empty t T

→ t ~~> t’
→ has_type empty t’ T.

Proof: By induction on the given typing derivation. The cases involving numbers (T_Nat, T_Succ,
T_Pred, T_Mult, and T_If0) are omitted.

• If the last rule used was T_App, then t = t1 t2, with empty |- t1 : T1→T and
empty |- t2 : T1.

� If the �nal rule in the derivation of t ~~> t′ is ST_App1, then t1 ~~> t1′ and t′ = t1′ t2.
By the IH, empty |- t1′ : T1→T. By T_App, empty |- t1′ t2 : T, as required.

� If the �nal rule in the derivation of t ~~> t′ is ST_App2, then t1 is a value, t2 ~~> t2′,
and t′ = t1 t2′. By the IH, empty |- t2′ : T1. By T_App, empty |- t1 t2′ : T, as
required.

� If the �nal rule in the derivation of t ~~> t′ is ST_AppAbs, then t2 is a value,
t1 = tm_abs x T11 t12, and t′ = subst x t2 t12. We know by assumption that
empty |- tm_abs x T11 t12 : T1→T and since (by inspection of the typing rules) the only
way this could have been proved is by using rule T_Abs, it follows that x:T1 |- t12 : T. By
Lemma substitution_preserves_typing, empty |- subst x t2 t12 : T, as required.

• If the last rule used was T_Pair... then t = (t1,t2) and T = T1*T2, with empty |- t1 : T1
and empty |- t2 : T2.

� If the �nal rule in the derivation of t ~~> t′ is ST_Pair1, then t1 ~~> t1′ and
t′ = (t1′,t2). By the IH, empty |- t1′ : T1, and the result follows by T_Pair.

� If the �nal rule in the derivation of t ~~> t′ is ST_Pair2, then t2 ~~> t2′ and
t′ = (t1,t2′). By the IH, empty |- t2′ : T1, and the result follows by T_Pair.

• If the last rule used was T_Fst... then t = t1.fst, with empty |- t1 : T*T2 for some T2.

� If the �nal rule in the derivation of t ~~> t′ is ST_Fst1, then t1 ~~> t1′ and t′ = t1′.fst.
By the IH, empty |- t1′ : T*T2 and the desired result follows by T_Fst.

� If the �nal rule in the derivation of t ~~> t′ is ST_FstPair, then t1 = (v1,v2) for some v1
and v2, and t′ = v1. But the only way empty |- (v1,v2) : T*T2 could have been proved
is by rule T_Pair, so it must be that empty |- v1 : T and empty |- v2 : T2. The �rst
of these is the desired result.

• The case where the last rule used was T_Snd is similar to the T_Fst case.

• If the last rule was T_Fix... then t = fix t1, with empty |- t1 : T→T. There are two possi-
bilities for the �nal rule in the derivation of t ~~> t′: ST_Fix1 and ST_FixAbs.

� If the �nal rule in the derivation of t ~~> t′ is ST_Fix1, then t1 ~~> t1′. But then, by the
IH, empty |- t1′ : T→T, from which the result follows by T_Fix.

� If the �nal rule in the derivation of t ~~> t′ is ST_FixAbs, then t1 = \x:T1.t12 and
t′ = subst x t t12. The only way to prove empty |- t1 : T→T is if T1 = T and
x:T |- t12 : T. Since empty |- t : T, Lemma substitution_preserves_typing
gives us empty |- subst x t t12 : T, as required. �

9

Grading scheme: -2 for not indicating which typing rules were being applied. -2 for not indicating
inversions. -1 for not showing how T is constrained in each case. -4 for assuming (in the T_Fst case)
that t is a pair. -4 for missing the FixAbs subcase; more for larger omissions. Variable deductions for
confused reasoning.

10

Subtyping

Throughout this section, we consider the simply typed lambda-calculus with subtyping, product types,
and records. All of the appropriate de�nitions are at the end of the exam.

13. (6 points) In this problem, we examine possible variations of the simply-typed lambda calculus with
subtyping.

(a) Suppose we remove the S_Arrow rule from the subtyping relation. Do progress and preservation
continue to hold after this change, or does one (or do both) fail? If either fails, give a counterex-
ample.

Answer: Neither breaks. Intuitively, we added subtyping to a language that was already sound in
order to allow more terms to have types. Reducing some of that freedom maintains soundness.

Grading scheme: One point if only one is identi�ed as still holding; 0 if both are given as failing.

(b) Suppose we change the S_Arrow rule to:

T1 <: S1 T2 <: S2
---------------------- (S_Arrow_Odd)
S1 → S2 <: T1 → T2

Do progress and preservation continue to hold after this change, or does one (or do both) fail? If
either fails, give a counterexample.

Answer: Preservation breaks. Consider empty |- ((\x:{}. {}) {}).i : A→A. We can
show {i:A→A} <: {}, so {} → {} <: {} → {i:A→A}, and so the inner application has type
{i:A→A}. But when we take a step, we must show that empty |- {}.i : A→A, but we cannot
� {} can only be typed as {} or Top.

Grading scheme: 1 point for identifying preservation as failing, another for a counterexample, and 1
for saying progress holds.

14. (6 points) The subtyping rule for products in the �nal homework assignment

S1 <: T1 S2 <: T2
--------------------- (S_Prod)
S1 * S2 <: T1 * T2

intuitively corresponds to the �depth� subtyping rule for records. Extending the analogy, we might
consider adding a �width� rule

------------- (S_ProdW)
S1 * S2 <: S1

for products.

Is this a good idea? Brie�y explain why or why not.

Answer: No, since it will break progress: ({i=\y:A.y},{}).i cannot take a step even though it is well
typed using this rule.

Grading scheme: 1 point for �bad idea�, 1 point for noting preservation holds, 2 points for noting
progress fails, and 2 points for a counterexample. Due to its open-ended nature, some answeres to this
question were given points despite not discussing these topics, e.g., if they o�ered a set of changes that
would make a system with this rule sound.

11

15. (14 points) Write a careful informal proof of the following theorem.

Theorem: If S1*S2 <: T, then either T = Top or else T = T1*T2, with S1 <: T1 and S2 <: T2.

You may use the following result in your proof (you do not need to prove it):

Lemma [sub-inversion-Top]: For any type S, if Top <: S then S = Top.

Answer:

Proof: By induction on the given derivation.

• If the last rule is S_Refl, then T = S1*S2 and the result follows by two uses of S_Refl.

• If the last rule is S_Trans, then S <: U and U <: T for some U. By the IH, either U = Top or else
U = U1*U2 with S1 <: U1 and S2 <: U2. In the �rst case, a straightforward inner induction on
the derivation of Top <: T shows that T = Top. In the second case, applying the IH to U1*U2 <: T
tells us that either T = Top or else T = T1*T2 with U1 <: T1 and U2 <: T2. If T = Top, we are
�nished. If T = T1*T2, then by S_Trans we have S1 <: T1 and S2 <: T2, as required.

• If the last rule is S_Top, then T = Top immediately.

• If the last rule is S_Pair, then T = T1*T2 with S1 <: T1 and S2 <: T2, and the result is imme-
diate.

• None of the other rules (S_Arrow, S_RcdWidth, S_RcdDepth, or S_RcdPerm) are possible. �

Grading scheme: 1 point for induction on the correct derivation, 1 point per case (re�, trans, pair, and
top), 1 point for mentioning that the other cases do not adhere, 1 point each for the logic of the easy
cases (re�, top, and pair), and 5 points for the S_Trans case: 1 for the �rst application of the IH, 1
for the U = Top case, 1 for the second IH application, 1 for the T = Top case, and 1 for the T = T1*T2
case.

12

