CIS 500 — Software Foundations
Midterm 1

February 18, 2009
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Instructions

This is a closed-book exam: you may not use any books or notes.
You have 80 minutes to answer all of the questions.

The exam is worth 80 points. However, questions vary significantly in difficulty, and the point value
of a given question is not always exactly proportional to its difficulty. Do not spend too much time on
any one question.

Partial credit will be given. All correct answers are short. The back side of each page may be used as
a scratch pad.

Good luck!



1. (5 points) Consider the following Coq function:

Fixpoint concatMap (X Y : Set) (f : X — list Y) (1 : list X)
{struct 1} : list Y :=
match 1 with

| nil => nil
| h :: t = (£ h) ++ (concatMap _ _ f t)
end.

(a) What is the type of concatMap? (I.e., what does Check concatMap print?)

(b) What does
Eval simpl in (concatMap _ _ (fun x => x) [[1,2],[3,4]1]1).

print?

(¢) What does

Eval simpl in (concatMap _ _ (fun x => [x+1,x+2]) ([1,2])).

print?



2. (5 points)

(a) Fill in the definition of the Coq function elem below.
Given a type X, an equality-testing function eq for X, an element e of type X, and a list 1
of type list X, the expression elem X eq e 1 returns true if and only an element eg-equal
to e appears in the list. For example, elem nat beqg_nat 2 [1,2,3] yields true (because
beq_nat 2 2 = true) while elem nat beq_nat 5 [1,2,3] yields false.
Fixpoint elem (X : Set) (eq : X — X — bool) (e : X) (1 : list X)
{struct 1} : bool :=

(b) Why do we need to pass an equality-testing function eq as an argument to elem instead of just
using = to test for equality?

3. (6 points) Fill in the definition of the Coq function nub below.

Given a type X, an equality function eq for X, and a list 1 of type 1list X, the expression nub X eq 1
yields a list that retains only the last copy of each element in the input list. For example,

nub nat beq_nat [1,2,1,3,2,2,4] yields [1,3,2,4].

Fixpoint nub (X : Set) (eq : X — X — bool) (1 : list X)
{struct 1} : list X :=



4. (5 points)

(a) Briefly explain the use and behavior of the apply tactic.

(b) Briefly explain the use and behavior of the apply ... in ... tactic.



5. (6 points) Recall the Coq function repeat:

Fixpoint repeat (X : Set) (n : X) (count : nat) {struct count} : list X :=
match count with

| 0 => nil
| S count’ => cons n (repeat _ n count’)
end.

Consider the following partial proof:

Lemma repeat_injective : forall (X : Set) (x : X) (nm : nat),
repeat _ x n = repeat _ x m —
n =m.
Proof.
intros X x n m eq. induction n as [|n’].
Case "n = 0". destruct m as [|m’].
SCase "'m = 0". reflexivity.
SCase "m = S m’". inversion eq.
Case "'n = S n’". destruct m as [|m’].
SCase "m = 0". inversion eq.
SCase "m = S m’".
assert (n’ =m’) as H.
SSCase "Proof of assertion".

Here is what the “goals” display looks like after Coq has processed this much of the proof:

2 subgoals
SSCase := "Proof of assertion" : String.string
SCase := "m = S m’" : String.string
Case := "n =S n’" : String.string
X : Set
x : X
n’ : nat
m’ : nat
eq : repeat X x (S n’) = repeat X x (Sm’)
IHn’ : repeat X x n’ = repeat X x (Sm’) — n’ =S m’
n’ =m’

subgoal 2 is:
Sn’ =S’

This proof attempt is not going to succeed. Briefly explain why and say how it can be fixed. (Do not
write the repaired proof in detail—just say briefly what needs to be changed to make it work.)



6. (5 points) Suppose we make the following inductive definition:

Inductive foo (X : Set) (Y : Set) : Set :=
| fool : X — foo X Y
| foo2 : Y — foo X Y
| foo3 : foo X Y — foo X V.

Fill in the blanks to complete the induction principle that will be generated by Coq.

foo_ind
: forall (X Y : Set) (P : foo X Y — Prop),

(forall x : X, ) —
(forall y : Y, ) —
( ) —

7. (6 points)
Consider the following induction principle:

bar_ind
: forall P : bar — Prop,
(forall n : nat, P (barl n)) —
(forall b : bar, P b — P (bar2 b)) —

(forall (b : bool) (b® : bar), P b® — P (bar3 b b0®)) —
forall b : bar, P b

Write out the corresponding inductive set definition.

Inductive bar : Set :=

| barl :

| bar2 :

| bar3 :




8. (6 points) Suppose we give Coq the following definition:

Inductive R : nat — list nat — Prop :=
| ¢c1 : RO []
| c2 : forallnl, Rnl - R (Sn) (n:: 1)
| ¢c3 : forallnl, R(Sn) 1 — Rn 1.

Which of the following propositions are provable? (Write yes or no next to each one.)

(a) R 2 [1,0]

(b) R 1 [1,2,1,0]

(¢) R 6 [3,2,1,0]

9. (6 points) The following inductively defined proposition...

Inductive appears_in (X:Set) (a:X) : list X — Prop :=
| ai_here : forall 1, appears_in X a (a::1)
| ai_later : forall b 1, appears_in X a 1 — appears_in X a (b::1).

...gives us a precise way of saying that a value a appears at least once as a member of a list 1.

Use appears_in to complete the following definition of the proposition no_repeats X 1, which should
be provable exactly when 1 is a list (with elements of type X) where every member is different from
every other. For example, no_repeats nat [1,2,3,4] and no_repeats bool [] should be provable,
while no_repeats nat [1,2,1] and no_repeats bool [true,true] should not be.

Inductive no_repeats (X:Set) : list X — Prop :=



10. (2 points) Complete the definition of and, as it is defined in Logic.v:

Inductive and (A B : Prop) : Prop :=

11. (2 points) Complete the definition of or, as it is defined in Logic.v:

Inductive or (A B : Prop) : Prop :=

12. (6 points) Write an informal proof (in English) of the proposition V P : Prop, ~(P A ~P).



13. (4 points) Recall the nat-indexed proposition ev from Logic.v:

Inductive ev : nat — Prop :=
| ev_® : ev O
| ev_SS : forall n:nat, evn — ev (S (S n)).

Complete the definition of the following proof object:

Definition ev_plus2 : forall n, ev n — ev (plus 2 n) :=

14. (6 points) Recall the definition of ex (existential quantification) from Logic.v:

Inductive ex (X : Set) (P : X — Prop) : Prop :=
ex_intro : forall witness:X, P witness — ex X P.

(a) In English, what does the proposition

ex nat (fun n => ev (S n))

mean”?

(b) Complete the definition of the following proof object:

Definition p : ex nat (fun n => ev (S n)) :=



15. (10 points) Recall the definition of the index function:

Fixpoint index (X : Set) (n : nat) (1 : list X) {struct 1} : option X :

match 1 with

| [T => None
| a :: 1’ => if beq_nat n O then Some a else index _ (pred n) 1’
end.

Write an informal proof of the following theorem:

VXnl, lengthl =n — index X (S n) 1 = None.
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