
CIS 500 � Software Foundations

Midterm I

February 18, 2009

Name:

Email:

Score

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Total



Instructions

• This is a closed-book exam: you may not use any books or notes.

• You have 80 minutes to answer all of the questions.

• The exam is worth 80 points. However, questions vary signi�cantly in di�culty, and the point value
of a given question is not always exactly proportional to its di�culty. Do not spend too much time on
any one question.

• Partial credit will be given. All correct answers are short. The back side of each page may be used as
a scratch pad.

• Good luck!

1



1. (5 points) Consider the following Coq function:

Fixpoint concatMap (X Y : Set) (f : X → list Y) (l : list X)
{struct l} : list Y :=

match l with
| nil => nil
| h :: t => (f h) ++ (concatMap _ _ f t)
end.

(a) What is the type of concatMap? (I.e., what does Check concatMap print?)

(b) What does

Eval simpl in (concatMap _ _ (fun x => x) [[1,2],[3,4]]).

print?

(c) What does

Eval simpl in (concatMap _ _ (fun x => [x+1,x+2]) ([1,2])).

print?

2



2. (5 points)

(a) Fill in the de�nition of the Coq function elem below.

Given a type X, an equality-testing function eq for X, an element e of type X, and a list l
of type list X, the expression elem X eq e l returns true if and only an element eq-equal
to e appears in the list. For example, elem nat beq_nat 2 [1,2,3] yields true (because
beq_nat 2 2 = true) while elem nat beq_nat 5 [1,2,3] yields false.

Fixpoint elem (X : Set) (eq : X → X → bool) (e : X) (l : list X)
{struct l} : bool :=

(b) Why do we need to pass an equality-testing function eq as an argument to elem instead of just
using = to test for equality?

3. (6 points) Fill in the de�nition of the Coq function nub below.

Given a type X, an equality function eq for X, and a list l of type list X, the expression nub X eq l
yields a list that retains only the last copy of each element in the input list. For example,
nub nat beq_nat [1,2,1,3,2,2,4] yields [1,3,2,4].

Fixpoint nub (X : Set) (eq : X → X → bool) (l : list X)
{struct l} : list X :=

3



4. (5 points)

(a) Brie�y explain the use and behavior of the apply tactic.

(b) Brie�y explain the use and behavior of the apply ... in ... tactic.

4



5. (6 points) Recall the Coq function repeat:

Fixpoint repeat (X : Set) (n : X) (count : nat) {struct count} : list X :=
match count with
| O => nil
| S count’ => cons n (repeat _ n count’)
end.

Consider the following partial proof:

Lemma repeat_injective : forall (X : Set) (x : X) (n m : nat),
repeat _ x n = repeat _ x m →
n = m.

Proof.
intros X x n m eq. induction n as [|n’].
Case "n = 0". destruct m as [|m’].
SCase "m = 0". reflexivity.
SCase "m = S m’". inversion eq.

Case "n = S n’". destruct m as [|m’].
SCase "m = 0". inversion eq.
SCase "m = S m’".
assert (n’ = m’) as H.
SSCase "Proof of assertion".

Here is what the �goals� display looks like after Coq has processed this much of the proof:

2 subgoals

SSCase := "Proof of assertion" : String.string
SCase := "m = S m’" : String.string
Case := "n = S n’" : String.string
X : Set
x : X
n’ : nat
m’ : nat
eq : repeat X x (S n’) = repeat X x (S m’)
IHn’ : repeat X x n’ = repeat X x (S m’) → n’ = S m’
============================
n’ = m’

subgoal 2 is:
S n’ = S m’

This proof attempt is not going to succeed. Brie�y explain why and say how it can be �xed. (Do not
write the repaired proof in detail�just say brie�y what needs to be changed to make it work.)

5



6. (5 points) Suppose we make the following inductive de�nition:

Inductive foo (X : Set) (Y : Set) : Set :=
| foo1 : X → foo X Y
| foo2 : Y → foo X Y
| foo3 : foo X Y → foo X Y.

Fill in the blanks to complete the induction principle that will be generated by Coq.

foo_ind
: forall (X Y : Set) (P : foo X Y → Prop),

(forall x : X, __________________________________) →

(forall y : Y, __________________________________) →

(________________________________________________) →

________________________________________________

7. (6 points)

Consider the following induction principle:

bar_ind
: forall P : bar → Prop,
(forall n : nat, P (bar1 n)) →
(forall b : bar, P b → P (bar2 b)) →
(forall (b : bool) (b0 : bar), P b0 → P (bar3 b b0)) →
forall b : bar, P b

Write out the corresponding inductive set de�nition.

Inductive bar : Set :=

| bar1 : ________________________________________

| bar2 : ________________________________________

| bar3 : ________________________________________.

6



8. (6 points) Suppose we give Coq the following de�nition:

Inductive R : nat → list nat → Prop :=
| c1 : R 0 []
| c2 : forall n l, R n l → R (S n) (n :: l)
| c3 : forall n l, R (S n) l → R n l.

Which of the following propositions are provable? (Write yes or no next to each one.)

(a) R 2 [1,0]

(b) R 1 [1,2,1,0]

(c) R 6 [3,2,1,0]

9. (6 points) The following inductively de�ned proposition...

Inductive appears_in (X:Set) (a:X) : list X → Prop :=
| ai_here : forall l, appears_in X a (a::l)
| ai_later : forall b l, appears_in X a l → appears_in X a (b::l).

...gives us a precise way of saying that a value a appears at least once as a member of a list l.

Use appears_in to complete the following de�nition of the proposition no_repeats X l, which should
be provable exactly when l is a list (with elements of type X) where every member is di�erent from
every other. For example, no_repeats nat [1,2,3,4] and no_repeats bool [] should be provable,
while no_repeats nat [1,2,1] and no_repeats bool [true,true] should not be.

Inductive no_repeats (X:Set) : list X → Prop :=

7



10. (2 points) Complete the de�nition of and, as it is de�ned in Logic.v:

Inductive and (A B : Prop) : Prop :=

11. (2 points) Complete the de�nition of or, as it is de�ned in Logic.v:

Inductive or (A B : Prop) : Prop :=

12. (6 points) Write an informal proof (in English) of the proposition ∀ P : Prop, ~(P ∧ ~P).

8



13. (4 points) Recall the nat-indexed proposition ev from Logic.v:

Inductive ev : nat → Prop :=
| ev_0 : ev O
| ev_SS : forall n:nat, ev n → ev (S (S n)).

Complete the de�nition of the following proof object:

Definition ev_plus2 : forall n, ev n → ev (plus 2 n) :=

14. (6 points) Recall the de�nition of ex (existential quanti�cation) from Logic.v:

Inductive ex (X : Set) (P : X → Prop) : Prop :=
ex_intro : forall witness:X, P witness → ex X P.

(a) In English, what does the proposition

ex nat (fun n => ev (S n))

mean?

(b) Complete the de�nition of the following proof object:

Definition p : ex nat (fun n => ev (S n)) :=

9



15. (10 points) Recall the de�nition of the index function:

Fixpoint index (X : Set) (n : nat) (l : list X) {struct l} : option X :=
match l with
| [] => None
| a :: l’ => if beq_nat n O then Some a else index _ (pred n) l’
end.

Write an informal proof of the following theorem:

∀ X n l, length l = n → index X (S n) l = None.

10


