
CIS 500 � Software Foundations

Final Exam

Answer key

May 3, 2010

Induction

1. (10 points) Three natural numbers are said to frobnosticate if they are in the following inductively
de�ned relation:

Inductive frob : nat → nat → nat → Prop :=
| frob_base : frob 0 0 0
| frob_inc : forall n1 n2 n3, frob n1 n2 n3 → frob n1 n2 (S n3)
| frob1 : forall n1 n2 n3, frob n1 n2 n3 → frob (S n1) n2 (S n3)
| frob2 : forall n1 n2 n3, frob n1 n2 n3 → frob n1 (S n2) (S n3).

Give a careful informal proof that, if x, y, and z frobnosticate, then x+ y ≤ z.
Answer:

By induction on a derivation of frob x y z:

• Suppose the �nal rule used to show frob x y z is FrobBase. Then x = y = z = 0. We must
show 0 + 0 ≤ 0, which is immediate.

• Suppose the �nal rule was FrobInc. Then z = S z′ for some z with x+ y ≤ z′. We must show
x+ y ≤ S z′, which is a simple arithmetic fact.

• Suppose the �nal rule was Frob1. Then x = S x′ and z = S z′ for some x′ and z′ with x′+y ≤ z′.
We must show S x+ y ≤ S z′, which again is a simple arithmetic fact.

• Suppose the �nal rule was Frob2. This case is similar to Frob1.

1

Logic in Coq

2. (12 points) State the inductive de�nitions of and, or, and exists, as we gave them in Logic.v. (Don't
worry about the exact names of the constructors. Just make up your own names if you don't remember
the ones we used in Logic.v.)

Inductive and (P Q : Prop) : Prop :=

Answer:

conj : P → Q → (and P Q).

Inductive or (P Q : Prop) : Prop :=

Answer:

| or_introl : P → or P Q
| or_intror : Q → or P Q.

Inductive ex (X:Type) (P : X→Prop) : Prop :=

Answer:

ex_intro : forall (witness:X), P witness → ex X P.

2

Hoare Logic

3. (9 points) Recall the list-reversal function rev...

Fixpoint rev {X:Type} (l:list X) : list X :=
match l with
| nil => []
| cons h t => snoc (rev t) h
end.

...and its imperative realization in IMP:

WHILE (BIsCons (AId X)) DO
Y ::= ACons (AHead (AId X)) (AId Y);
X ::= ATail (AId X)

END

Suppose that we want to carry out a Hoare-logic proof of correctness for this program. We begin by
annotating it with pre- and post-conditions, plus a candidate invariant for the loop:

{{ X = l ∧ Y = [] }}
WHILE (BIsCons (AId X)) DO
Y ::= ACons (AHead (AId X)) (AId Y);
X ::= ATail (AId X)

{{ X ++ rev Y = rev l }} // Invariant?
END

{{ Y = rev l }}

Is this invariant correct � i.e., are we going to be able to �nish decorating the program so that all the
local constraints imposed by the Hoare-logic rules are satis�ed? If not, propose a correct invariant.

Answer: No. The correct invariant is rev X ++ Y = rev l.

Grading scheme: Binary grading; 3 pts for stating "no", 6 pts for stating correct invariant.

3

4. (9 points) For each of the following Hoare triples, give the weakest precondition that makes the triple
valid.

(a) {{ ? }}
WHILE Y <= X DO
X := X - 1

END
{{ Y > X }}

Answer:

True

(b) {{ ? }}
IF X > 3 THEN Z := X ELSE Z := Y FI

{{ Z = W }}

Answer:

(X > 3 → X = W) ∧ (X <= 3 → Y = W)

or equivalently

(X > 3 ∧ X = W) ∨ (X <= 3 ∧ Y = W)
(c) {{ ? }}

WHILE IsCons X DO
N := N + 1;
X := Tail(X)

DONE
{{ X = [] ∧ N = length l }}

Answer:

N + length X = length l

Grading scheme: 3 points each. Partial credit given for preconditions that were correct but not the
weakest possible. However, full credit was given on part (c) for the answer (N = 0 ∧ length X = length
l).

4

Simply Typed Lambda Calculus

The next two problems concern the STLC extended with natural numbers, pairs, and �xpoints, de�ned
formally on page 17 in the Appendix.

5. (8 points) For each of the following assertions, write down a type T that makes the assertion true, or
else state that there exists no such type.

(a) empty |- (\p : T. p.fst (p.snd 42)) : T → A

Answer: (A→A)*(Nat→A)
(b) exists U, exists V,

empty |- (\f : U. \g : V. \x : A. g (f x)) : T

Answer: (A→B) → (B→C) → A → C

(c) empty |- fix (\n : Nat. pred n) : T

Answer: Nat

(d) exists S, empty |- (\x:T. x 42 x) : S

Answer: No such T.

Grading scheme: 2 points per type.

6. (6 points) Recall the typing and reduction rules for the fix operator in the simply typed lambda
calculus.

Gamma |- t1 : T1→T1
-------------------- (T_Fix)
Gamma |- fix t1 : T1

t1 --> t1’
------------------ (ST_Fix1)
fix t1 --> fix t1’

--- (ST_FixAbs)
fix (\x:T1.t2) --> [(fix(\x:T1.t2)) / x] t2

Consider the following Coq Fixpoint de�nition of exponentiation:

Fixpoint pow (base:Nat) (exp:Nat) : Nat :=
match exp with
| O => 1
| S exp’ => base * pow base exp’
end.

Translate this into a term in the STLC (with natural numbers and fix).

Answer:

fix (\f:Nat → Nat → Nat.
\b:Nat. \e:Nat.
if0 e 1 (b * f b (pred e)))

Grading scheme: -1 for minor errors; -2 for getting typing of �x wrong; 0 to 2 points for answers with
more serious problems.

5

References

The de�nition of the STLC extended with references can be found on page 20 of the Appendix, together
with critical auxiliary de�nitions such as the well_typed_store and extends relations.

7. (12 points) For each of the following stores s:

• First, write down a store typing corresponding to the given store. For example, the store typing
corresponding to the store [6,7] would be [Nat, Nat].

• Then write down a term t in the simply typed lambda calculus with references, such that

t / [] -->* v / s

for some value v. For example, if the desired ending store were

[6, 7]

one possible program to build this store would be:

let x = ref 6 in
let y = ref 7 in
unit

(We've used the let derived form here, to make the program more readable. Feel free to do the
same.)

(a) [5, loc 0]

Answer:

ref (ref 5)

[Nat, Ref Nat]

(b) [5, loc 2, 4]

Answer:

let r = ref (ref 5) in
r := ref 4

[Nat, Ref Nat, Nat]

(c) [(\ x : Unit . !(loc 0) unit)]

Answer:

let r = (ref (\x : Unit . x)) in
r := (\x : Unit . (!r) unit)

[Unit → Unit]

Grading scheme: Each subpart is 1pt for store typing, 3pts for program. -2 for writing �loc� in
program (which is not typable in the empty store typing); -1 for other minor errors. In part (ii),
-2 for not using assignment to create a circular store. In part (iii), -1 for not initializing the
location with a dummy function; -2 for getting assignment of the real function wrong.

6

8. (8 points) Write out the statements of the progress and preservation theorems for the STLC with
references. (Just the statements�no proofs.)

Answer:

Theorem preservation : forall ST t t’ T st st’,
has_type empty ST t T →
store_well_typed empty ST st →
t / st --> t’ / st’ →
exists ST’,
(extends ST’ ST ∧
has_type empty ST’ t’ T ∧
store_well_typed empty ST’ st’).

Theorem progress : forall ST t T st,
has_type empty ST t T →
store_well_typed empty ST st →
(value t ∨ exists t’, exists st’, t / st --> t’ / st’).

Grading scheme: 4 points per theorem. Partial credit given for statements that had the right idea but
missing various premises or conclusions.

7

Subtyping

The remaining questions on the exam concern the simply typed lambda calculus extended with products
and subtyping, described formally on page 23 in the Appendix.

9. (6 points) The subtyping relations among a collection of types can be visuaized compactly in tree
form: we draw the tree so that S <: T i� S is below T (either directly or indirectly). For example, a
tree for the types Top*Top, A*Top, Top*(Top*Top), and Top*(A*A) would look like this:

Top*Top

A*Top Top*(Top*Top)

Top*(A*A)

Draw a tree for the following six types.

(Top → B) → A
Top
A → Top
(Top → B) → Top
A → (B → B)
(B → B) → Top

Answer:

Top

A → Top

A → (B → B)

(Top → B) → Top

(Top → B) → A (B → B) → Top

Grading scheme: Generally, 2 points o� for each misplaced type.

8

10. (10 points) Suppose we wanted to add both subtyping and references to the simply typed lambda
calculus. Following the pattern we've used for the other type constructors (arrow, products, etc.), we'd
need to think about what subtyping rule we'd want for reference types.

Here are two incorrect versions of a subtyping rule for reference types. For each rule, explain in one or
two sentences why it is incorrect, and give an example of a program that would be well typed using
this rule but would get stuck when executed.

(a) T2 <: T1
---------------- (S_Ref_Wrong1)
Ref T1 <: Ref T2

Answer: If a context is expecting a Ref T2, this rule says that it can be safely given a Ref T1. it
may then dereference the pointer and obtain a T1 when it was expecting a T2; but we only know
that it is safe to use a T2 when a T1 is expected, not the other way around.

The following term would be well-typed, since {x:Nat} <: {} and thus Ref {} <: Ref {x:Nat},
so by the subsumption rule we may give ref {} the type Ref {x:Nat} and pass it as an argument
to the lambda. However, executing this program will result in trying to project the x �eld from an
empty record.

(\r:Ref {x:Nat}. (!r).x) (ref {})

(b) T1 <: T2
---------------- (S_Ref_Wrong2)
Ref T1 <: Ref T2

Answer: If a context expecting a Ref T2 is given a Ref T1, it can then store a value of type T2
into the reference cell. Then any other code dereferencing the Ref T1 later will get a T2 when it
expected a T1�but we only know that it is safe to use a T1 when a T2 is expected, not the other
way around.

The following term would be well-typed: since {x:Nat} <: {}, we have Ref {x:Nat} <: Ref {},
so we may give the reference r the type Ref {} and assigns the empty record into its cell. Later
trying to project the x �eld will now fail.

(\r:Ref {x:Nat}. r := {}; (!r).x) (ref {x=5})

11. (12 points) This problem asks you to consider the possible consequences if we add to this language
(STLC with products and subtyping) a reduction rule of the form

---------- (ST_Unit)
unit --> ?

where ? is some term.

For each of the following three properties, either give a term which can be put in the place of the ? in
order to break the given property, or explain why there is no such term.

(a) Preservation

Answer: We can break preservation by replacing ? by a value of a di�erent type, such as \x.x.

(b) Progress

Answer: We can never break progress with additional reduction rules.

(c) Normalization of well-typed terms

Answer: We can break normalization by, for example, replacing ? by unit.

Grading scheme: 4 points each.

9

12. (18 points) Recall the progress theorem for the STLC with products and subtyping.

Theorem: For any term t and type T, if empty |- t : T then either t is a value or else
t --> t′ for some term t′.

Write a careful informal proof of this theorem in the space below. You may use the following lemmas:

Lemma [Canonical forms of arrow types]: If Gamma |- s : T1→T2 and s is a value,
then s = tm_abs x S1 s2 for some x, S1, and s2.

Lemma [Canonical forms of product types]: If Gamma |- s : T1*T2 and s is a value,
then s = tm_pair s1 s2 for some s1 and s2.

Answer:

Let t and T be given such that empty |- t : T. Proceed by induction on the typing derivation.
Cases T_Abs and T_Unit are immediate because abstractions and unit are always values. Case T_Var
is vacuous because variables cannot be typed in the empty context. The remaining cases are as follows:

• If the last step in the typing derivation is by T_App, then there are terms t1, t2 and types T1, T2
such that t = t1 t2, T = T2, empty |- t1 : T1 → T2 and empty |- t2 : T1.

The induction hypotheses for these typing derivations yield that t1 is a value or steps, and that
t2 is a value or steps. We consider each case:

� Suppose t1 �> t1′ for some term t1′. Then t1 t2 �> t1′ t2 by ST_App1.

� Otherwise t1 is a value.

∗ Suppose t2 �> t2′ for some term t2′. Then t1 t2 �> t1 t2′ by rule ST_App2 because
t1 is a value.

∗ Otherwise, t2 is a value. By the canonical forms of arrow types lemma, t1 = \x:S1.s2
for some x, S1, and s2. And (\x:S1.s2) t2 �> [t2/x]s2 by ST_AppAbs, since t2 is a
value.

• If the last step in the typing derivation is by T_Pair, then there are terms t1, t2 and types T1,
T2 such that t = (t1,t2), T = T1 * T2, empty |- t1 : T1, and empty |- t2 : T2.

The induction hypotheses for these typing derivations yield that t1 is a value or steps, and that
t2 is a value or steps. We consider each case:

� Suppose t1 �> t1′ for some term t1′. Then (t1,t2) �> (t1′,t2) by ST_Pair1.

� Otherwise t1 is a value.

∗ Suppose t2 �> t2′ for some term t2′. Then (t1,t2) �> (t1,t2′) by rule ST_Pair2
because t1 is a value.

∗ Otherwise, t1 and t2 are both values; then (t1,t2) is also a value by v_pair.

• If the last step in the typing derivation is by T_Fst, then there is a term tp and types T1, T2 such
that t = tp.fst, T = T1, and empty |- tp : T1 * T2.

The induction hypothesis for this typing derivation yields that tp is either a value or steps.

� Suppose tp �> tp′ for some term tp′. Then tp.fst �> tp′.fst by ST_Fst1.

� Otherwise, tp is a value. Then by the canonical form of product types lemma,
tp = tm_pair t1 t2 for some t1 and t2. Since tp is a value, by inversion of the value
judgment t1 and t2 must be values as well; therefore (t1,t2).fst �> t1 by ST_FstPair.

• The case for T_Snd is exactly analogous to the case for T_Fst.

• If the �nal step of the derivation is by T_Sub, then there is a type S such that S <: T and
empty |- t : S. The desired result is exactly the induction hypothesis for the typing sub-
derivation.

10

Grading scheme: 0-6 points for missing or very garbled proofs. 7-13 points for proofs that included
most of the important ideas but weren't put together completely correctly. 14-18 points for mostly correct
proofs, with small deductions for local problems.

11

