CIS 500 — Software Foundations

Final Exam

May 9, 2011

Name or WPE-I number:

Scores:

O |0 | | | Ok Wi |-

Total (120 max)

Hoare Logic

1. (7 points) What does it mean to say that the Hoare triple {{P}} ¢ {{Q}} is valid?

2. (18 points) Recall the Hoare rule for reasoning about sequences of commands:

{Ph et oy {aj 2 {{r}Y}
{{P}} c1;e2 {{R}}

Formally, this rule corresponds to a theorem:

HOARE_SEQ

Theorem hoare_seq : forall P Q R cl1 c2,
{{P}} c1 {{Q}} —>
{{Q}} <2 {{R}} —>
{{P}} c1;c2 {{R}}.

Give a careful informal proof (in English) of this theorem.

3. (12 points) In the Imp program below, we have provided a precondition and postcondition.
In the blank before the loop, fill in an invariant that would allow us to annotate the rest of the
program.

{ True }
X :=n
Y :=X
Z :=0
{ }
WHILE Y <> 0 DO
Z =7 + X;
Y:=Y -1
END
{Z=n*n }

STLC

4. (16 points) Recall the definition of the substitution operation in the simply typed lambda-
calculus (with no extensions, and omitting base types such as booleans for brevity):

Fixpoint subst (s:tm) (x:id) (t:tm) : tm :=
match t with
| tm_app t1 t2 => tm_app (subst s x tl1) (subst s x t2)
| tm_var x’> => if beq_id x x’ then s else t
| tm_abs x> T t1 => tm_abs x’ T (if beq_id x x’ then tl else (subst s x t1))
end.

This definition uses Coq’s Fixpoint facility to define substitution as a function. Suppose, instead,
we wanted to define substitution as an inductive relation substi. We've begun the definition by
providing the Inductive header and one of the constructors; your job is to fill in the rest of the
constructors. (Your answer should be such that subst s x t = t’ <-> substi s x t t’, for all
S, X, t, and t’, but you do not need to prove it).

Inductive substi (s:tm) (x:id) : tm -> tm -> Prop :=
| s_app : forall t1 t2 t1’ t2’,
substi s x t1 t1’ >
substi s x t2 t2’ ->
substi s x (tm_app t1 t2) (tm_app t1’ t2’)

References

5. (12 points) The next few problems concern the STLC extended with natural numbers and
references (reproduced on page 15, with the same informal notations as we're using here).

(a) In this system, is there a type T that makes
x:T; [1 |- (\x:Nat. 2 * x) (x x) : Nat

provable? If so, what is it?

(b) Is there a type T that makes
empty; [1 |- (\x:Ref Nat. ((_:Unit. !'x), (\y:Nat. x :=7y))) (ref 0) : T

provable? If so, what is it?

(c) Is there a type T that makes
x:T; [|- 1'C'('x)) : Nat

provable? If so, what is it?

(d) Is there a type T that makes
x:T; [|- (\y:Nat*Nat. pred (y.fst)) (x.snd x.fst) : Nat

provable? If so, what is it?

6. (8 points) Briefly explain the term aliasing. Give one reason why it is a good thing and one
reason why it is bad.

7. (24 points) Recall the preservation theorem for the STLC with references. In formal Coq
notation it looks like this:

Theorem preservation : forall ST t t’ T st st’,

has_type empty ST t T ->

store_well_typed empty ST st —->

t / st ==>1t>/ st’ >

exists ST’,
(extends ST’ ST /\
has_type empty ST’ t’ T /\
store_well_typed empty ST’ st’).

Informally, it looks like this:

Theorem (Preservation): If empty; ST |- t : T with ST |- st, and t in store st
takes a step to t’ in store st’, then there exists some store typing ST’ that extends ST
and for which empty; ST’ |- t’ : T and ST’ |- st’.

(a) Briefly explain why the extra (compared to preservation for the pure STLC) refinement
“exists ST’...” is needed here.

(b) The proof of this theorem relies on some subsidiary lemmas:

Lemma store_weakening : forall Gamma ST ST’ t T,
extends ST’ ST —>
has_type Gamma ST t T ->
has_type Gamma ST’ t T.

Lemma store_well_typed_snoc : forall ST st t1 T1,
store_well_typed ST st ->
has_type empty ST t1 T1 ->
store_well_typed (snoc ST T1) (snoc st t1).

Lemma assign_pres_store_typing : forall ST st 1 t,
1 < length st >
store_well_typed ST st ->
has_type empty ST t (store_ty_lookup 1 ST) ->
store_well_typed ST (replace 1 t st).

Lemma substitution_preserves_typing : forall Gamma ST x s S t T,
has_type empty ST s S —>
has_type (extend Gamma x S) ST t T —>
has_type Gamma ST (subst x s t) T.

Suppose we carry out a proof of preservation by induction on the given typing derivation. In
which cases of the proof are the above lemmas used?

Match names of lemmas to proof cases by drawing a line from from each lemma to each proof
case that uses it.

T_Abs
store_weakening

T_App
store_well_typed_snoc

T Ref
assign pres_store_typing

T Deref
substitution_preserves_typing

T_Assign

(c) Here is the beginning of the T_Ref case of the proof. Complete the case.

Theorem (Preservation): If empty; ST |- t : T with ST |- st, and t in store st takes a
step to t’ in store st’, then there exists some store typing ST’ that extends ST and for which
empty; ST’ |- t’> : Tand ST’ |- st’.

Proof. By induction on the given derivation of empty; ST |- t : T.

e ...cases for other rules...

e If the last rule in the derivation is T_Ref, then t = ref t1 for some t1 and, moreover,
empty; ST |- t1 : T1 for some T1, with T = Ref T1.

Fill in rest of case:

Subtyping
8. (8 points) Recall the simply-typed lambda calculus extended with products and subtyping
(reproduced on page 17).
The subtyping rule for products
———————————————————— (S_Prod)

S1xS2 <: T1xT2

intuitively corresponds to the “depth” subtyping rule for records. Extending the analogy, we might
consider adding a “permutation” rule

______________ (S_ProdP)
T1%T2 <: T2%T1

for products.

Is this a good idea? Briefly explain why or why not.

10

9. (15 points) The preservation and progress theorems about the STLC with subtyping (page 17)
depend on a number of technical lemmas, including the following one, which describes the possible
“shapes” of types that are subtypes of an arrow type:

Lemma: For all types U, V1, and V2, if U <: V1 -> V2, then there
exist types Ul and U2 such that

(a) U = U1l -> U2,

(b) V1 <: U1, and

(c) U2 <: V2.

The following purported proof of this lemma contains two significant mistakes. Explain what
is wrong and how the proof should be corrected.

Proof: By induction on a derivation of U <: V1 -> V2.

e The last rule in the derivation cannot be S_LPROD or S_TOP since V1 -> V2 is not a product
type or Top.

o If the last rule in the derivation is S_LARROW, all the desired facts follow directly from the
form of the rule.

e Suppose the last rule in the derivation is S_TRANS. Then, from the form of the rule, there
is some type U’ with U <: U’ and U’ <: V1 -> V2. We must show that U’ = U1’ -> U2’,
with V1 <: U1’ and U2’ <: V2; this follows from the induction hypothesis.

11

For Reference...

IMP programs

Here are the key definitions for the syntax and big-step semantics of IMP programs:

Inductive aexp : Type :=

| ANum : nat -> aexp
AId : id -> aexp
APlus : aexp —> aexp —-> aexp
AMinus : aexp —> aexp —> aexp
AMult : aexp -> aexp -> aexp.

Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEQ : aexp -> aexp -> bexp
| BLe : aexp —-> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=
| CSkip : com
| CAss : id -> aexp -> com
| CSeq : com -> com -> com
| CIf : bexp -> com -> com -> com
| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=

CSkip.
Notation "1 ’::=’ a" :=

(CAss 1 a) (at level 60).
Notation "c1 ; c2" :=

(CSeq cl1 c2) (at level 80, right associativity).
Notation "’WHILE’ b ’DO’ c ’END’" :=

(CWhile b c) (at level 80, right associativity).
Notation "’IFB’ el ’THEN’ e2 ’ELSE’ e3 ’FI’" :=

(CIf el e2 e3) (at level 80, right associativity).

12

SKIP / st | st

aeval st al = n

1 :=al1/ st || (update st 1 n)

cl / st | st’
c2 / st> | st??

beval st bl = true
cl / st | st

IF bl THEN cl ELSE c2 FI / st | st’

beval st bl = false
c2 / st | st’

IF bl THEN cl ELSE c2 FI / st |} st’

beval st bl = false

WHILE bl DO cl END / st | st

beval st bl = true
cl / st | st’
WHILE bl DO c1 END / st’ | st’’

WHILE bl DO c1 END / st |} st’?

13

(E_Skip)

(E_Ass)

(E_Seq)

(E_IfTrue)

(E_IfFalse)

(E_WhileEnd)

(E_WhileLoop)

Hoare logic rules

HOARE_ASGN

{{assn_sub V a Q}} V := a {{Q}}
{Pciedy P—P Q—Q

HOARE_CONSEQUENCE

{P}} ¢ {a}}
hely P—r Py efwy @ —0
(P {ay HOARE_PRE ST HOARE_POST
{P} ct {0} {Q}} 2 {r}}
(P} SKIP {(P}} HOARE_SKIP P} o1 ; <2 (&)} HOARE_SEQ

{PAD) et {a {{PA~Db} c2 {Q})

{{P}} IFB b THEN c1 ELSE c2 FI {{Q}}

{PAbY} c {P}Y

{{P}} WHILE b DO c END {{P A ~D}}

HoOARE_IF

HOARE_WHILE

14

STLC with references

(Some of the questions concerning STLC with references also use natural numbers and arithmetic
operations; the syntax and semantics of these constants and operators is standard.)

Syntax
T ::= TUnit t =X
| T->T | t t
| Ref T | \x:T. t
| unit
| ref t
| 1t
| t :=t
| loc n
Operational semantics
value v2

(\a:T.t12) v2 / st ==> [v2/altl12 / st
tl / st ==> t1’ / st’

t1 t2 / st ==> t1’ t2 / st’

value vi1 t2 / st ==> t2’ / st’

ref vl / st ==> loc |st| / st,vl

tl / st ==> t1’ / st’

1 (loc 1) / st ==> lookup 1 st / st

tl1 / st ==> t1’ / st’

15

(ST_AppAbs)

(ST_App1)

(ST_App2)

(ST_RefValue)

(ST_Ref)

(ST_DerefLoc)

(ST_Deref)

—— (ST_Assign)
loc 1 := v2 / st ==> unit / (replace 1 v2 st)
tl1 / st ==> t1’ / st’
——————————————————————————————————— (ST_Assignl)
tl :=t2 / st ==> t1’ := t2 / st’
t2 / st ==> t2’ / st’
----------------------------------- (ST_Assign2)
vl :=t2 / st ==> vl := t2’ / st’
Typing
Gamma x = T
—————————————————— (T_Var)
Gamma; ST |- x : T
Gamma, x:T11; ST |- t12 : T12
—————————————————————————————————— (T_Abs)
Gamma; ST |- \x:T11.t12 : T11->T12
Gamma; ST |- t1 : T11->T12
Gamma; ST |- t2 : Ti1
-------------------------- (T_App)
Gamma; ST |- t1 t2 : T12
———————————————————————— (T_Unit)
Gamma; ST |- unit : Unit
1 < |STI
-------------------------------------- (T_Loc)
Gamma; ST |- loc 1 : Ref (lookup 1 ST)
Gamma; ST |- t1 : T1
———————————————————————————— (T_Ref)
Gamma; ST |- ref t1 : Ref T1
Gamma; ST |- t1 : Ref Ti1
————————————————————————— (T_Deref)
Gamma; ST |- !'t1 : Ti1
Gamma; ST |- tl1 : Ref Ti1
Gamma; ST |- t2 : Ti1
———————————————————————————— (T_Assign)

16

STLC with products and subtyping

Syntax
T ::= Top
| T->T
| T *T

Operational semantics

t2 ==> t2’
(v1,t2) ==> (v1,t2’)
tl ==> t1’

(v1,v2) .fst ==> vi

(v1,v2) .snd ==> v2

17

v ::= \x:T. t
| (v,Vv)

(ST_AppAbs)

(ST_App1)

(ST_App2)

(ST_Pairl)

(ST_Pair?2)

(ST_Fstl)

(ST_FstPair)

(ST_Snd1)

(ST_SndPair)

Subtyping

S1x32 <: T1xT2

18

(S_Refl)

(S_Trans)

(S_Top)

(S_Arrow)

(S_Prod)

Typing

[- t12 : T12

Gamma |- \x:T11.t12 : T11->T12

Gamma , x:T11

Gamma |- t1 : T11->T12
Gamma |- t2 : Ti1

Gamma |- (t1,t2) : T1*T2

: T11xT12

Gamma |- tl1.fst : T1i1

Gamma |- t1

: T11xT12

Gamma |- tl.snd : T12

Gamma |- t1

19

(T_Var)

(T_Abs)

(T_App)

- (T_Pair)

(T_Fst)

(T_Snd)

(T_Sub)

