
CIS 500 — Software Foundations

Midterm II

March 30, 2011

Name:

Pennkey:

Scores:

1

2

3

4

5

6

Total (80 max)



The core definitions of the Imp language are repeated, for easy reference, in the handout (pages 10
to 11). Now consider extending Imp with commands of the form

FLIP X

where X is an identifier. The effect of executing FLIP X is to assign either 0 or 1 to X, nondeter-
ministically. For example, after executing the program

FLIP Y;
Z := Y + 2

the value of Z might be 2 or it might be 3, and those are the only two possibilities. (Note that we
are not saying anything about the probabilities of the two outcomes—just that both can happen.)

Let’s call this new language Flimp (“Imp extended with FLIP”). Questions 1–4 all refer to
Flimp.

1. (6 points) To formalize the extended language, we first add a clause to the definition of
commands:

Inductive com : Type :=
...
| CFlip : id -> com.

Notation "’FLIP’ l" := (CFlip l) (at level 60).

Next, we must extend the operational semantics. The cstep relation (shown on page 11) defines
a small-step semantics for Imp. What rule(s) must be added to the definition of cstep to formalize
the behavior of the FLIP command in Flimp? Write out the additional rule(s) in formal Coq
notation.

1



2. (6 points) Write down a Hoare logic rule for FLIP commands, and briefly explain why it is
the right rule. (For reference, the standard Hoare rules for Imp are provided on page 12 of the
handout.)

2



3. (10 points) Which of the following pairs of programs are equivalent? Write “yes” or “no” for
each one.

(a) WHILE X > 0 DO
X ::= X + 1

END

and WHILE X > 0 DO
Y ::= Y - 1

END

(b) IFB X < 10 THEN
X ::= X + Y - Z;
Y ::= X * 3 - 4
WHILE X < 10 DO
X ::= X + Y - Z;
Y ::= X * 3 - 4

END
ELSE
SKIP

FI

and WHILE X < 10 DO
X ::= X + Y - Z;
Y ::= X * 3 - 4

END

(c) WHILE X <> 0 DO
FLIP Y;
X ::= X + 1

END

and WHILE X <> 0 DO
SKIP

END

(d) Z ::= 1;
WHILE X <> 0 DO
FLIP X;
FLIP Z

END

and X ::= 0;
Z ::= 1

(e) WHILE X <> 1 DO
FLIP X

END

and X ::= 1

3



4. (10 points) Indicate whether or not each of the following Hoare triples is valid by writing either
“valid” or “invalid.” Also, for those that are invalid, give a counter-example. (Note that, in part
d, the variable a represents an arbitrary aexp – i.e., you should write “valid” only if the triple is
valid for every a. If you give a counter-example, specify which a it applies to.)

(a) { X = 1 } X ::= 1 { X = 1 }

(b) { X = 0 }
WHILE X > 0 DO
X ::= X + 1

END
{ X > 0 }

(c) { X = 0 } FLIP Y { X = 0 }

(d) { X = a } FLIP Y { X = a }

(e) { True }
FLIP X;
IFB X = 0 THEN Y ::= 2 ELSE Y ::= 1 FI
{ Y > X }

4



(f) { False }
FLIP X;
{ X = 0 }

(g) { True }
FLIP X;
WHILE X <> 0 DO
Y ::= X

END;
{ Y = 1 }

5



5. (24 points) We can define the mathematical min function in Coq as follows:

Definition min (x:nat) (y:nat) : nat :=
if beq_nat (x - y) 0 then x else y.

The following Imp program calculates the minimum of two numbers a and b, in the sense that,
when it terminates, the program variable Z will be set to min a b.

X ::= a;
Y ::= b;
Z ::= 0;
WHILE (X <> 0 /\ Y <> 0) DO
X := X - 1;
Y := Y - 1;
Z := Z + 1;

END

Note that, as usual when dealing with decorated programs, we’re using informal notations, for
example writing

WHILE (X <> 0 /\ Y <> 0)

instead of:

WHILE (BAnd (BNot (BEq (AId X) (ANum 0)))
(BNot (BEq (AId Y) (ANum 0))))

On the next page, add appropriate annotations to the program in the provided spaces to demon-
strate this fact. Use informal notations for mathematical formulae and assertions, but please be
completely precise and pedantic in the way you apply the Hoare rules — i.e., write out assertions in
exactly the form given by the rules (rather than logically equivalent ones). Note that the provided
blanks have been constructed so that, if you work backwards from the end of the program, you
should only need to use the rule of consequence in the places indicated with =>. (Again, remember
that the Hoare rules are provided on page 12 of the handout.)

For the => steps in your annotations, you may rely (silently) on the following facts about min

Lemma lemma1 : forall x y,
(x=0 \/ y=0) -> min x y = 0.

Lemma lemma2 : forall x y,
min (x-1) (y-1) = (min x y) - 1.

plus, as usual, standard high-school algebra.

6



{{ True }}

=>

{{ }}

X ::= a;

{{ }}

Y ::= b;

{{ }}

Z ::= 0;

{{ }}

WHILE (X <> 0 /\ Y <> 0) DO

{{ }}

=>

{{ }}

X := X - 1;

{{ }}

Y := Y - 1;

{{ }}

Z := Z + 1;

{{ }}

END

{{ }}

=>

{{ Z = min a b }}

7



6. (24 points) Suppose we define a simple language of numbers and constants, similar to the toy
language used in the Smallstep.v chapter. Terms t are either of the form const n for some natural
number constant n, or of the form add t1 t2 for some terms t1 and t2:

t ::= const n | add t t

We defined a big-step evaluation relation t ⇓ n for this language as follows:

const n ⇓ n
E Const

t1 ⇓ n1 t2 ⇓ n2

add t1 t2 ⇓ n1 + n2
E Plus

We also defined a small-step evaluation relation t =⇒ t′:

add (const n1) (const n2) =⇒ const (n1 + n2)
ST PlusConstConst

t1 =⇒ t′
1

add t1 t2 =⇒ add t′
1 t2

ST Plus1

t2 =⇒ t′
2

add (const n1) t2 =⇒ add (const n1) t′
2

ST Plus2

In Smallstep.v, we proved the equivalence of these two ways of presenting the semantics. One
piece of that proof was the lemma shown at the top of the next page. Write out a careful informal
proof of this lemma in English.

8



Lemma: For all terms t and t′ and numbers n, if t =⇒ t′ and t′ ⇓ n, then t ⇓ n.

9



IMP programs

Here are the key definitions for the syntax and small-step semantics of IMP programs:

Inductive aexp : Type :=
| ANum : nat -> aexp
| AId : id -> aexp
| APlus : aexp -> aexp -> aexp
| AMinus : aexp -> aexp -> aexp
| AMult : aexp -> aexp -> aexp.

Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEq : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=
| CSkip : com
| CAss : id -> aexp -> com
| CSeq : com -> com -> com
| CIf : bexp -> com -> com -> com
| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=
CSkip.

Notation "l ’::=’ a" :=
(CAss l a) (at level 60).

Notation "c1 ; c2" :=
(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=
(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=
(CIf e1 e2 e3) (at level 80, right associativity).

10



(Remember that the ==>a and ==>b relations — not shown here — are small-step reduction relations
for aexps and bexps.)

Inductive cstep : (com * state) -> (com * state) -> Prop :=
| CS_AssStep : forall st i a a’,
a / st ==>a a’ ->
(i ::= a) / st ==> (i ::= a’) / st

| CS_Ass : forall st i n,
(i ::= (ANum n)) / st ==> SKIP / (update st i n)

| CS_SeqStep : forall st c1 c1’ st’ c2,
c1 / st ==> c1’ / st’ ->
(c1 ; c2) / st ==> (c1’ ; c2) / st’

| CS_SeqFinish : forall st c2,
(SKIP ; c2) / st ==> c2 / st

| CS_IfTrue : forall st c1 c2,
IFB BTrue THEN c1 ELSE c2 FI / st ==> c1 / st

| CS_IfFalse : forall st c1 c2,
IFB BFalse THEN c1 ELSE c2 FI / st ==> c2 / st

| CS_IfStep : forall st b b’ c1 c2,
b / st ==>b b’ ->
IFB b THEN c1 ELSE c2 FI / st ==> (IFB b’ THEN c1 ELSE c2 FI) / st

| CS_While : forall st b c1,
(WHILE b DO c1 END) / st

==> (IFB b THEN (c1; (WHILE b DO c1 END)) ELSE SKIP FI) / st

where " t ’/’ st ’==>’ t’ ’/’ st’ " := (cstep (t,st) (t’,st’)).

11



Hoare logic rules

{assn sub V a Q} V := a {Q}
Hoare Asgn

{P ′} c {Q′} P −→ P ′ Q′ −→ Q

{P} c {Q}
Hoare Consequence

{P ′} c {Q} P −→ P ′

{P} c {Q}
Hoare Pre

{P} c {Q′} Q′ −→ Q

{P} c {Q}
Hoare Post

{P} SKIP {P}
Hoare Skip

{P} c1 {Q} {Q} c2 {R}
{P} c1 ; c2 {R}

Hoare Seq

{P ∧ b} c1 {Q} {P ∧ ∼ b} c2 {Q}
{P} IFB b THEN c1 ELSE c2 FI {Q}

Hoare If

{P ∧ b} c {P}
{P} WHILE b DO c END {P ∧ ∼ b}

Hoare While

12


