
CIS 500 — Software Foundations

Midterm II

March 28, 2012

Answer key



This exam concentrates on the material on the Imp programming language, program equivalence,
and Hoare Logic. Some of the key definitions are repeated, for easy reference, in the accompanying
handout.

The version of Imp we consider in this exam only has arithmetic expressions that reduce to
numbers; you don’t need to worry about lists.

1. (8 points) Indicate whether or not each of the following Hoare triples is valid by writing either
“valid” or “invalid.” Also, for those that are invalid, give a counter-example. The definition of
Hoare triples is given on page 9, for reference.

(a) {{ X = 2 \/ X = 3 }}

X ::= 5

{{ X = 0 }}

Answer: Invalid since X always gets set to 5, and the precondition is not contradictory.

(b) {{ X = 2 /\ X = 3 }}

X ::= 5

{{ X = 0 }}

Answer: Valid.

(c) {{ True }}

IFB X = 0 THEN Y ::= 1 ELSE Y ::= 2 FI

{{ Y > X }}

Answer: Invalid: consider the case where X starts as 3, in which case Y also becomes 2.

(d) {{ True }}

X ::= 0;

WHILE X <> X DO

X ::= X + 1

END

{{ False }}

Answer: Invalid. The triple always terminates and no state satisfies False.

Grading scheme: 2 points each. 1 point for the counterexamples.

2. (12 points) Given the following programs, group together those that are equivalent in Imp
by drawing boxes around their names. For example, if you think programs a through h are all
equivalent to each other, but not to i, your answer should look like this: a, b, c, d, e, f, g, h i .

The definition of program equivalence is repeated on page 9, for reference.

(a) WHILE X > 0 DO

X ::= X + 1

END
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(b) IFB X = 0 THEN

X ::= X + 1;

Y ::= 1

ELSE

Y ::= 0

FI;

X ::= X - Y;

Y ::= 0

(c) SKIP

(d) WHILE X <> 0 DO

X ::= X * Y + 1

END

(e) Y ::= 0

(f) Y ::= X + 1;

WHILE X <> Y DO

Y ::= X + 1

END

(g) WHILE BTrue DO

SKIP

END

(h) WHILE X <> X DO

X ::= X + 1

END

(i) WHILE X <> Y DO

X ::= Y + 1

END

Answer:
a, d b, e c, h f, g i

Grading scheme: 1 point off for each missing pair; 1 point off for each extraneous pair

3. (20 points) Write a careful informal proof showing that if the boolean expression b is equivalent
to BTrue, then the command IFB b THEN c1 ELSE c2 FI is equivalent to c1—i.e., formally:

forall b c1 c2, bequiv b BTrue ->

cequiv (IFB b THEN c1 ELSE c2 FI) c1.

The definitions of bequiv and cequiv are given on page 9, for reference.
Answer:

(→) We must show, for all st and st′, that if IFB b THEN c1 ELSE c2 FI / st ⇓ st′ then c1 /
st ⇓ st′. We proceed by cases on the rules that could possibly have been used to show IFB b

THEN c1 ELSE c2 FI / st ⇓ st′, namely E IfTrue and E IfFalse.
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– Suppose the final rule rule in the derivation of IFB b THEN c1 ELSE c2 FI / st ⇓ st′

was E IfTrue. By the premises of E IfTrue we have that c1 / st st’, which is exactly
what we set out to prove.

– On the other hand, suppose the final rule in the derivation of IFB b THEN c1 ELSE c2

FI / st ⇓ st′ was E IfFalse. We then know that beval st b = false and c2 / st ⇓ st′.
Recall that b is equivalent to BTrue, i.e. forall st, beval st b = beval st BTrue.
In particular, this means that beval st b = true, since beval st BTrue = true. But
this is a contradiction, since E IfFalse requires that beval st b = false. Thus, the
final rule in the derivation could not have been E IfFalse.

(←) We must show, for all st and st′, that if c1 / st ⇓ st′ then IFB b THEN c1 ELSE c2 FI /
st ⇓ st′. Since b is equivalent to BTrue, we know that beval st b = beval st BTrue =

true. Together with the assumption that c1 / st ⇓ st′, we can apply E IfTrue to derive IFB

b THEN c1 ELSE c2 FI / st ⇓ st′.

4. (16 points) The following Imp program calculates the sum of three numbers a, b, and c.

X ::= 0;

Y ::= 0;

Z ::= c;

WHILE X <> a DO

X ::= X + 1;

Z ::= Z + 1

END;

WHILE Y <> b DO

Y ::= Y + 1;

Z ::= Z + 1

END

Note that we’re using informal notations as usual in Imp examples, for example writing this

WHILE (X <> a)

instead of this:

WHILE (BNot (BEq (AId X) (ANum a)))

On the next page, add appropriate annotations to the program in the provided spaces to show
that the Hoare triple given by the outermost pre- and post-conditions is valid. Use informal
notations for mathematical formulae and assertions, but please be completely precise and pedantic
in the way you apply the Hoare rules — i.e., write out assertions in exactly the form given by
the rules (rather than logically equivalent ones). The provided blanks have been constructed so
that, if you work backwards from the end of the program, you should only need to use the rule of
consequence in the places indicated with =>.

The Hoare rules are provided on page 10, for reference.

Solution:
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{{ True }} =>

{{ c = 0 + c /\ 0 = 0 }}

X ::= 0;

{{ c = X + c /\ 0 = 0 }}

Y ::= 0;

{{ c = X + c /\ Y = 0 }}

Z ::= c;

{{ Z = X + c /\ Y = 0 }}

WHILE X <> a DO

{{ Z = X + c /\ Y = 0 /\ X <> a }} =>

{{ Z + 1 = X + 1 + c /\ Y = 0 }}

X ::= X + 1;

{{ Z + 1 = X + c /\ Y = 0 }}

Z ::= Z + 1

{{ Z = X + c /\ Y = 0 }}

END;

{{ Z = X + c /\ Y = 0 /\ X = a }} =>

{{ Z = a + Y + c }}

WHILE Y <> b DO

{{ Z = a + Y + c }} =>

{{ Z + 1 = a + Y + 1 + c }}

Y ::= Y + 1;

{{ Z + 1 = a + Y + c }}

Z ::= Z + 1

{{ Z = a + Y + c }}

END

{{ Z = a + Y + c /\ Y = b }} =>

{{ Z = a + b + c }}

Another solution is to keep adding Y through the first loop instead of requiring it to be 0.

{{ True }} =>

{{ c = 0 + 0 + c }}

X ::= 0;

{{ c = X + 0 + c }}

Y ::= 0;

{{ c = X + Y + c }}

Z ::= c;

{{ Z = X + Y + c }}

WHILE X <> a DO

{{ Z = X + Y + c /\ X <> a }} =>

{{ Z + 1 = X + 1 + Y + c }}

X ::= X + 1;

{{ Z + 1 = X + Y + c }}

Z ::= Z + 1

{{ Z = X + Y + c }}
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END;

{{ Z = X + Y + c }} =>

{{ Z = a + Y + c }}

... the rest is as above ...

Grading scheme: 14 points minor mistakes, 12 points logic mistake but correct invariants, 8-12
correct sketch of invariants wrong use of some rules, 4-8 some ideas, 0-4 not clear idea.

5. (12 points) In this exercise we consider extending Imp with “ one-sided conditionals” of the
form

IF1 b THEN c FI

where b is a boolean expression, and c is a command. If b evaluates to false, then IF1 b THEN c FI

does nothing.
To formalize the extended language, we first add a clause to the definition of commands:

Inductive com : Type :=

...

| CIf1 : bexp -> com -> com.

Notation "’IF1’ b ’THEN’ c ’FI’" := (CIf1 b c) (at level 60).

(a) Refer to the definition of ceval (page 9) for the evaluation relation of Imp. What rule(s)
must be added to this definition to formalize the behavior of IF1? Write out the additional
rule(s) in formal Coq notation.

Answer:

| E_If1True : forall b c st st’,

beval st b = true ->

c / st || st’ ->

IF1 b THEN c FI / st || st’

| E_If1False : forall b c st,

beval st b = false ->

IF1 b THEN c FI / st || st

(b) Write a Hoare proof rule for one-sided conditionals. (For reference, the standard Hoare rules
for Imp are provided on page 10.)

Try to come up with a rule that is both sound and as precise as possible. For full credit,
make sure your rule can be used to prove the following valid Hoare triple:

{{ X + Y = Z }}

IF1 Y <> 0 THEN

X ::= X + Y

FI

{{ X = Z }}
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Answer:
{{P ∧ b }} c {{Q }}

(P ∧ ∼ b) Q

{{P }} IF1 b THEN c FI {{Q }}
(hoare if1)

The following is also a sound rule for IF1, but it is not precise enough to handle the litmus
test.

{{P ∧ b }} c {{P }}

{{P }} IF1 b THEN c FI {{P }}
(hoare if1 weak)

Grading scheme: Part a: 3 for each rule, deductions for minor mistakes or imprecision
Part b: 3 if valid but not trivial, 6 for correct rule, 5 for rule that can prove example but not
complete

6. (12 points) In this exercise we define an asymmetric variant of program equivalence we call
program approximation. We say that program c1 approximates program c2 when, for each of
the initial states for which c1 terminates, c2 also terminates and produces the same final state.
Formally, program approximation is defined as follows:

Definition capprox (c1 c2 : com) : Prop :=

forall (st st’ : state),

(c1 / st || st’) -> (c2 / st || st’).

For instance the program c1 = WHILE X <> 1 DO X ::= X - 1 END approximates c2 = X ::= 1,
but c2 does not approximate c1 since c1 does not terminate when X = 0 but c1 does. If two
programs approximate each other in both directions, then they are equivalent.

(a) Find two programs, c3 and c4, such that neither approximates the other. Formally, the
following two propositions should be provable: ∼(capprox c3 c4) and ∼(capprox c4 c3).
Your programs should be short (3 lines max).

Answer:
c3 = (X ::= 1)

c4 = (X ::= 2)

Grading scheme: 4 points, binary grading.

(b) Find a program cmin that approximates every other program. Formally, the proposition
forall c’, capprox cmin c’ should be provable. (Again, 3 lines max.)

Answer:
cmin = WHILE true DO SKIP FI

Grading scheme: 4 points, binary grading.

(c) Find a non-trivial property that is preserved by program approximation (when going from
left to right). Formally, your zprop should satisfy the following condition:

forall c c’, zprop c -> capprox c c’ -> zprop c’
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Write zprop using formal Coq notation. (The correct answer fits on one line.)

Answer:

Definition zprop c : Prop := forall st, exists st’, c / st || st’.

Intuitively zprop holds for the programs that terminate on all inputs.

Other properties that are preserved:

Definition zprop2 c : Prop := exists st, exists st’, c / st || st’.

Intuitively zprop2 holds for the programs that terminate on at least one input.

Definition zprop3 c : Prop := forall st, c / st || st.

Intuitively zprop3 holds for the programs that behave like SKIP.

Definition zprop4 c : Prop := capprox SKIP c

Very similar to zprop3, works because capprox is transitive.

Grading scheme: 4 points for correct answers; 1 or 2 points for incorrect answers that were
not completely off.
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Formal definitions for Imp

Syntax

Inductive aexp : Type := | ANum : nat -> aexp | AId : id -> aexp |

APlus : aexp -> aexp -> aexp | AMinus : aexp -> aexp -> aexp | AMult :

aexp -> aexp -> aexp.

Inductive bexp : Type :=

| BTrue : bexp

| BFalse : bexp

| BEq : aexp -> aexp -> bexp

| BLe : aexp -> aexp -> bexp

| BNot : bexp -> bexp

| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=

| CSkip : com

| CAss : id -> aexp -> com

| CSeq : com -> com -> com

| CIf : bexp -> com -> com -> com

| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=

CSkip.

Notation "l ’::=’ a" :=

(CAss l a) (at level 60).

Notation "c1 ; c2" :=

(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=

(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=

(CIf e1 e2 e3) (at level 80, right associativity).
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Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=

| E_Skip : forall st,

SKIP / st || st

| E_Ass : forall st a1 n X,

aeval st a1 = n ->

(X ::= a1) / st || (update st X n)

| E_Seq : forall c1 c2 st st’ st’’,

c1 / st || st’ ->

c2 / st’ || st’’ ->

(c1 ; c2) / st || st’’

| E_IfTrue : forall st st’ b1 c1 c2,

beval st b1 = true ->

c1 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_IfFalse : forall st st’ b1 c1 c2,

beval st b1 = false ->

c2 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_WhileEnd : forall b1 st c1,

beval st b1 = false ->

(WHILE b1 DO c1 END) / st || st

| E_WhileLoop : forall st st’ st’’ b1 c1,

beval st b1 = true ->

c1 / st || st’ ->

(WHILE b1 DO c1 END) / st’ || st’’ ->

(WHILE b1 DO c1 END) / st || st’’

where "c1 ’/’ st ’||’ st’" := (ceval c1 st st’).

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=

forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=

forall (st st’ : state),

(c1 / st || st’) <-> (c2 / st || st’).

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=

forall st st’, c / st || st’ -> P st -> Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q)

9



(at level 90, c at next level)

: hoare_spec_scope.

Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=

forall st, P st -> Q st.

Notation "P ~~> Q" := (assert_implies P Q) (at level 80).

(ASCII ~~> is typeset as  in the rules below.)

Hoare logic rules

{{ assn sub X a Q }} X := a {{Q }}
(hoare asgn)

{{P }} SKIP {{P }}
(hoare skip)

{{P }} c1 {{Q }}

{{Q }} c2 {{R }}

{{P }} c1; c2 {{R }}
(hoare seq)

{{P ∧ b }} c1 {{Q }}

{{P ∧ ∼ b }} c2 {{Q }}

{{P }} IFB b THEN c1 ELSE c2 FI {{Q }}
(hoare if)

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare while)

{{P ′ }} c {{Q′ }}
P  P ′

Q′  Q

{{P }} c {{Q }}
(hoare consequence)

{{P ′ }} c {{Q }}

P  P ′

{{P }} c {{Q }}
(hoare consequence pre)

{{P }} c {{Q′ }}
Q′  Q

{{P }} c {{Q }}
(hoare consequence post)
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