
CIS 500 — Software Foundations

Midterm I

(Standard and advanced versions together)

March 27, 2013

Answer key

1. (8 points) Indicate whether or not each of the following Hoare triples is valid by writing either
“valid” or “invalid.” Also, for those that are invalid, give a counter-example. The definition of
Hoare triples is given on page 13, for reference.

(a) {{ X=n /\ Y=m /\ Z=o }}

X ::= Y;

Y ::= Z;

Z ::= X

{{ X=n /\ Y=o /\ Z=m }}

Answer: Invalid: the state described in the precondition is a counterexample. On this state
the output state should be such that X=m.

(b) {{ X=1 \/ Z=0 }}

IFB Z=0 THEN

X ::= 0

THEN

X ::= 1 - X

FI;

Z ::= 1

{{ X=0 /\ Z=1 }}

Answer: Valid.

(c) {{ True }}

WHILE X > 0 DO

X ::= X - 1;

Y ::= X

END

{{ X=0 /\ Y=0 }}

Answer: Invalid, a counterexample is the state where X=0 and Y=1.

(d) {{ X>0 }}

WHILE X > 0 DO

X ::= X + 1;

Z ::= X - 1

END

{{ Z=X }}

Answer: Valid because the loop never terminates.

Grading scheme: 2 points each. 1 point for the counterexamples.

1

2. (12 points) Given the following programs, group together those that are equivalent in Imp
by drawing boxes around their names. For example, if you think programs a through h are all
equivalent to each other, but not to i, your answer should look like this: a, b, c, d, e, f, g, h i .

The definition of program equivalence is repeated on page 13, for reference.

(a) X ::= Y;

Y ::= Z;

X ::= 0

(b) IFB Y > 3 THEN

X ::= 2 * Y

ELSE

X ::= 2 * Y

FI;

Y ::= X

(c) WHILE X > 0 DO

X ::= 0;

SKIP

END

(d) WHILE X > 0 DO

X ::= X * Y + 1

END

(e) X ::= 0;

Y ::= Z

(f) X ::= Y;

WHILE X > 0 DO

Y ::= X + 1;

X ::= X - 1

END;

X ::= Y

(g) Y ::= Z;

WHILE X > 0 DO

X ::= X - 1;

Y ::= Z

END

(h) WHILE X <> X DO

X ::= X + 1

END;

X::=0

(i) X ::= 2 * Y;

Y ::= 2 * Y

2

Answer:
a, e, g b, i c, h d f

Grading scheme: 1 point off for each missing pair; 1 point off for each extraneous pair.
(There was actually a typo in part f: we meant to write “Y ::= Y - 1”; what we did write does

not compute the same thing as (b) and (i), as we had intended. Many people missed this. We
marked this as -1 point, and in general followed this rubric: if you had [a,e] and [g], that was -1; if
you had [a], [e], and [g], that was -3 (three different pairs missed))

3

3. [Standard] (8 points) In the Imp chapter, we defined the evaluation semantics for Imp com-
mands using Coq’s Inductive facility for defining relations (in Prop)...

Inductive ceval : com -> state -> state -> Prop := ...

...instead of as a recursive Fixpoint (in Set):

Fixpoint ceval (st : state) (c : com) : state := ...

Briefly (1-3 sentences) explain why. Answer: The evaluation relation is not a total function –
it’s partial, because WHILE loops may diverge. But Fixpoint can only be used (at least, without
awkward workarounds) to define total functions.

Grading scheme: full marks for any answer explaining the impossibility to embed the evaluation
of the Turing Complete Imp language into a terminating Coq’s function.

On non-correct answers, we took away a variable number of points depending on the severity of
the misstatement and other arguments for the inductive definition given.

4. [Standard] (7 points) Each of the following inference rules expresses a claim about Hoare
triples. If the claim is true for every choice of c and P, write “valid.” Otherwise write “invalid”
and give an example of a c and P for which it fails.

(a)
{{ P }} c {{ P }}

{{ P }} c;c {{ P }}

Answer: valid

(b)
{{ P }} c;c {{ P }}

{{ P }} c {{ P }}

Answer: invalid; for example, let P be X = 0∧ Y = 1 and let c be Z ::= X; X ::= Y; Y ::=

Z.

Grading scheme: (a) 3 pt (-1pt for a wrong explanation of the ”valid” answer). (b) 4 pt (2 for
the invalid answer, 2 for the counter-example (1pt malus if this is not a Imp program))

5. [Standard] (12 points) In this exercise we consider extending Imp with “one-sided conditionals”
of the form

IF1 b THEN c FI

where b is a boolean expression, and c is a command. If b evaluates to false, then IF1 b THEN c FI

does nothing.
To formalize the extended language, we first add a clause to the definition of commands:

Inductive com : Type :=

...

| CIf1 : bexp -> com -> com.

Notation "’IF1’ b ’THEN’ c ’FI’" := (CIf1 b c).

4

(a) Refer to the definition of ceval (page 13) for the evaluation relation of Imp. What rule(s)
must be added to this definition to formalize the behavior of IF1? Write out the additional
rule(s) in formal Coq notation.

Answer:

| E_If1True : forall b c st st’,

beval st b = true ->

c / st || st’ ->

IF1 b THEN c FI / st || st’

| E_If1False : forall b c st,

beval st b = false ->

IF1 b THEN c FI / st || st

(b) Write a Hoare proof rule for one-sided conditionals. (For reference, the standard Hoare rules
for Imp are provided on page 14.)

Try to come up with a rule that is both sound and as precise as possible. For full credit,
make sure your rule can be used to prove the following valid Hoare triple:

{{ X + Y = Z }}

IF1 Y <> 0 THEN

X ::= X + Y

FI

{{ X = Z }}

Answer:
{{P ∧ b }} c {{Q }}

(P ∧ ∼ b) _ Q

{{P }} IF1 b THEN c FI {{Q }}
(hoare if1)

The following is also a sound rule for IF1, but it is not precise enough to handle the litmus
test.

{{P ∧ b }} c {{P }}

{{P }} IF1 b THEN c FI {{P }}
(hoare if1 weak)

Grading scheme: For part (a), 6 points.

For part b, we accepted with full marks both (P∧ ∼ b) _ Q and {{P∧ ∼ b}}SKIP{{Q}}
We also accepted with full marks the syntactically incorrect expression {{P∧ ∼ b}}_ {{Q}}.
For a non-valid rule we took from 4 to 6 points away depending on the gravity of the error.

5

6. [Advanced] (12 points) In this question we consider extending Imp with REPEAT statements
of the form

REPEAT c UNTIL b END

where b is a boolean expression, and c is a command. REPEAT behaves like WHILE except that the
loop guard is checked after each execution of the body, with the loop repeating as long as the guard
stays false. Because of this, the body will always execute at least once.

To formalize the extended language, we first add a clause to the definition of commands:

Inductive com : Type :=

...

| CRepeat : com -> bexp -> com.

Notation "’REPEAT’ e1 ’UNTIL’ b2 ’END’" := (CRepeat e1 b2).

(a) Refer to the definition of ceval (page 13) for the evaluation relation of Imp. What rule(s)
must be added to this definition to formalize the behavior of REPEAT? Write out the additional
rule(s) in formal Coq notation.

Answer:

| E_RepeatEnd : forall st st’ b1 c1,

ceval st c1 st’ ->

beval st’ b1 = true ->

ceval st (CRepeat c1 b1) st’

| E_RepeatLoop : forall st st’ st’’ b1 c1,

ceval st c1 st’ ->

beval st’ b1 = false ->

ceval st’ (CRepeat c1 b1) st’’ ->

ceval st (CRepeat c1 b1) st’’

(b) Write a Hoare proof rule for REPEAT.

Try to come up with a rule that is both sound and as precise as possible. For full credit,
make sure your rule can be used to prove the following valid Hoare triple:

{{ Y <= m }}

REPEAT

X ::= X + 1;

IFB X <= m THEN Y ::= X ELSE SKIP END

UNTIL X > m END

{{ X > m /\ Y <= m }}

Answer:

Lemma hoare_repeat : forall P Q b c,

{{ P }} c {{ Q }} ->

{{ fun st => Q st /\ ~bassn b st }} c {{ Q }} ->

{{ P }} (REPEAT c UNTIL b END) {{ fun st => Q st /\ bassn b st }}.

6

Grading scheme: Part a: 3 for each rule, deductions for minor mistakes or imprecision Part
b: 3 if valid but not trivial, 6 for correct rule, 5 for rule that can prove example but not
complete

7. [Standard] (18 points) The following Imp program calculates the sum and the difference of
two numbers n and m:

{{ n >= m /\ Y = n /\ X = m }} ->>

Z ::= Y;

WHILE X > 0 DO

X ::= X - 1;

Y ::= Y + 1;

Z ::= Z - 1

END

{{ Z = n - m /\ Y = n + m }}

On the next page, add appropriate annotations to the program in the provided spaces to show
that the Hoare triple given by the outermost pre- and post-conditions is valid. Use informal
notations for mathematical formulae and assertions, but please be completely precise and pedantic
in the way you apply the Hoare rules — i.e., write out assertions in exactly the form given by
the rules (rather than logically equivalent ones). The provided blanks have been constructed so
that, if you work backwards from the end of the program, you should only need to use the rule of
consequence in the places indicated with ->>.

The Hoare rules and the rules for well-formed decorated programs are provided on pages 14
and 15, for reference.

{{ n >= m /\ Y=n /\ X=m }} ->>

{{ Y-X=n-m /\ Y+X=n+m}}

Z ::= Y;

{{ Z-X=n-m /\ Y+X=n+m}}

WHILE X > 0 DO

{{ Z-X=n-m /\ Y+X=n+m /\ X>0}} ->>

{{ Z-1-(X-1)=n-m /\ Y+1+X-1=n+m}}

X ::= X - 1;

{{ Z-1-X=n-m /\ Y+1+X=n+m}}

Y ::= Y + 1

{{ Z-1-X=n-m /\ Y+X=n+m}}

Z ::= Z - 1

{{ Z-X=n-m /\ Y+X=n+m}}

END

{{ Z-X=n-m /\ Y+X=n+m /\ X=0 }} ->>

{{ Z=n-m /\ Y=n+m }}

Grading scheme: ∼2pt malus / wrong assertion (doesn’t count propagation of errors)
Loop condition at the loop exit (this should be ∼ (x > 0)). Having (x = 0) is 1pt malus, if this

is the only mistake, or no malus if there are other mistake in the exercise

7

8. (15 points) Suppose we’ve defined a Coq function sort that sorts lists of numbers. The
following Imp program performs an analogous (though simpler) task: it sorts the numbers stored
in the variables X, Y, and Z.

{{ X=m /\ Y=n /\ Z=o }}

WHILE X > Y \/ Y > Z DO

IF X > Y THEN

W := X;

X := Y;

Y := W

ELSE

SKIP

FI;

IF Y > Z THEN

W := Y;

Y := Z;

Z := W

ELSE

SKIP

FI

END

{{ sort[m,n,o] = [X,Y,Z] }}

On the next page, add appropriate annotations in the provided spaces to show that the Hoare triple
given by the outermost pre- and post-conditions is valid.

The implication steps in your decoration may rely (silently) on the following facts about sort:

• If l1 is a permutation of l2 (i.e., they have the same elements, but perhaps not in the same
order), then sort l1 = sort l2.

• If each element of l is less than or equal to the following element, then sort l = l.

8

{{ X=m /\ Y=n /\ Z=o }} ->>

{{ sort [m,n,o] = sort [X,Y,Z] }}

WHILE X > Y \/ Y > Z DO

{{ sort [m,n,o] = sort [X,Y,Z] /\ (X > Y \/ Y > Z) }} ->>

{{ sort [m,n,o] = sort [X,Y,Z] }}

IF X > Y THEN

{{ sort [m,n,o] = sort [Y,X,Z] }} ->>

{{ sort [m,n,o] = sort [X,Y,Z] }}

W := X;

{{ sort [m,n,o] = sort [Y,W,Z] }}

X := Y;

{{ sort [m,n,o] = sort [X,W,Z] }}

Y := W

{{ sort [m,n,o] = sort [X,Y,Z] }}

ELSE

SKIP

{{ sort [m,n,o] = sort [X,Y,Z] }}

FI;

{{ sort [m,n,o] = sort [X,Y,Z] }} ->>

{{ sort [m,n,o] = sort [X,Z,Y] }}

IF Y > Z THEN

{{ sort [m,n,o] = sort [X,Z,Y] }}

W := Y;

{{ sort [m,n,o] = sort [X,Z,W] }}

Y := Z;

{{ sort [m,n,o] = sort [X,Y,W] }}

Z := W

{{ sort [m,n,o] = sort [X,Y,Z] }}

ELSE

SKIP

{{ sort [m,n,o] = sort [X,Y,Z] }}

FI

{{ sort [m,n,o] = sort [X,Y,Z] }}

END

{{ sort [m,n,o] = sort [X,Y,Z] /\ ~(X > Y \/ Y > Z) }} ->>

{{ sort [m,n,o] = [X,Y,Z] }}

Grading scheme: 14 points minor mistakes, 12 points logic mistake but correct invariants, 8-12
correct sketch of invariants wrong use of some rules, 4-8 some ideas, 0-4 not clear idea.

9. [Advanced] (18 points) The following program implements “slow multiplication” in Imp.

{{ True }}

Y ::= 0;

Z ::= 0;

WHILE Y < n DO

9

X ::= 0;

WHILE X < m DO

Z ::= Z + 1;

X := X + 1

END;

Y ::= Y + 1

END

{{ Z = n*m }}

On the next page, add appropriate annotations to the program in the provided spaces to show
that the Hoare triple given by the outermost pre- and post-conditions is valid.

{{ True }} ->>

{{ 0 = 0*m /\ 0 <= n }}

Y ::= 0;

{{ 0 = Y*m /\ Y <= n }}

Z ::= 0;

{{ Z = Y*m /\ Y <= n }}

WHILE Y < n DO

{{ Z = Y*m /\ Y <= n /\ Y < n }} ->>

{{ Z = Y*m + 0 /\ (Y+1) <= n /\ 0 <= m }}

X ::= 0;

{{ Z = Y*m + X /\ (Y+1) <= n /\ X <= m }}

WHILE X < m DO

{{ Z = Y*m + X /\ (Y+1) <= n /\ X <= m /\ X < m}} ->>

{{ Z + 1 = Y*m + X + 1 /\ (Y+1) <= n /\ X+1 <= m }}

Z ::= Z + 1;

{{ Z = Y*m + X + 1 /\ (Y+1) <= n /\ X+1 <= m }}

X := X + 1

{{ Z = Y*m + X /\ (Y+1) <= n /\ X <= m }}

END;

{{ Z = Y*m + X /\ (Y+1) <= n /\ X <= m /\ ~(X < m) }} ->>

{{ Z = (Y+1)*m /\ (Y+1) <= n }}

Y ::= Y + 1

{{ Z = Y*m /\ Y <= n }}

END

{{ Z = Y*m /\ Y <= n /\ ~(Y < n) }} ->>

{{ Z = n*m }}

Grading scheme: 17 points for minor mistakes, 15 points logic mistake but correct invariants,
10-15 correct sketch of invariants wrong use of some rules, 4-9 some ideas, 0-4 not clear idea.

10

10. [Advanced] (15 points) Recall the Hoare logic rule for WHILE loops:

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare while)

Write a careful informal proof of its correctness.
Answer:

Suppose st is a state satisfying P and that (WHILE b DO c END) / st ⇓ st’. Proceed by in-
duction on a derivation of (WHILE b DO c END) / st ⇓ st’. Because of the form of the program,
there are just two cases to consider:

(a) (WHILE b DO c END) / st ⇓ st’ by rule E WhileEnd, with st’ = st and beval st b =

false. We know P st’ by assumption, and the assertion (∼ b) st follows by definition from
the fact that beval st b = false, so st’ satisfies the required postcondition.

(b) (WHILE b DO c END) / st ⇓ st’ by rule E WhileLoop, with beval st b = true and c /

st ⇓ st1 and (WHILE b DO c END) / st1 ⇓ st’. By the first premise (using the fact that
beval st b = true implies the assertion b st, plus the assumption that P holds for st and
the definition of validity for Hoare triples), we have P st1. Now, by the IH (for the second
premise), the assertion P ∧ ∼ b holds for the state st’, as required.

11

Formal definitions for Imp

Syntax

Inductive aexp : Type := | ANum : nat -> aexp | AId : id -> aexp |

APlus : aexp -> aexp -> aexp | AMinus : aexp -> aexp -> aexp | AMult :

aexp -> aexp -> aexp.

Inductive bexp : Type :=

| BTrue : bexp

| BFalse : bexp

| BEq : aexp -> aexp -> bexp

| BLe : aexp -> aexp -> bexp

| BNot : bexp -> bexp

| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=

| CSkip : com

| CAss : id -> aexp -> com

| CSeq : com -> com -> com

| CIf : bexp -> com -> com -> com

| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=

CSkip.

Notation "l ’::=’ a" :=

(CAss l a) (at level 60).

Notation "c1 ; c2" :=

(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=

(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=

(CIf e1 e2 e3) (at level 80, right associativity).

12

Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=

| E_Skip : forall st,

SKIP / st || st

| E_Ass : forall st a1 n X,

aeval st a1 = n ->

(X ::= a1) / st || (update st X n)

| E_Seq : forall c1 c2 st st’ st’’,

c1 / st || st’ ->

c2 / st’ || st’’ ->

(c1 ; c2) / st || st’’

| E_IfTrue : forall st st’ b1 c1 c2,

beval st b1 = true ->

c1 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_IfFalse : forall st st’ b1 c1 c2,

beval st b1 = false ->

c2 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_WhileEnd : forall b1 st c1,

beval st b1 = false ->

(WHILE b1 DO c1 END) / st || st

| E_WhileLoop : forall st st’ st’’ b1 c1,

beval st b1 = true ->

c1 / st || st’ ->

(WHILE b1 DO c1 END) / st’ || st’’ ->

(WHILE b1 DO c1 END) / st || st’’

where "c1 ’/’ st ’||’ st’" := (ceval c1 st st’).

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=

forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=

forall (st st’ : state),

(c1 / st || st’) <-> (c2 / st || st’).

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=

forall st st’, c / st || st’ -> P st -> Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q).

13

Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=

forall st, P st -> Q st.

Notation "P ->> Q" := (assert_implies P Q) (at level 80).

(ASCII ->> is typeset as a hollow arrow in the rules below.)

Hoare logic rules

{{ assn sub X a Q }} X := a {{Q }}
(hoare asgn)

{{P }} SKIP {{P }}
(hoare skip)

{{P }} c1 {{Q }}

{{Q }} c2 {{R }}

{{P }} c1; c2 {{R }}
(hoare seq)

{{P ∧ b }} c1 {{Q }}

{{P ∧ ∼ b }} c2 {{Q }}

{{P }} IFB b THEN c1 ELSE c2 FI {{Q }}
(hoare if)

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare while)

{{P ′ }} c {{Q′ }}
P _ P ′

Q′ _ Q

{{P }} c {{Q }}
(hoare consequence)

{{P ′ }} c {{Q }}

P _ P ′

{{P }} c {{Q }}
(hoare consequence pre)

{{P }} c {{Q′ }}
Q′ _ Q

{{P }} c {{Q }}
(hoare consequence post)

14

Decorated programs

(a) SKIP is locally consistent if its precondition and postcondition are the same:

{{ P }}

SKIP

{{ P }}

(b) The sequential composition of c1 and c2 is locally consistent (with respect to assertions P

and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally consistent (with
respect to Q and R):

{{ P }}

c1;

{{ Q }}

c2

{{ R }}

(c) An assignment is locally consistent if its precondition is the appropriate substitution of its
postcondition:

{{ P [X |-> a] }}

X ::= a

{{ P }}

(d) A conditional is locally consistent (with respect to assertions P and Q) if the assertions at
the top of its ”then” and ”else” branches are exactly P /\ b and P /\ ~b and if its ”then”
branch is locally consistent (with respect to P /\ b and Q) and its ”else” branch is locally
consistent (with respect to P /\ ~b and Q):

{{ P }}

IFB b THEN

{{ P /\ b }}

c1

{{ Q }}

ELSE

{{ P /\ ~b }}

c2

{{ Q }}

FI

{{ Q }}

15

(e) A while loop with precondition P is locally consistent if its postcondition is P /\ ~b and if
the pre- and postconditions of its body are exactly P /\ b and P:

{{ P }}

WHILE b DO

{{ P /\ b }}

c1

{{ P }}

END

{{ P /\ ~b }}

(f) A pair of assertions separated by ->> is locally consistent if the first implies the second (in
all states):

{{ P }} ->>

{{ P’ }}

16

