
CIS 500 — Software Foundations

Final Exam

(Standard and advanced versions together)

December 18, 2014

Answer key

(14 points)

1. Properties of Imp Relations
The propositions below concern basic properties of the Imp language. For each proposition,

indicate whether it is true or false by circling either True or False. For reference, the definition of
Imp, its evaluation semantics, and program equivalence (cequiv) starts on page 16.

(a) The evaluation relation for Imp is deterministic.

Answer: True

(b) The cequiv relation is symmetric.

Answer: True

(c) The command WHILE BFalse DO SKIP END is not equivalent to any other command.

Answer: False

(d) There is an Imp command c that terminates for some input states and diverges for others.

Answer: True

(e) If cequiv c1 c2 then cequiv (SKIP ;; c1) (SKIP ;; c2).

Answer: True

(f) For all arithmetic expressions a1 and a2, we can show

cequiv (X ::= a1 ;; Y ::= a2) (Y ::= a2 ;; X ::= a1)

Answer: False

(g) If SKIP / st || st’ then we know that st = st’.

Answer: True

1

(16 points)

2. Hoare Logic
The following Imp program (slowly) computes X + Y, placing the answer into Z.

Z ::= Y;;

WHILE X <> 0 DO

Z ::= Z + 1;;

X ::= X - 1

END

Below, add appropriate annotations in the provided spaces. You will need to give the outermost
pre- and post-conditions; these assertions should show that the program works as described above.
Use informal notations for mathematical formulae and assertions, but be completely precise in the
way you apply the Hoare rules — i.e., write out assertions in exactly the form given by the rules
(rather than logically equivalent ones). The provided blanks have been constructed so that, if you
work backwards from the end of the program, you should only need to use the rule of consequence
in the places indicated with ->>.

Mark the implication step(s) in your decoration (by circling the ->>) that rely on the following
fact. You may use other arithmetic facts silently.

• forall a b c, b <> 0 -> (a + 1) + (b - 1) = a + b

The Hoare rules and the rules for well-formed decorated programs are provided on pages 18 and 19.

{{ X = m }} ->>

{{ Y + X = m + Y }}

Z ::= Y

{{ Z + X = m + Y }}

WHILE X <> 0 DO

{{ Z + X = m + Y /\ X <> 0 }} ->>

{{ (Z + 1) + (X - 1) = m + Y }}

Z ::= Z + 1;

{{ Z + (X - 1) = m + Y }}

X ::= X - 1

{{ Z + X = m + Y }}

END

{{ Z + X = m + Y /\ ~(X <> 0) }} ->>

{{ Z = m + Y}}

Grading scheme:

• 1 point per each assignment back propagation

• 1 point for including X <> 0 and (X <> 0) at appropriate parts

• 1 point for circling the correct implication

• 4 points for specifying the program with an appropriate pre/post condition

2

• 3 points for using an appropriate loop invariant

• 4 points for propagating the loop invariant to the four places
(20 points)

3. Coq programming - Small-step semantics
This problem refers to the Coq version of the small-step relation (step) for the Simply-typed

Lambda Calculus with booleans, shown on page 22.
Because the step relation is deterministic, we can write a Coq function, called next_step, that

computes what each term steps to (if any). The next page shows (part of) the definition of this
function; you will need to complete the definition. Your implementation should satisfy the following
correctness lemmas that state that next_step exactly corresponds to the step relation. (You do
not need to prove these lemmas).

Lemma next_step_correct1 : forall t t’ ,

step t t’ <-> next_step t = Some t’.

Lemma next_step_correct2 : forall t,

normal_form step t <-> next_step t = None.

Below, the following example deminstrates the evaluation of the next_step function.

(* Identity function for booleans *)

Definition idB := tabs x TBool (tvar x).

Example ex0 : next_step (tapp idB ttrue) = Some ttrue.

(a) Fill in the blanks for the examples below. Some of these examples use idB defined above.
Your answers should be consistent with the correctness lemmas.

Example ex1 : next_step ttrue = None.

Example ex2 : next_step (tapp ttrue tfalse) = None.

Example ex3 : next_step (tapp idB (tif ttrue tfalse ttrue)) =

Some (tapp idB tfalse).

Example ex4 : next_step (tif ttrue (tapp idB ttrue) tfalse) =

Some (tapp idB ttrue).

Grading scheme: 2 points per blank

3

(b) Now complete the implementation of the next_step function. The first few cases of this
implementation have been given for you.

Your code may use the following helper function in your answer.

(* Determine whether the given term is a value *)

Fixpoint is_value (t : tm) : bool :=

match t with

| tabs x T u => true

| ttrue => true

| tfalse => true

| _ => false

end.

(* Calculate the next (small-)step for this term, if one exists *)

Fixpoint next_step (t : tm) : option tm :=

match t with

| tif ttrue t2 t3 => Some t2

| tif tfalse t2 t3 => Some t3

| tif t1 t2 t3 => match next_step t1 with

| Some t1’ => Some (tif t1’ t2 t3)

| None => None

end

| tapp (tabs x T t1) t2 =>

if is_value t2 then Some (subst x t2 t1)

else match next_step t2 with

| Some t2’ => Some (tapp t1 t2’)

| None => None

end

| tapp t1 t2 => match next_step t1 with

| Some t1’ => Some (tapp t1’ t2)

| None => None

end

| _ => None

end.

Grading scheme:

• 3 points for sending all values to None

• 3 points for checking if t1 steps and return Some if so and None if t1 is not a value

• 3 points for checking if t1 is a value and t2 steps and returning Some if so and None if
t2 is not a value

• 3 points for beta reduction when t1 and t2 are both values

• Various errors about pattern matching in Coq at discretion

4

(14 points)

4. Inductive Definitions and Scoping
Consider the following Coq definitions for a simple language of expressions with constants,

variables, and options.

Inductive tm : Type :=

| tnum : nat -> tm (* Constants 0, 1, 2, ... *)

| tvar : id -> tm (* Variables X Y Z ... *)

| tsome : tm -> tm (* Some t1 *)

| tnone : tm (* None *)

| tmatch : tm -> tm -> id -> tm -> tm. (* match t1 with

| None => t2

| Some x => t3 *)

For example, we might encode the Coq expression

match x with

| None => Some 0

| Some y => None

end

as

tmatch (tvar x) (tsome (tnum 0)) y tnone

The tmatch construct follows the usual variable scoping rules. That is, in the expression
tmatch t1 t2 X t3 the variable X is bound in t3.

Note that a variable X appears free in a term t if there is an occurrence of X that is not bound
by a corresponding tmatch. Complete the following Coq definition of afi as an inductively defined
relation such that afi X t is provable if and only if X appears free in t. You may use the next
page if you need more space.

Answer:

Inductive afi : id -> tm -> Prop :=

| afi_var : forall x, afi x (tvar x)

| afi_some1 : forall x t1,

afi x t1 ->

afi x (tsome t1)

| afi_match1 : forall x y t1 t2 t3,

afi x t1 ->

afi x (tmatch t1 t2 y t3)

| afi_match2 : forall x y t1 t2 t3,

afi x t2 ->

afi x (tmatch t1 t2 y t3)

| afi_match3 : forall x y t1 t2 t3,

x <> y ->

5

afi x t3 ->

afi x (tmatch t1 t2 y t3)

.

Grading scheme:

• 2 pts - afi var

• 2 pts - afi some1

• 2 pts - afi match1

• 2 pts - afi match2

• 4 pts - afi match3

• 2 pts - not having afi none or afi num (if other constructors are reasonable)

6

(18 points)

5. [Standard] Simply-typed Lambda Calculus
This problem again considers the simply-typed lambda calculus with booleans. This language

is type safe, a fact that can be proved using the standard preservation and progress proofs, and
evaluation is deterministic.

Which of these properties are broken after each of the following modifications to STLC. (These
modifications are made independently from one another.) In each case, circle each either “Remains
true” or “Becomes false.” For each one that becomes false, give a counterexample.

Grading scheme: 2 points per subcase

(a) Suppose that we add a new term foo with the following reduction rules:

--------------- (ST_Foo1)

(\x:A. x) ==> foo

--------------- (ST_Foo2)

foo ==> true

i. step is deterministic

Answer: Becomes false

ii. Progress

Answer: Remains true

iii. Preservation

Answer: Becomes false

Determinism fails because (\x:Bool.x)true steps to foo true. Preservation fails because
(\x:Bool.x) steps to foo, which does not have a type.

(b) Suppose instead that we add the following new rule to the typing relation:

Γ ` t1 ∈ Bool

Γ ` t2 ∈ Bool

---------------------- (T_FunnyApp)

Γ ` t1 t2 ∈ Bool

i. step is deterministic

Answer: Remains true

ii. Progress

Answer: Becomes false

iii. Preservation

Answer: Remains true

7

Progress breaks because true false doesn’t step, but isn’t a value.

(c) Suppose instead that we remove the rule T_If from the typing relation.

i. step is deterministic

Answer: Remains true

ii. Progress

Answer: Remains true

iii. Preservation

Answer: Remains true

8

(12 points)

6. Subtyping
The subtyping rules for STLC extended with pairs and records are given on page 25 for your

reference. The subtyping relations among a collection of types can be visualized compactly in
picture form: we draw a graph so that S <: T iff we can get from S to T by following arrows in
the graph (either directly or indirectly). For example, a picture for the types Top*Top, A*Top,
Top*(Top*Top), and Top*(A*A) would look like this (it happens to form a tree, but that is not
necessary in general):

Top*Top

A*Top Top*(Top*Top)

Top*(A*A)

Suppose we have defined types A and B so that A <: B. Draw a picture for the following eight types.

{}

{ m : A }

{ m : B }

{ k : B }

{ m : Top }

{ m : A , k : B }

Top

{ m : A } -> Top

Grading scheme: -2 points per mistake (i.e. arrow out of place). Answer:

Top

{}

<<

{m : A} → Top

gg

{m : Top}

99

{k : B}

bb

{m : B}

OO

{m : A}

OO

{m : A, k : B}

OO

@@

9

(16 points)
7. [Standard] Subtyping

For each question, circle whether it is true or false. Briefly justify your answer.
Grading scheme: 2 points for true/false, 2 points for justification

(a) In STLC with subtyping (see the rules on page 24) there exists a type T such that (\x:T. x x)

is typeable.

Answer: True
Why: T = Top -> Top

(b) In STLC with subtyping, if we know Γ `\x:U.t ∈ T, then T must be equal to U -> S where
Γ, x : U ` t ∈ S.

Answer: False
Why: Subsumption

(c) In STLC with subtyping, if A is not equal to Top, then the type A -> A is a subtype of
Top -> A.

Answer: False
Why: It is a supertype.

(d) The largest type U that makes the assertion below true is (A->A * B->B). (Recall that if
S <: T, then we say that T is larger than S.)

empty ` (\p:(A->A * B->B). p) ((\z:A.z), (\z:B.z)) ∈ U

Answer: False
Why: False: that is the smallest type. The largest type is Top.

10

(18 points)

8. [Advanced] Informal Proofs - Subtyping
Give a detailed proof of the following inversion lemma for typing abstractions in STLC with

subtyping (see the rules on page 24). You should prove this lemma for the with booleans and
functions only, not the extension with product and record types.

Lemma (Typing Inversion for Abstractions): If Γ ` \x:S1.t2 ∈ T, then there is a type S2 such
that Γ, x:S1 ` t2 ∈ S2 and S1 -> S2 <: T.

Proof : Let Gamma, x, S1, t2 and T be given as described. Proceed by induction on the derivation
of Γ ` \x:S1.t2 ∈ T. Cases T_Var, T_App, are vacuous as those rules cannot be used to give a type
to a syntactic abstraction.

• If the last step of the derivation is a use of T_Abs then there is a type T12 such that
T = S1 -> T12 and Γ,x:S1 ` t2 ∈ T12. Picking T12 for S2 gives us what we need:
S1 -> T12 <: S1 -> T12 follows from S_Refl.

• If the last step of the derivation is a use of T_Sub then there is a type S such that S <: T and
Γ ` \x:S1.t2 ∈ S. The IH for the typing subderivation tell us that there is some type S2

with S1 -> S2 <: S and Γ, x:S1` t2 ∈ S2. Picking type S2 gives us what we need, since
S1 -> S2 <: T then follows by S_Trans.

Grading scheme:

• 2 points for proof by induction

• 2 points for having a T Abs case

• 2 points for having a T Sub case

• 2 points for observing that other cases are trivial

• 3 points for saying what is known about typing in T Abs case

• 2 points for saying what is known about typing in T Sub case

• 3 points for using IH

• 2 points for using transitivity of subtyping

Proofs attempts by inversion on the subtyping relation received very little credit.

11

(16 points)

9. [Advanced] Informal Proofs — Progress with null
In this problem we will extend STLC with null. Your job will be to state and prove a progress

lemma for this extension. Although we will work with informal notation for this problem, the base
language is the one specified by the Coq formalization, starting on page 21. In particular, there is
no subtyping in this language.

Informally, the only change we will make to the syntax of the language is to add null,

t ::= x

| \x:T .t

| t1 t2

| true

| false

| if t1 then t2 else t3

| null

which is a new form of value.

---------- (v_null)

value null

We also add one new typing rule, shown below, that allows the null value to have any type.

--------------- (T_Null)

Γ ` null ∈ T

(The call-by-value operational semantics for this language is unchanged.)
The standard progress lemma doesn’t hold for STLC with this extension. The problem

is that a term could get stuck when trying to use a null value. For example the term
if null then t1 else t2 is well typed, but isn’t a value and doesn’t step. We say that stuck
terms like this one throw null pointer exceptions. In this problem, we won’t model those exceptions
directly. Instead, we define a relation, called npe, that describes where they should occur. We can
use this relation to modify the Progress lemma (as shown on the next page) so that it is true.

The npe relation (shown on the next page) characterizes those terms that should throw null
pointer exceptions. This relation includes terms that try to use null as another sort of value. It
does not include any other stuck terms.

Your task for this problem is to complete the proof of this revised progress lemma.

Hint: This question is asking whether you understand the proof of the progress lemma for STLC.
You will receive half credit for recreating the appropriate parts of the standard proof here, without
the extension to null.

12

The npe relation

---------------------------------- NPE_If

npe (if null then t1 else t2)

npe t1

---------------------------------- NPE_If1

npe (if t1 then t2 else t3)

npe t1

---------------------------------- NPE_App

npe (null t1)

npe t1

---------------------------------- NPE_App1

npe (t1 t2)

value t1 npe t2

---------------------------------- NPE_App2

npe (t1 t2)

Lemma (Progress): For all t and T, if ∅ ` t ∈ T then either t is a value, throws a null pointer
exception, or steps. (i.e. either value t or npe t holds or there exists some t’ such that t ==> t’).

Proof : by induction on the derivation of ∅ ` t ∈ T.

• The last rule of the derivation cannot be T_Var, since a variable is never well typed in an
empty context.

• The T_Null, T_True, T_False, and T_Abs cases are trivial, because in each of these cases we
know immediately that t is a value.

• If the last rule of the derivation was T_If, then ... t = if t1 then t2 else t3, where t1

has type Bool. By the IH, t1 either is a value or takes a step or is a NPE.

– Subcase: If t1 is a value, then since it has type Bool it must be either true or false or
null. If it is true, then t steps to t2; if false, it steps to t3, otherwise it is a NPE.

– Subcase: Otherwise, if t1 takes a step, and therefore so does t (by ST_If).

– Subcase: Otherwise, if t1 is a NPE, then the if expression is a NPE.

• If the last rule of the derivation was T_App, then ... Answer: t = t1 t2, and we know that
t1 and t2 are also well typed in the empty context; in particular, there exists a type T2 such

13

that `t1 ∈ T2 -> T and `t2 ∈ T2. By the induction hypothesis, either t1 is a value, or it
can take an evaluation step, or npe t1.

– Subcase: If t1 is a value, we now consider t2, which by the other induction hypothesis
must also either be a value, take an evaluation step, or be a NPE.

∗ Suppose t2 is a value. Since t1 is a value with an arrow type, it must either be a
lambda abstraction or null; therefore either t1 t2 can take a step by ST_AppAbs, or
we have a NPE null t2.

∗ Otherwise, if t2 can take a step, then so can t1 t2 by ST_App2.

∗ Finally, if t2 is a NPE then we are done by NPE_App2.

– Subcase: If t1 can take a step, then so can t1 t2 by ST_App1.

– Subcase: If npe t1 then we are done by NPE_App1.

Grading scheme:

– 2 points for using IH for t1 to say there are 3 cases

– 2 points for using IH for t2 to say there are 3 cases

– 4 points for case where t1 is a value and t2 is a value (using inversion of typing to
observe that t1 could be either lambda or null)

– 2 points where t1 is a value and t2 steps

– 2 points where t1 is a value and npe t2

– 2 points where t1 steps

– 2 points where t1 is a npe

14

(T_App case of the revised progress proof).

15

Formal definitions for Imp

Syntax

Inductive aexp : Type :=

| ANum : nat -> aexp

| AId : id -> aexp

| APlus : aexp -> aexp -> aexp

| AMinus : aexp -> aexp -> aexp

| AMult : aexp -> aexp -> aexp.

Inductive bexp : Type :=

| BTrue : bexp

| BFalse : bexp

| BEq : aexp -> aexp -> bexp

| BLe : aexp -> aexp -> bexp

| BNot : bexp -> bexp

| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=

| CSkip : com

| CAss : id -> aexp -> com

| CSeq : com -> com -> com

| CIf : bexp -> com -> com -> com

| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=

CSkip.

Notation "l ’::=’ a" :=

(CAss l a) (at level 60).

Notation "c1 ; c2" :=

(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=

(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=

(CIf e1 e2 e3) (at level 80, right associativity).

16

Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=

| E_Skip : forall st,

SKIP / st || st

| E_Ass : forall st a1 n X,

aeval st a1 = n ->

(X ::= a1) / st || (update st X n)

| E_Seq : forall c1 c2 st st’ st’’,

c1 / st || st’ ->

c2 / st’ || st’’ ->

(c1 ; c2) / st || st’’

| E_IfTrue : forall st st’ b1 c1 c2,

beval st b1 = true ->

c1 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_IfFalse : forall st st’ b1 c1 c2,

beval st b1 = false ->

c2 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_WhileEnd : forall b1 st c1,

beval st b1 = false ->

(WHILE b1 DO c1 END) / st || st

| E_WhileLoop : forall st st’ st’’ b1 c1,

beval st b1 = true ->

c1 / st || st’ ->

(WHILE b1 DO c1 END) / st’ || st’’ ->

(WHILE b1 DO c1 END) / st || st’’

where "c1 ’/’ st ’||’ st’" := (ceval c1 st st’).

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=

forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=

forall (st st’ : state),

(c1 / st || st’) <-> (c2 / st || st’).

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=

forall st st’, c / st || st’ -> P st -> Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q).

17

Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=

forall st, P st -> Q st.

Notation "P ->> Q" := (assert_implies P Q) (at level 80).

(ASCII ->> is typeset as a hollow arrow in the rules below.)

Hoare logic rules

{{ assn sub X a Q }} X := a {{Q }}
(hoare asgn)

{{P }} SKIP {{P }}
(hoare skip)

{{P }} c1 {{Q }}

{{Q }} c2 {{R }}

{{P }} c1; c2 {{R }}
(hoare seq)

{{P ∧ b }} c1 {{Q }}

{{P ∧ ∼ b }} c2 {{Q }}

{{P }} IFB b THEN c1 ELSE c2 FI {{Q }}
(hoare if)

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare while)

{{P ′ }} c {{Q′ }}
P _ P ′

Q′ _ Q

{{P }} c {{Q }}
(hoare consequence)

{{P ′ }} c {{Q }}

P _ P ′

{{P }} c {{Q }}
(hoare consequence pre)

{{P }} c {{Q′ }}
Q′ _ Q

{{P }} c {{Q }}
(hoare consequence post)

18

Decorated programs

(a) SKIP is locally consistent if its precondition and postcondition are the same:

{{ P }}

SKIP

{{ P }}

(b) The sequential composition of c1 and c2 is locally consistent (with respect to assertions P

and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally consistent (with
respect to Q and R):

{{ P }}

c1;

{{ Q }}

c2

{{ R }}

(c) An assignment is locally consistent if its precondition is the appropriate substitution of its
postcondition:

{{ P [X |-> a] }}

X ::= a

{{ P }}

(d) A conditional is locally consistent (with respect to assertions P and Q) if the assertions at
the top of its ”then” and ”else” branches are exactly P /\ b and P /\ ~b and if its ”then”
branch is locally consistent (with respect to P /\ b and Q) and its ”else” branch is locally
consistent (with respect to P /\ ~b and Q):

{{ P }}

IFB b THEN

{{ P /\ b }}

c1

{{ Q }}

ELSE

{{ P /\ ~b }}

c2

{{ Q }}

FI

{{ Q }}

19

(e) A while loop with precondition P is locally consistent if its postcondition is P /\ ~b and if
the pre- and postconditions of its body are exactly P /\ b and P:

{{ P }}

WHILE b DO

{{ P /\ b }}

c1

{{ P }}

END

{{ P /\ ~b }}

(f) A pair of assertions separated by ->> is locally consistent if the first implies the second (in
all states):

{{ P }} ->>

{{ P’ }}

20

Coq formalization of STLC with booleans

Identifiers

Inductive id : Type :=

Id : nat -> id.

Theorem eq_id_dec : forall id1 id2 : id, {id1 = id2} + {id1 <> id2}.

Definition x := (Id 0).

Definition y := (Id 1).

Definition z := (Id 2).

Types

Inductive ty : Type :=

| TBool : ty

| TArrow : ty -> ty -> ty.

Terms

Inductive tm : Type :=

| tvar : id -> tm

| tapp : tm -> tm -> tm

| tabs : id -> ty -> tm -> tm

| ttrue : tm

| tfalse : tm

| tif : tm -> tm -> tm -> tm.

Inductive value : tm -> Prop :=

| v_abs : forall x T t,

value (tabs x T t)

| v_true :

value ttrue

| v_false :

value tfalse.

Substitution

Reserved Notation "’[’ x ’:=’ s ’]’ t" (at level 20).

Fixpoint subst (x:id) (s:tm) (t:tm) : tm :=

match t with

| tvar x’ =>

if eq_id_dec x x’ then s else t

| tabs x’ T t1 =>

tabs x’ T (if eq_id_dec x x’ then t1 else ([x:=s] t1))

21

| tapp t1 t2 =>

tapp ([x:=s] t1) ([x:=s] t2)

| ttrue =>

ttrue

| tfalse =>

tfalse

| tif t1 t2 t3 =>

tif ([x:=s] t1) ([x:=s] t2) ([x:=s] t3)

end

where "’[’ x ’:=’ s ’]’ t" := (subst x s t).

Reduction

Reserved Notation "t1 ’==>’ t2" (at level 40).

Inductive step : tm -> tm -> Prop :=

| ST_AppAbs : forall x T t12 v2,

value v2 ->

(tapp (tabs x T t12) v2) ==> [x:=v2]t12

| ST_App1 : forall t1 t1’ t2,

t1 ==> t1’ ->

tapp t1 t2 ==> tapp t1’ t2

| ST_App2 : forall v1 t2 t2’,

value v1 ->

t2 ==> t2’ ->

tapp v1 t2 ==> tapp v1 t2’

| ST_IfTrue : forall t1 t2,

(tif ttrue t1 t2) ==> t1

| ST_IfFalse : forall t1 t2,

(tif tfalse t1 t2) ==> t2

| ST_If : forall t1 t1’ t2 t3,

t1 ==> t1’ ->

(tif t1 t2 t3) ==> (tif t1’ t2 t3)

where "t1 ’==>’ t2" := (step t1 t2).

Definition normal_form {X:Type} (R:relation X) (t:X) : Prop :=

~ exists t’, R t t’.

Contexts

Definition partial_map (A:Type) := id -> option A.

Definition empty {A:Type} : partial_map A := (fun _ => None).

22

Definition extend {A:Type} (Gamma : partial_map A) (x:id) (T : A) :=

fun x’ => if eq_id_dec x x’ then Some T else Gamma x’.

Typing Relation

Reserved Notation "Gamma ’|-’ t ’\in’ T" (at level 40).

Inductive has_type : context -> tm -> ty -> Prop :=

| T_Var : forall Gamma x T,

Gamma x = Some T ->

Gamma |- tvar x \in T

| T_Abs : forall Gamma x T11 T12 t12,

extend Gamma x T11 |- t12 \in T12 ->

Gamma |- tabs x T11 t12 \in TArrow T11 T12

| T_App : forall T11 T12 Gamma t1 t2,

Gamma |- t1 \in TArrow T11 T12 ->

Gamma |- t2 \in T11 ->

Gamma |- tapp t1 t2 \in T12

| T_True : forall Gamma,

Gamma |- ttrue \in TBool

| T_False : forall Gamma,

Gamma |- tfalse \in TBool

| T_If : forall t1 t2 t3 T Gamma,

Gamma |- t1 \in TBool ->

Gamma |- t2 \in T ->

Gamma |- t3 \in T ->

Gamma |- tif t1 t2 t3 \in T

where "Gamma ’|-’ t ’\in’ T" := (has_type Gamma t T).

23

STLC with subtyping

Typing relation

Γ x = T

-------------- (T_Var)

Γ ` x ∈ T

Γ, x:T11 ` t12 ∈ T12

---------------------------- (T_Abs)

Γ ` \x:T11.t12 ∈ T11->T12

Γ ` t1 ∈ T11->T12

Γ ` t2 ∈ T11

---------------------- (T_App)

Γ ` t1 t2 ∈ T12

-------------------- (T_True)

Γ ` true ∈ Bool

--------------------- (T_False)

Γ ` false ∈ Bool

Γ ` t1 ∈ Bool Γ ` t2 ∈ T Γ ` t3 ∈ T

-- (T_If)

Γ ` if t1 then t2 else t3 ∈ T

G ` t ∈ S S <: T

------------------------- (T_Sub)

Γ ` t ∈ T

Subtyping relation

S <: U U <: T

---------------- (S_Trans)

S <: T

------ (S_Refl)

T <: T

-------- (S_Top)

S <: Top

T1 <: S1 S2 <: T2

-------------------- (S_Arrow)

S1->S2 <: T1->T2

24

STLC subtyping, extended with pairs and records

Subtyping relation

S1 <: T1 S2 <: T2

-------------------- (S_Prod)

S1*S2 <: T1*T2

n > m

--------------------------------- (S_RcdWidth)

{i1:T1...in:Tn} <: {i1:T1...im:Tm}

S1 <: T1 ... Sn <: Tn

---------------------------------- (S_RcdDepth)

{i1:S1...in:Sn} <: {i1:T1...in:Tn}

{i1:S1...in:Sn} is a permutation of {i1:T1...in:Tn}

--- (S_RcdPerm)

{i1:S1...in:Sn} <: {i1:T1...in:Tn}

25

