CIS 500 — Software Foundations
Final Exam

(Standard version)

December 18, 2014

Name:

Pennkey (e.g. sweirich):

Scores:

14
16
20
14
12
12
12
Total: 100

~N | O | T =W [N |+~

(14 points)
1. Properties of Imp Relations
The propositions below concern basic properties of the Imp language. For each proposition,
indicate whether it is true or false by circling either True or False. For reference, the definition of
Imp, its evaluation semantics, and program equivalence (cequiv) starts on page 12.

(a) The evaluation relation for Imp is deterministic.

True False

(b) The cequiv relation is symmetric.

True False

(¢) The command WHILE BFalse DO SKIP is not equivalent to any other command.

True False

(d) There is an Imp command c that terminates for some input states and diverges for others.

True False

(e) If cequiv c1 c2 then cequiv (SKIP ;; cl1) (SKIP ;; c2).

True False

(f) For all arithmetic expressions al and a2, we can show

cequiv X ::=a1 ;; Y ::=a2) (Y ::=a2 ;; X ::= al)

True False

(g) If SKIP / st || st’ then we know that st = st’.

True False

2. Hoare Logic
The following Imp program (slowly) computes X + Y, placing the answer into Z.

Z ::=Y;;

WHILE X <> 0 DO
Z =17+ 1;;
X ::=X-1

END

Below, add appropriate annotations in the provided spaces. You will need to give the outermost
pre- and post-conditions; these assertions should show that the program works as described above.
Use informal notations for mathematical formulae and assertions, but be completely precise in the
way you apply the Hoare rules — i.e., write out assertions in ezactly the form given by the rules
(rather than logically equivalent ones). The provided blanks have been constructed so that, if you
work backwards from the end of the program, you should only need to use the rule of consequence
in the places indicated with ->>.

Mark the implication step(s) in your decoration (by circling the -=>>) that rely on the following
fact. You may use other arithmetic facts silently.

e forallabc, b<>0-> (a-b)+1=a-((d-1)

The Hoare rules and the rules for well-formed decorated programs are provided on pages 14 and 15.

{{ 3 >>
{{ 1}
Z = Y55
H{ 1}
WHILE X <> 0 DO
{ I >
{ 1}
Z ::=72 + 1;;
H{ }}
X ::=X-1
{{ 1
END
«{ }F >
{ 1}

(16 points)

3. Coq programming - Small-step semantics

This problem refers to the Coq version of the small-step relation (step) for the Simply-typed

Lambda Calculus with booleans, shown on page 17.

Because the step relation is deterministic, we can write a Coq function, called next_step, that
computes what each term steps to (if any). The next page shows (part of) the definition of this
function; you will need to complete the definition. Your implementation should satisfy the following

correctness lemmas that state that it exactly corresponds to the step relation.

Lemma next_step_correctl : forall t t’ ,

step t t’ <-> next_step t = Some t’.
Lemma next_step_correct2 : forall t,

normal_form step t <-> next_step t = None.

(a) Fill in the blanks for the following ezamples that demonstrate the evaluation of next_step.
Your answers should be consistent with the correctness lemmas shown above.

Several of these examples make use of the following definition:

(* Identity function for booleans *)

Definition idB

:= tabs x TBool (tvar x).

The first one has been done for you.

Example

ex0

: next_step (tapp idB ttrue) =

Some ttrue

exl1

ex2 :

(20 points)

(b) Now complete the implementation of the next_step function. The first few cases of this
implementation have been given for you.

Your code may use the following helper function in your answer.

(* Determine whether the given term is a value *)
Fixpoint is_value (t : tm) : bool :=

match t with

| tabs x T u => true

| ttrue => true

| tfalse => true

| _ => false
end.

(* Calculate the next (small-)step for this term, if one exists *)
Fixpoint next_step (t : tm) : option tm :=
match t with
| tif ttrue t2 t3 => Some t2
| tif tfalse t2 t3 => Some t3
| tif t1 t2 t3 => match next_step tl with
| Some t1’ => Some (tif t1’ t2 t3)
| None => None
end

(* Fill in remaining cases here, and on the next page if necessary *)

(Extra space for the implementation of next_step, if necessary.)

(14 points)
4. Inductive Definitions and Scoping
Consider the following Coq definitions for a simple language of expressions with constants,
variables, and options.

Definition id := nat.
Inductive tm : Type :=
| tnum : nat -> tm (x Constants 0, 1, 2, ... *)
| tvar : id -> tm (% Variables X Y Z ... *)
| tsome : tm -> tm (*x Some t1 *)
| tnone : tm (* None *)
| tmatch : tm -> tm -> id -> tm -> tm. (* match t1 with

| None => t2

| Some x => t3 *)

For example, we might encode the Coq expression

match x with

| None => 0
| Some y =>y
end

as tmatch (tvar X) (tnum 0) Y (tvar Y).
The tmatch construct follows the usual variable scoping rules. That is, in the expression
tmatch t1 t2 X t3 the variable X is bound in t3.

Note that a variable X appears free in a term t if there is an occurrence of X that is not bound
by a corresponding tmatch. Complete the following Coq definition of afi as an inductively defined
relation such that afi X t is provable if and only if X appears free in t. You may use the next
page if you need more space.

Inductive afi : id -> tm -> Prop :=

(Space for the definition of afi, if necessary).

(12 points)

5. Simply-typed Lambda Calculus

This problem again considers the simply-typed lambda calculus with booleans. This language
is type safe, a fact that can be proved using the standard preservation and progress proofs, and
evaluation is deterministic.

Which of these properties are broken in after each of the following modifications to STLC.
(These modifications are made independently from one another.) In each case, circle each either
“Remains true” or “Becomes false.” For each one that becomes false, give a counterexample.

(a) Suppose that we add a new term foo with the following reduction rules:

_______________ (ST_Fool)
(\x:A. x) ==> foo

_______________ (ST_Fo02)

i. step is deterministic

Remains true Becomes false, because...

ii. Progress

Remains true Becomes false, because...

iii. Preservation

Remains true Becomes false, because...

(b) Suppose instead that we add the following new rule to the typing relation:

I' H t1 € Bool

I' - t2 € Bool
—————————————————————— (T_FunnyApp)
I' H t1 t2 € Bool

i. step is deterministic

Remains true Becomes false, because...

ii. Progress

Remains true Becomes false, because...

iii. Preservation

Remains true Becomes false, because...

(c) Suppose instead that we remove the rule T_If from the typing relation.

i. step is deterministic
Remains true Becomes false, because...
ii. Progress
Remains true Becomes false, because...
iii. Preservation

Remains true Becomes false, because...

6. Subtyping

The subtyping rules for STLC extended with pairs and records are given on page 21 for your
reference. The subtyping relations among a collection of types can be visualized compactly in
picture form: we draw a graph so that S <: T iff we can get from S to T by following arrows in
the graph (either directly or indirectly). For example, a picture for the types Top*Top, A*Top,
Top* (Top*Top), and Top*(A*A) would look like this (it happens to form a tree, but that is not
necessary in general):

Top*Top

N

AxTop Top*(Top*Top)
t
Top* (AxA)

Suppose we have defined types A and B so that A <: B. Draw a picture for the following seven
types.

8

{m: A}

{m: B}
{k:B}

{m: Top }
{m:A,k:B}Z}
Top

{m: A} -> Top

10

(12 points)

(12 points)
7. Subtyping True or False
For each question, indicate whether it is true or false. Very briefly justify your answer.

(a) In STLC with subtyping (see the rules on page 20) there exists a type T such that (\x:T. x x)
is typeable.

(b) In STLC with subtyping, if we know I' F\x:U.t € T, then T must be equal to U -> S where
I'x:UFtes.

(¢) In STLC with subtyping, if A is not equal to Top, then the type A -> A is a subtype of
Top -> A.

(d) In STLC with subtyping, there is only one derivation of Bool -> Bool <: Top.

11

Formal definitions for Imp
Syntax

Inductive aexp : Type :=

| ANum : nat -> aexp
AId : id -> aexp
APlus : aexp -> aexp —> aexp
AMinus : aexp —-> aexp -> aexp
AMult : aexp -> aexp -> aexp.

Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEqQ : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=
| CSkip : com
CAss : id -> aexp —> com
CSeq : com -> com —> com
CIf : bexp -> com -> com —> com
CWhile : bexp —-> com -> com.

Notation "’SKIP’" :=

CSkip.
Notation "1 ’::=’ a" :=

(CAss 1 a) (at level 60).
Notation "cl1 ; c2" :=

(CSeq c1 c2) (at level 80, right associativity).
Notation "’WHILE’ b ’D0O’ c ’END’" :=

(CWhile b c) (at level 80, right associativity).
Notation "’IFB’ el ’THEN’ e2 ’ELSE’ e3 ’FI’" :=

(CIf el e2 e3) (at level 80, right associativity).

12

Evaluation relation

Inductive ceval : com -> state —-> state -> Prop :=
| E_Skip : forall st,
SKIP / st || st
| E_Ass : forall st al n X,
aeval st al = n —>

(X ::=al) / st || (update st X n)
| E_Seq : forall cl c2 st st’ st’’,

cl /st |l st’? —>

c2 / st? || st’’ >

(c1 ; ¢c2) / st |l st?’
| E_IfTrue : forall st st’ bl cl c2,

beval st bl = true —>

cl / st || st’> —>

(IFB bl THEN c1 ELSE c¢2 FI) / st || st’
| E_IfFalse : forall st st’ bl cl1 c2,

beval st bl = false ->

c2 / st || st> —>

(IFB bl THEN c1 ELSE c2 FI) / st || st’
| E_WhileEnd : forall bl st ci,

beval st bl = false ->

(WHILE bl DO c1 END) / st || st
| E_WhileLoop : forall st st’ st’’ bl ci,

beval st bl = true —>

cl / st || st’> —>

(WHILE bl DO c1 END) / st’ || st’’ ->

(WHILE bl DO cl END) / st || st’’

where "c1l ’/’ st ||’ st?" := (ceval cl1 st st’).

Program equivalence

Definition bequiv (bl b2 : bexp) : Prop :=
forall (st:state), beval st bl = beval st b2.

Definition cequiv (cl ¢2 : com) : Prop :=

forall (st st’ : state),
(c1 / st Il st?) <=> (c2 / st || st’).

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
forall st st’, ¢ / st || st” => P st ->Q st’.

Notation "{{ P }} ¢ {{ Q }}" := (hoare_triple P c Q).

13

Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=

forall st, P st -> Q st.

Notation "P ->> Q" := (assert_implies P Q) (at level 80).

(ASCII ->> is typeset as a hollow arrow in the rules below.)

Hoare logic rules
(hoare_asgn)

fassnsub X a@QB3X :=afQ}

(hoare_skip)

fPB3SKIPEP}

P} c14Q3
QB3 c24R}

h _
TP} ol 2 LR} (hoare_seq)

€PADEc1 4Q}
IPA~DF c24Q3B
(hoare_if)
€P3 IFB b THEN cl ELSE c2 FIfQ}

€PAVBcEPH
(hoare_while)
€ P} WHILE b DO c ENDfPA~bE}

€3 cEQ' 3
PP
/
Q Q (hoare_consequence)

{PFc{Q}

P ciQ}
P—-P

{PFci{Q}

(hoare_consequence pre)

f{PRFcE4Q'}
Q —Q
(hoare_consequence_post)

{P}cHQ3}

14

Decorated programs

(a) SKIP is locally consistent if its precondition and postcondition are the same:

{{ P12}
SKIP

{{ P12}

(b) The sequential composition of c1 and c2 is locally consistent (with respect to assertions P
and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally consistent (with
respect to Q and R):

{{P3}}
cl;
{ Q1
c2
{{R 3}

(c) An assignment is locally consistent if its precondition is the appropriate substitution of its
postcondition:

{{P X I|->a]l }}
X ::= a
{{P}}

(d) A conditional is locally consistent (with respect to assertions P and Q) if the assertions at
the top of its "then” and ”else” branches are exactly P /\ b and P /\ ~b and if its "then”
branch is locally consistent (with respect to P /\ b and Q) and its ”else” branch is locally
consistent (with respect to P /\ ~b and Q):

{{P}

IFB b THEN
{{P/\Db}}
cl

{Q1}r

ELSE
{P/\ "b1}}
c2

HQ
FI

{Q}

15

(e) A while loop with precondition P is locally consistent if its postcondition is P /\ b and if
the pre- and postconditions of its body are exactly P /\ b and P:

{{P1}

WHILE b DO
{P/\Db}}
cl

{ P}
END

{{P/\ b}

(f) A pair of assertions separated by ->> is locally consistent if the first implies the second (in
all states):

{{ P} >
{{ P 3}

16

Coq formalization of STLC with booleans
Identifiers
Inductive id : Type :=

Id : nat -> id.

Theorem eq_id_dec : forall idl id2 : id, {id1l = id2} + {id1l <> id2}.

Definition x := (Id 0).
Definition y := (Id 1).
Definition z := (Id 2).

Types
Inductive ty : Type :=

| TBool : ty

| TArrow : ty -> ty -> ty.
Terms

Inductive tm : Type :=

| tvar : id -> tm

| tapp : tm -> tm -> tm

| tabs : id -> ty -> tm -> tm
| ttrue : tm

| tfalse : tm

| tif :tm -> tm -> tm -> tm.

Inductive value : tm -> Prop :=
| v_abs : forall x T t,
value (tabs x T t)
| v_true
value ttrue
| v_false :
value tfalse.

Substitution

Reserved Notation "’[’ x ’:=’ s ’]’ t" (at level 20).

Fixpoint subst (x:id) (s:tm) (t:tm) : tm :=
match t with
| tvar x’ =>
if eq_id_dec x x’ then s else t
| tabs x’ T t1 =>
tabs x’ T (if eq_id_dec x x’ then tl1 else ([x:=s] t1))

17

| tapp t1 t2 =>
tapp ([x:=s] t1) ([x:=s] t2)
| ttrue =>
ttrue
| tfalse =>
tfalse
| tif t1 t2 t3 =>
tif ([x:=s] t1) ([x:=s] t2) ([x:=s] t3)

end
where "’ [’ x ’:=> s ’]’ t" := (subst x s t).
Reduction

Reserved Notation "t1 ’==>’ t2" (at level 40).

Inductive step : tm -> tm -> Prop :=
| ST_AppAbs : forall x T t12 v2,
value v2 ->
(tapp (tabs x T t12) v2) ==> [x:=v2]t12
| ST_Appl : forall t1 t1’ t2,
tl ==> t1’ ->
tapp tl t2 ==> tapp tl1’ t2
| ST_App2 : forall vl t2 t2’,
value vl ->
t2 ==> t2’ ->
tapp vl t2 ==> tapp vl t2’
| ST_IfTrue : forall t1 t2,
(tif ttrue t1 t2) ==> t1
| ST_IfFalse : forall t1 t2,
(tif tfalse t1 t2) ==> t2
| ST_If : forall t1 tl1’ t2 t3,
t1 ==> t1’> >
(tif t1 t2 t3) ==> (tif t1’ t2 t3)

where "t1 ’==>’ t2" := (step tl t2).

Definition normal_form {X:Type} (R:relation X) (t:X) : Prop :=
“ exists t’, Rt t’.

Contexts

Definition partial_map (A:Type) := id -> option A.

_ => Nome).

Definition empty {A:Type} : partial_map A := (fun

18

Definition extend {A:Type} (Gamma : partial_map A) (x:id) (T :
fun x’ => if eq_id_dec x x’ then Some T else Gamma x’.

Typing Relation

Reserved Notation "Gamma ’|-’ t ’\in’ T" (at level 40).

Inductive has_type : context -> tm -> ty -> Prop :=
| T_Var : forall Gamma x T,
Gamma x = Some T ->
Gamma |- tvar x \in T
| T_Abs : forall Gamma x T11 T12 t12,
extend Gamma x T11 |- t12 \in T12 ->
Gamma |- tabs x T11 t12 \in TArrow T11 Ti12
| T_App : forall Til T12 Gamma t1 t2,
Gamma |- t1 \in TArrow T11 T12 ->
Gamma |- t2 \in T11 ->
Gamma |- tapp t1 t2 \in T12
| T_True : forall Gamma,

Gamma |- ttrue \in TBool
| T_False : forall Gamma,
Gamma |- tfalse \in TBool

| T_If : forall t1 t2 t3 T Gamma,
Gamma |- t1 \in TBool ->
Gamma |- t2 \in T ->
Gamma |- t3 \in T ->
Gamma |- tif t1 t2 t3 \in T

where "Gamma ’ |-’ t ’\in’ T" := (has_type Gamma t T).

19

STLC with subtyping
Typing relation

I'x=T
______________ (T_Var)
I'HFxeT
I', x:T11 F t12 € T12
____________________________ (T_Abs)
I' F \x:T11.t12 € T11->T12
I' - tl € T11->T12
I'' - t2 € T11
______________________ (T_App)
I'' - t1 t2 € T12
____________________ (T_True)
I' F true € Bool
_____________________ (T_False)
I' + false € Bool
I' H t1 € Bool I't2eT I'Ht3 €T
__ (T_If)
I' if t1 then t2 else t3 € T
GFHtes S <: T
_________________________ (T_Sub)
't eT
Subtyping relation
S <: U UK<: T
________________ (S_Trans)
S <: T
______ (S_Refl)
T <: T
________ (S_Top)
S <: Top
T1 <: S1 S2 <: T2
____________________ (S_Arrow)

S1->82 <: T1->T2

20

STLC subtyping, extended with pairs and records
Subtyping relation

S1 <: T1 S2 <: T2

———————————————————— (S_Prod)
S1xS2 <: T1xT2
n>m
--------------------------------- (S_RcdWidth)
{i1:T1...in:Tn} <: {i1:T1...im:Tm}

S1 <: T1 Sn <: Tn
—————————————————————————————————— (S_RcdDepth)
{i1:81...in:Sn} <: {i1:T1...in:Tn}

{i1:81...in:Sn} is a permutation of {il:T1l...in:Tn}
——— (S_RcdPerm)

{i1:81...in:Sn} <: {i1:T1...in:Tn}

21

