
CIS 500: Software Foundations Final Exam
May 3, 2016

(Standard and Advanced versions together)

Name (printed):

Username (login id):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of
Academic Integrity in completing this examination.

Signature: Date:

Directions: This exam booklet contains both the standard and advanced track questions.
Questions with no annotation are for both tracks. Other questions are marked “Standard
Only” or “Advanced Only”. Do not do the questions intended for the other track.

Mark the box of the track you wish to follow.

Standard

1 /12

2 ADVANCED ONLY/−

3 /18

4 /16

5 /18

6 ADVANCED ONLY/−

7 /20

8 /16

Total /100

Advanced

1 STANDARD ONLY/−

2 /8

3 /18

4 /16

5 STANDARD ONLY/−

6 /22

7 /20

8 /16

Total /100

1. [Standard Only] Coq Programming: Types (12 points)

For each of the following Coq terms, write its type or write “ill-typed” if it is not well typed.

(a) fun (n:nat) => n + 1

(b) fun (n:nat) => fun (P:prop) => P n

(c) fun (P:nat -> Prop) => forall (m:nat), P m

The typing questions below use these definitions taken from Maps.v:

Inductive id : Type :=
| Id : nat -> id.

Definition total_map (A:Type) := id -> A.

Definition partial_map (A:Type) := total_map (option A).

Definition empty {A:Type} : partial_map A :=
t_empty None.

Definition t_update {A:Type} (m : total_map A) (x : id) (v : A) :=
fun x’ => if beq_id x x’ then v else m x’.

(d) partial_map total_map

(e) partial_map (nat -> nat)

(f) t_update empty (Id 0) (Some Id)

1

2. [Advanced Only] Coq Programming (8 points)

(a) What is the type of the following Coq term? Write “ill typed” if it is not well typed.

fun n => (exists x, x < n)

(b) What is the type of the following Coq term? Write “ill typed” if it is not well typed.

fun P => fun n => fun (x:P(n+1)) => (P n)

Consider the following (well-typed) Coq program:

Fixpoint foo (n:nat) :=
match n with

| O => fun (y:nat) => y = 0
| S m => fun (y:nat) =>

match y with
| O => True
| S l => foo m l

end
end.

(c) What is the type of foo?

(d) Which of the following lemmas can you prove to characterize foo? (Choose one.)

� forall n m, n = m <-> foo m n
� forall n m, n < m <-> foo m n
� forall n m, m < n <-> foo m n
� forall n m, n <= m <-> foo m n
� forall n m, m <= n <-> foo m n

2

3. Imp Semantics (18 points)

The Appendix contains the definitions of the syntax, large-step operational semantics, and
program equivalence as defined by the cequiv relation for Imp programs. Multiple choice:
mark all correct answers. There may be zero or more than one!

(a) (3 pts.) Consider the Imp program:

Y ::= 0;;
WHILE X > 0 DO

Y ::= Y + 2;;
X ::= X - 1;;

DONE

Which of the following programs are equivalent to it, according to cequiv?

i. Y ::= X * 2;; ii. IF X = 2 THEN iii. WHILE Y <> (2 * X) DO
X := 0; Y ::= 4;; Y := Y + 1;;

ELSE DONE;;
Y ::= 2 * X;; X ::= 0

FI

(b) (3 pts.) Consider the Imp program:

IF X > Y THEN
WHILE True DO SKIP DONE

ELSE
X ::= X - Y;;

FI

Which of the following programs are equivalent to it, according to cequiv?

i. X ::= 0 ii. IF X <= Y THEN iii. WHILE (X - Y) > 0 DO
X ::= 0 SKIP

ELSE DONE;;
WHILE True DO SKIP DONE X ::= 0

FI

(c) (4 pts.) Which of the following choices of commands c are such that c;;c is equivalent
to just c (according to cequiv)?

i. SKIP ii. WHILE True DO iii. X ::= Y;; iv. IF X = 0 THEN
X ::= X+1 Y ::= X;; SKIP

DONE ELSE
X ::= X - 1;;

FI

3

Suppose we extend Imp with the command CALL that lets us call a Coq-level function from
within an Imp program:

Inductive com : Type := ...
| CCall : (state -> state) -> com. (* <---- new *)

Notation "’CALL’ f" := (CCall f) (at level 60).

Inductive ceval : com -> state -> state -> Prop := ...
| E_Call : forall (st : state) (f:state -> state),

(CALL f) / st \\ (f st) (* <---- run f on st *)

Here is a simple example of how it can be used to implement a function that zeros-out the
state, and a lemma that shows what the reset function does:

Definition reset (st:state) : state := empty_state.

Lemma call_example : forall st,
(X ::= 1;; Y ::= 2;; Z ::= 3;; CALL reset) / st \\ empty_state.

(d) (4 pts.) Is it possible to create an Imp command c, that does not use CALL, but such
that c is equivalent to the program CALL reset? Briefly justify your answer.

(e) (4 pts.) Give an example Imp command c that cannot be implemented as a Coq function
f : state -> state (i.e. such that c and CALL f are equivalent).
c =

4

4. Hoare Logic: Decorated Programs (16 points)

Consider the following Imp program that computes m*n and places the answer in Z

Add appropriate annotations to the program in the provided spaces to show that the Hoare
triple given by the outermost pre- and post-conditions is valid. The provided blanks have been
constructed so that, if you work backwards from the end of the program, you should only need
to use the rule of consequence in the places indicated with ->>. The Appendix contains a list
of all the Hoare rules and the rules for decorated programs.

We have given you the outer-loop’s invariant.

{{ X = m }} ->>

{{ }}

Z ::= 0;;

{{ }}

WHILE X <> 0 DO

{{ }} ->>

{{ }}

W ::= n;;

{{ }}

WHILE W <> 0 DO

{{ }} ->>

{{ }}

Z ::= Z + 1;;

{{ }}

W ::= W - 1

{{ }}

END;

{{ }} ->>

{{ }}

X ::= X - 1

{{ }}

END

{{ Z = (m-X) * n /\ X<=m /\ ~(X<>0) }} ->>

{{ Z = m * n }}

5

5. [Standard Only] Simply-typed Lambda Calculus (18 points)

The syntax, operational semantics, and typing rules for the simply-typed lambda calculus
with booleans is given in the Appendix. Here we do not consider products or subtyping.

For each variant below, indicate which of the properties of the STLC remain true in the
presence of this rule? For each one, write either "remains true" or else "becomes false." If a
property becomes false, give a counterexample.

(a) Consider a variant of the STLC in which we add a new term loop with the following
reduction and typing rules:

------------- (ST_Loop) ---------------- (T_Loop)
loop ==> loop Γ ` loop ∈ T

• Determinism of ==>

• Progress

• Preservation

(b) Suppose instead that we add the following typing rule:

Γ ` t1 ∈ U -> T
-------------------- (T_App’)
Γ ` t1 t2 ∈ T

• Determinism of ==>

• Progress

• Preservation

6

(c) Instead, suppose that we add a new term guess T (where T is a type) with the following
reduction rule:

------------------------------- (ST_GArr)
guess (T -> U) ==> \x:T. guess U

and the following typing rule:

-------------------- (T_Guess)
Γ ` guess T ∈ T

• Determinism of ==>

• Progress

• Preservation

7

6. [Advanced Only] Informal Proof for STLC (22 points)

In this problem we consider only the simply typed lambda calculus with booleans (in particular
there is no subtyping and you can ignore product types). Give an informal proof of the
substitution lemma (stated further down).

Let us write FV (t) for the set of free variables that occur in t. You will need to use the
following lemma (which you may assume as given) in the proof:

Context invariance If Γ ` t ∈ T and (∀x, x ∈ FV (t)→ Γ(x) = Γ′(x)) then Γ′ ` t ∈ T .

Substitution If Γ, x : T ` t ∈ U and ` v ∈ T then Γ ` [x := v]t ∈ U .

8

7. Simply-typed Lambda Calculus (20 points)

In this problem, we consider an alternate formulation of the small-step operational semantics
for the simply-typed lambda calculus with booleans (without subtyping and no products until
part (d)).

One annoying thing about the operational semantics is the number of “structural” rules
(ST_App1, ST_App2, ST_If) that we have to deal with. (It’s even worse when we consider
products, but we’re leaving them out for simplicity here.)

An alternate formulation of the operational semantics is to give a syntax of “evaluation con-
texts” E (of type ectx) and “primitive steps” s (which are just particular terms) like this:

(* Evaluation contexts E : ectx *) (* prim_step : tm -> Prop *)
E ::= [] (* hole *) s ::= (\x:T.t) v

| E t (* ST_App1 *) | if true then t1 else t2
| v E (* ST_App2 *) | if false then t1 else t2
| if E then t1 else t2 (* ST_If *)

Here we use “informal” syntax rather than Coq constructors to make it simpler to write
examples. We also use the convention the v stands for a term that is a value. The idea is that
E describes a term with a single “hole” [] in it, into which we can place an arbitrary term.
We define the function that fills the hole by pattern matching on the E like this:

Fixpoint fill (t:tm) (E:ectx) : tm :=
match E with
| [] => t
| E t1 => ((fill t E) t1)
| v E => (v (fill t E))
| if E then t1 else t2 => if (fill t E) then t1 else t2

end.

Each non-hole E corresponds to one of the structural rules, which lets us use one evaluation
rule E_Hole for all of them. We also include one rule for each primitive step, like this:

s ==> t (\x:T.t) v ==> [x:=v]t (ST_AppAbs)
--------------------- (ST_Hole)
fill s E ==> fill t E if true then t1 else t2 ==> t1 (ST_IfTrue)

if false then t1 else t2 ==> t2 (ST_IfFalse)

These rules replace the old definition of the small-step semantics.

There are no questions on this page.

9

If we use these evaluation contexts to prove soundness, we need a couple different helper
lemmas.

(a) (3 pts.) The first lemma says that we can always decompose a well-typed term if it is
not a value:

Lemma decompose : forall (t:tm) (T:ty) ,
` t : T ->
value t \/
exists (E:ectx), exists (s:tm), (prim_step s) /\ t = fill s E.

The proofs of which of the following would directly require this decompose lemma?
(If A needs B and B needs the lemma, mark only B.)

� canonical forms
� preservation
� progress
� context invariance
� substitution

(b) (4 pts.) We also need a kind of substitution lemma that relates to fill. A bad attempt
at stating it might be something like this:

Lemma ectx_substitution: forall (E:ectx) (x:id) (T U:ty) (t:tm) Γ,
Γ, x:T ` (fill x E) ∈ U ->
` t ∈ T ->
Γ ` (fill t E) ∈ U.

Unfortunately, the lemma above is not provable (indeed it is false!). Briefly explain why.

10

(c) (3 pts.) A better way to state the substitution principal is:

Lemma ectx_substitution: forall (E:ectx) (T U:ty) (s t:tm) Γ,
Γ ` (fill s E) ∈ U -> (* Hyp1 *)
` s ∈ T -> (* Hyp2 *)
` t ∈ T -> (* Hyp3 *)
Γ ` (fill t E) ∈ U.

It would be easiest to prove this fact by induction on which of the following? (Choose
one.)
� E � T � U � s
� t � Hyp1 � Hyp2 � Hyp3

(d) (4 pts.) Following the development above, what would you add to the definition of E to
support products? (The usual rules for products are given in the appendix.) (You may
need to add more than one clause.)

E ::= ...
|

(e) It is also possible to use evaluation contexts to implement other language features. Here
we add a new expression halt, which halts the program.

E <> []
----------------------- (ST_Halt)
fill halt E ==> halt

i. (2 pts.) What does the following term step to in one step (==>)?
if (\x:Bool.x) halt then false else true

� true
� false
� halt
� (\x:Bool.x) halt
� if halt then false else true

ii. (4 pts.) What should the typing rule for halt be to ensure type safety?

11

8. Subtyping (16 points)

In this problem we consider the simply typed lambda calculus with booleans, pairs, and
subtyping. The syntax, operational semantics, and typing rules are given in the Appendix.

Recall that this language already includes the type Top, which is a supertype of all other
types, as indicated by this subtyping rule:

-------- (S_Top)
S <: Top

In this problem we consider the implications of adding a new type Bot (for “bottom”), which
is a subtype of all others:

-------- (S_Bot)
Bot <: S

Just as when we added Top, we leave the operational semantics and the typing rules unchanged.

(a) (3 pts.) For each of the following lemmas, indicate whether it is provable with the
addition of Bot as described above:

• Lemma sub_inversion_Bot : forall U, U <: TBot -> U = TBot.

� Provable � Not provable

• Lemma sub_inversion_Bool : forall U, U <: TBool -> U = TBool.

� Provable � Not provable

• Lemma canonical_forms_of_Bool : forall s,
empty ` s ∈ TBool ->
value s ->
(s = ttrue \/ s = tfalse).

� Provable � Not provable

(b) (3 pts.) Recall that a term is closed if it has no free variables. Are there any closed
values of type Bot? That is, can you find a value v such that:

empty ` v : Bot

If so, give an example. If not, briefly explain.

12

(c) (5 pts.) For each pair of types T and S given below, indicate whether T <: S, S <: T, or
T and S are incomparable (that is, not related by <:).

• T = (Bot * Top) S = (Bot * Bool)

� T <: S � S <: T � incomparable

• T = Bool -> Bool S = Top -> Bot

� T <: S � S <: T � incomparable

• T = Bool -> Top S = Bot -> Bot

� T <: S � S <: T � incomparable

• T = (Bot -> Top) -> Bool S = (Top -> Bot) -> Top

� T <: S � S <: T � incomparable

• T = Bool -> (Top * Bot) S = Bot -> (Bot * Top)

� T <: S � S <: T � incomparable

(d) (5 pts.) Consider the following program:

empty ` (\x:T. x x) : T -> Bot

Which of the following types T allow the above program to be well-typed? That is,
for which of the following choices of T does there exists a typing derivation with the
conclusion above?
� T = Bool -> Bool
� T = Bot
� T = Top
� T = Top -> Bot
� T = (Bot -> Bool) -> Bot

13

For Reference

Formal definitions for Imp

Syntax

Inductive aexp : Type := | ANum : nat -> aexp | AId : id -> aexp |
APlus : aexp -> aexp -> aexp | AMinus : aexp -> aexp -> aexp | AMult :
aexp -> aexp -> aexp.

Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEq : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=
| CSkip : com
| CAss : id -> aexp -> com
| CSeq : com -> com -> com
| CIf : bexp -> com -> com -> com
| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=
CSkip.

Notation "l ’::=’ a" :=
(CAss l a) (at level 60).

Notation "c1 ;; c2" :=
(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=
(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=
(CIf e1 e2 e3) (at level 80, right associativity).

14

Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=
| E_Skip : forall st,

SKIP / st || st
| E_Ass : forall st a1 n X,

aeval st a1 = n ->
(X ::= a1) / st || (update st X n)

| E_Seq : forall c1 c2 st st’ st’’,
c1 / st || st’ ->
c2 / st’ || st’’ ->
(c1 ;; c2) / st || st’’

| E_IfTrue : forall st st’ b1 c1 c2,
beval st b1 = true ->
c1 / st || st’ ->
(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_IfFalse : forall st st’ b1 c1 c2,
beval st b1 = false ->
c2 / st || st’ ->
(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_WhileEnd : forall b1 st c1,
beval st b1 = false ->
(WHILE b1 DO c1 END) / st || st

| E_WhileLoop : forall st st’ st’’ b1 c1,
beval st b1 = true ->
c1 / st || st’ ->
(WHILE b1 DO c1 END) / st’ || st’’ ->
(WHILE b1 DO c1 END) / st || st’’

where "c1 ’/’ st ’||’ st’" := (ceval c1 st st’).

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=
forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=
forall (st st’ : state),

(c1 / st || st’) <-> (c2 / st || st’).

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
forall st st’, c / st || st’ -> P st -> Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q).

15

Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=
forall st, P st -> Q st.

Notation "P ->> Q" := (assert_implies P Q) (at level 80).

(ASCII ->> is typeset as a hollow arrow in the rules below.)

Hoare logic rules

{{ assn_sub X a Q }} X := a {{Q }}
(hoare_asgn)

{{P }} SKIP {{P }}
(hoare_skip)

{{P }} c1 {{Q }}
{{Q }} c2 {{R }}

{{P }} c1;; c2 {{R }}
(hoare_seq)

{{P ∧ b }} c1 {{Q }}
{{P ∧ ∼ b }} c2 {{Q }}

{{P }} IFB b THEN c1 ELSE c2 FI {{Q }}
(hoare_if)

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare_while)

{{P ′ }} c {{Q′ }}
P _ P ′

Q′ _ Q

{{P }} c {{Q }}
(hoare_consequence)

{{P ′ }} c {{Q }}
P _ P ′

{{P }} c {{Q }}
(hoare_consequence_pre)

{{P }} c {{Q′ }}
Q′ _ Q

{{P }} c {{Q }}
(hoare_consequence_post)

16

Decorated programs

1. SKIP is locally consistent if its precondition and postcondition are the same:

{{ P }}
SKIP
{{ P }}

2. The sequential composition of c1 and c2 is locally consistent (with respect to assertions P
and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally consistent (with
respect to Q and R):

{{ P }}
c1;;
{{ Q }}
c2
{{ R }}

3. An assignment is locally consistent if its precondition is the appropriate substitution of its
postcondition:

{{ P [X |-> a] }}
X ::= a
{{ P }}

4. A conditional is locally consistent (with respect to assertions P and Q) if the assertions at the
top of its "then" and "else" branches are exactly P /\ b and P /\ ~b and if its "then" branch
is locally consistent (with respect to P /\ b and Q) and its "else" branch is locally consistent
(with respect to P /\ ~b and Q):

{{ P }}
IFB b THEN

{{ P /\ b }}
c1
{{ Q }}

ELSE
{{ P /\ ~b }}
c2
{{ Q }}

FI
{{ Q }}

17

5. A while loop with precondition P is locally consistent if its postcondition is P /\ ~b and if
the pre- and postconditions of its body are exactly P /\ b and P:

{{ P }}
WHILE b DO

{{ P /\ b }}
c1
{{ P }}

END
{{ P /\ ~b }}

6. A pair of assertions separated by ->> is locally consistent if the first implies the second (in all
states):

{{ P }} ->>
{{ P’ }}

Relations

Definition relation (X: Type) := X->X->Prop.

Inductive multi {X:Type} (R: relation X) : relation X :=
| multi_refl : forall (x : X), multi R x x
| multi_step : forall (x y z : X),

R x y ->
multi R y z ->
multi R x z.

Notation " t ’==>*’ t’ " := (multi step t t’) (at level 40).

18

STLC with booleans

Syntax

T ::= Bool t ::= x v ::= true
| T -> T | t t | false

| \x:T. t | \x:T. t
| true
| false
| if t then t else t

Small-step operational semantics

value v2
---------------------------- (ST_AppAbs)
(\x:T.t12) v2 ==> [x:=v2]t12

t1 ==> t1’
---------------- (ST_App1)
t1 t2 ==> t1’ t2

value v1
t2 ==> t2’

---------------- (ST_App2)
v1 t2 ==> v1 t2’

-------------------------------- (ST_IfTrue)
(if true then t1 else t2) ==> t1

--------------------------------- (ST_IfFalse)
(if false then t1 else t2) ==> t2

t1 ==> t1’
-- (ST_If)
(if t1 then t2 else t3) ==> (if t1’ then t2 else t3)

19

Typing

Γ x = T
-------------- (T_Var)
Γ ` x ∈ T

Γ, x:T11 ` t12 ∈ T12
---------------------------- (T_Abs)
Γ ` \x:T11.t12 ∈ T11->T12

Γ ` t1 ∈ T11->T12
Γ ` t2 ∈ T11

---------------------- (T_App)
Γ ` t1 t2 ∈ T12

-------------------- (T_True)
Γ ` true ∈ Bool

--------------------- (T_False)
Γ ` false ∈ Bool

Γ ` t1 ∈ Bool Γ ` t2 ∈ T Γ ` t3 ∈ T
-- (T_If)

Γ ` if t1 then t2 else t3 ∈ T

Properties of STLC

Theorem preservation : forall t t’ T,
empty ` t ∈ T ->
t ==> t’ ->
empty ` t’ ∈ T.

Theorem progress : forall t T,
empty ` t ∈ T ->
value t \/ exists t’, t ==> t’.

20

STLC with products

Extend the STLC with product types, terms, projections, and pair values:

T ::= ... t ::= ... v ::= ...
| T * T | (t,t) | (v, v)

| t.fst
| t.snd

Small-step operational semantics (added to STLC rules)

t1 ==> t1’
-------------------- (ST_Pair1)
(t1,t2) ==> (t1’,t2)

t2 ==> t2’
-------------------- (ST_Pair2)
(v1,t2) ==> (v1,t2’)

t1 ==> t1’
------------------ (ST_Fst1)
t1.fst ==> t1’.fst

------------------ (ST_FstPair)
(v1,v2).fst ==> v1

t1 ==> t1’
------------------ (ST_Snd1)
t1.snd ==> t1’.snd

------------------ (ST_SndPair)
(v1,v2).snd ==> v2

Typing (added to STLC rules)

Γ ` t1 ∈ T1 Γ ` t2 ∈ T2
--------------------------------------- (T_Pair)

Γ ` (t1,t2) ∈ T1*T2

Γ ` t1 ∈ T11*T12
--------------------- (T_Fst)
Γ ` t1.fst ∈ T11

Γ ` t1 ∈ T11*T12
--------------------- (T_Snd)
Γ ` t1.snd ∈ T12

21

Subtyping

Extend the language above with the type Top (terms and values remain unchanged):

T ::= ...
| Top

Add these rules that characterize the subtyping relation:

S <: U U <: T
---------------- (S_Trans)

S <: T

------ (S_Refl)
T <: T

-------- (S_Top)
S <: Top

S1 <: T1 S2 <: T2
-------------------- (S_Prod)
S1 * S2 <: T1 * T2

T1 <: S1 S2 <: T2
-------------------- (S_Arrow)
S1 -> S2 <: T1 -> T2

Typing (added to STLC with products)

All of the ordinary typing rules, plus:

Γ ` t ∈ S S <: T
------------------------- (T_Sub)

Γ ` t ∈ T

22

