
CIS 500: Software Foundations Midterm I
February 23, 2016

(Standard and Advanced versions together)

Name (printed):

Username (login id):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of
Academic Integrity in completing this examination.

Signature: Date:

Directions: This exam booklet contains both the standard and advanced track questions.
Questions with no annotation are for both tracks. Other questions are marked “Standard
Only” or “Advanced Only”. Do not do the questions intended for the other track.

Mark the box of the track you wish to follow.

Standard

1 /10

2 /15

3 /8

4 /12

5 ADVANCED ONLY/−

6 /18

7 /17

Total /80

Advanced

1 /10

2 /15

3 STANDARD ONLY/−

4 STANDARD ONLY/−

5 /20

6 /18

7 /17

Total /80



1. (10 points) Circle True or False for each statement.

(a) For any x and y of type X, it is possible to define a proposition that holds when x is equal to
y.

True False

(b) A polymorphic type is one that is parameterized by a type argument by using the universal
quantifier forall. For instance: forall (X:Type), list X -> list X is a polymorphic
type.

True False

(c) Coq is a constructive logic, which implies that it is not possible to prove (without using extra
axioms) the law of excluded middle: forall P : Prop, P \/ ~P.

True False

(d) The axiom of functional extensionality states that

forall (A B:Type) (f g: A -> B), f = g <-> (forall x : A, f x = g x)

True False

(e) In Coq, the proposition False and the boolean false are logically equivalent—i.e. one can
prove False <-> false.

True False

(f) There is exactly one canonical proof of the proposition beautiful 0 according to the induc-
tive definition of beautiful : nat -> Prop given in the appendix.

True False

(g) There are infinitely many canonical proofs of the proposition le 3 4 (or, equivalently, 3 <= 4)
according to the inductive definition of le : nat -> nat -> Prop given in the appendix.

True False

(h) If the term (In 3 [1;2;3]) is the goal of your proof state, using the tactic simpl will simplify
it to True. (The definition of In is given in the appendix.)

True False

(i) In Coq all functions terminate (i.e. they cannot go into an infinite loop on any input).

True False

(j) A boolean function f : nat -> bool reflects a proposition P : nat -> Prop exactly when
forall (n:nat), (f n = true) <-> P n.

True False

1



2. (15 points) Write the type of each of the following Coq expressions, or write “ill-typed” if it does
not have one. (The references section contains the definitions of some of the mentioned functions
and propositions.)

(a) beq_nat 3

(b) 3=4 -> False

(c) fun (X:Type) => fun (l:list X) => X :: l

(d) forall (x:nat), beq_nat x 3 = false

(e) fun (x:nat) => b_3

Note: b_3 is one of the constructors for the inductively-defined proposition beautiful shown
in the appendix.

2



3. [Standard Only] (8 points) For each of the types below, write a Coq expression that has
that type or write “Empty” if there are no such expressions. (The references section contains the
definitions of <= and other functions and propositions.)

(a) forall (X Y:Type), list X -> list Y

(b) (nat -> nat) -> nat

(c) 3 <= 3

(d) 4 <= 3

3



4. [Standard Only] (12 points) For each of the given theorems, which set of tactics is needed
to prove it besides intros and reflexivity? If more than one of the sets of tactics will work,
choose the smallest set. Note that each proof should be completed directly, without the help of any
lemmas.

(a) Theorem mult_0_l : forall n:nat, 0 * n = 0.

i. induction and rewrite

ii. rewrite and simpl

iii. inversion

iv. no additional tactics are necessary

(b) Theorem distinct_nats : ~(3 = 4).

i. induction and rewrite

ii. unfold not and rewrite

iii. unfold not and inversion

iv. no additional tactics are necessary

(c) Lemma or_comm : forall P Q : Prop, P \/ Q -> Q \/ P.

i. inversion and apply

ii. inversion, split, and apply

iii. inversion, left, right and apply

iv. no additional tactics are necessary

(d) Lemma app_assoc : forall X (l1 l2 l3: list X),

l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3.

i. simpl, rewrite, and induction l1

ii. simpl, rewrite, and induction l2

iii. simpl, rewrite, induction l2, and generalize dependent l1

iv. simpl, rewrite, and induction l3

4



5. [Advanced Only] (20 points) Write a careful informal proof of the following theorem. Make
sure to state the induction hypothesis explicitly in the inductive step.

Theorem Dichotomy : For all natural numbers n and m, either n <= m or m <= n.

In your proof, you may use the following two lemmas:
Lemma le_0_n: For all natural numbers n, 0 <= n.
Lemma le_n_S: For all natural numbers n and m, if n <= m then S n <= S m.

Proof:

5



6. (18 points) Consider the following datatype of inductively-defined binary trees, which are either
empty, or nodes containing a data element of type X and a left tree and a right tree.

Inductive tree X : Type :=

| empty : tree X

| node : tree X -> X -> tree X -> tree X.

(* Make the type parameter implicit. *)

Arguments empty {X}.

Arguments node {X} _ _ _.

It is helpful to define a helper function called leaf that builds a one-node tree:

Definition leaf {X} (x:X) := node empty x empty.

Using leaf we can build a bigger tree like t1 defined below:

Definition t1 : tree nat :=

node (node (leaf 1) 3 (leaf 2)) 0 (node (leaf 4) 1 (leaf 5)).

Pictorially, we might draw t1 like this: (note that we don’t depict the empty constructors)

0

3 1

1 2 4 5

(a) The following function produces the in-order traversal of the elements in the nodes of a tree:

Fixpoint in_order {X} (t:tree X) : list X :=

match t with

| empty => []

| node lt x rt => (in_order lt) ++ [x] ++ (in_order rt)

end.

Which of the following is the result of Eval compute in (in_order t1)?

i. [0;1;1;2;3;4;5]

ii. [0;3;1;2;4;1;5]

iii. [1;3;2;0;4;1;5]

iv. [1;4;2;5;3;1;0]

6



(b) Complete the following definition of tree_map, which, like the map function for lists, applies
a function f to each element in the tree. Your solution should pass the tests given below.

Fixpoint tree_map {X Y} (f:X -> Y) (t:tree X) : tree Y :=

Example tm_test_1 : tree_map (fun x => x + 2) empty = empty.

Proof. simpl. reflexivity. Qed.

Example tm_test_2 : tree_map (fun x => x + 2) t1 =

node (node (leaf 3) 5 (leaf 4)) 2 (node (leaf 6) 3 (leaf 7)).

Proof. simpl. reflexivity. Qed.

Example tm_test_3 : tree_map (beq_nat 1) (node (leaf 1) 1 (leaf 2)) =

(node (leaf true) true (leaf false)).

Proof. simpl. reflexivity. Qed.

7



(c) Consider the partial proof of the following (true!) theorem, which shows the relationship
between tree_map and in_order in terms of the usual list map function:

Lemma tree_map_in_order : forall X Y (f:X -> Y) (t:tree X),

map f (in_order t) = in_order (tree_map f t).

Proof.

intros X Y f.

induction t.

- simpl. reflexivity.

- (* HERE! *)

What will the proof state look like at the point marked (* HERE! *)? (choose one)

i. X : Type

Y : Type

f : X -> Y

============================

map f (in_order empty) = in_order (tree_map f empty)

ii. X : Type

Y : Type

f : X -> Y

t2 : tree X

x : X

t3 : tree X

IHt1 : map f (in_order t2) = in_order (tree_map f t2)

IHt2 : map f (in_order t3) = in_order (tree_map f t3)

============================

map f (in_order (node t2 x t3)) = in_order (tree_map f (node t2 x t3))

iii. X : Type

Y : Type

f : X -> Y

t2 : tree X

IHt : map f (in_order t2) = in_order (tree_map f t2)

============================

map f (in_order t2) = in_order (tree_map f t2)

iv. X : Type

Y : Type

f : X -> Y

x : X

IHt1 : forall t2, map f (in_order t2) = in_order (tree_map f t2)

IHt2 : forall t3, map f (in_order t3) = in_order (tree_map f t3)

============================

map f (in_order (node t2 x t3)) = in_order (tree_map f (node t2 x t3))

8



(d) From the proof state marked (* HERE! *), which tactic would be used for the next step of
the proof? (choose one)

i. intros

ii. simpl

iii. rewrite

iv. induction

(e) To complete the proof of tree_map_in_order requires a helper lemma. Which of the following
is sufficient ? (choose one)

i. Lemma map_cons : forall (A B : Type) (f : A -> B) (x:A) (l : list A),

map f (x :: l) = (f x) :: map f l.

ii. Lemma map_app : forall (A B : Type) (f : A -> B) (l l’ : list A),

map f (l ++ l’) = map f l ++ map f l’.

iii. Lemma in_order_map_id : forall (X : Type) (t : tree X),

in_order t = map (fun x => x) (in_order t).

iv. Lemma in_order_app : forall (X : Type) (t1 t2 : tree X),

(in_order t1) ++ (in_order t2) = in_order (t1 ++ t2).

9



7. (17 points) Consider the following inductive definition:

Inductive inserted {X : Type} : X -> list X -> list X -> Prop :=

| ins_first : forall x l, inserted x l (x::l)

| ins_later : forall x y l1 l2, inserted x l1 l2 -> inserted x (y::l1) (y::l2).

The idea is that inserted x l1 l2 holds exactly when l2 is just the list l1 with the element x

inserted somewhere inside it.

(a) Choose the proof strategy that best fits the lemma proposed below, or select “not provable”
if you think the lemma is false. (The definition of In is given in the appendix.)

Lemma In_inserted : forall (X : Type) (x : X) l,

In x l -> exists l’, inserted x l’ l.

i. Induction on the list l.

ii. Induction on the hypothesis In x l.

iii. Induction on the hypothesis inserted x l’ l.

iv. not provable

(b) Choose the proof strategy that best fits the lemma proposed below, or select “not provable”
if you think the lemma is false. (The definition of In is given in the appendix.)

Lemma inserted_In : forall (X : Type) (x : X) l1 l2,

inserted x l1 l2 -> In x l2.

i. Induction on the list l1.

ii. Induction on the list l2.

iii. Induction on the hypothesis inserted x l1 l2.

iv. not provable

10



(c) A list l1 is a permutation of another list l2 if l1 and l2 have exactly the same elements
(with each element occurring exactly the same number of times), possibly in different orders.
For example, the following lists (among others) are permutations of the list [1;1;2;3]:

[1;1;2;3]

[2;1;3;1]

[3;2;1;1]

[1;3;2;1]

On the other hand, [1;2;3] is not a permutation of [1;1;2;3], since 1 does not occur twice.
Complete the following inductively defined relation in such a way that permutation l1 l2

is provable exactly when l1 is a permutation of l2. Your definition should make use of the
inserted proposition defined earlier.

Inductive permutation {X:Type} : list X -> list X -> Prop :=

(d) The following Coq function counts the number of occurrences of a given natural number n

within a list.

Fixpoint count (n:nat) (l:list nat) : nat :=

match l with

| [] => 0

| x::tl => if beq_nat x n then 1 + (count n tl) else (count n tl)

end.

Using count, formulate a lemma that characterizes the correctness of your definition of
permutation. You do not have to prove the lemma, just state it.

11



For Reference

Inductive nat : Type :=

| O : nat

| S : nat -> nat.

Inductive and (P Q : Prop) : Prop :=

conj : P -> Q -> (and P Q).

Notation "P /\ Q" := (and P Q) : type_scope.

Inductive or (P Q : Prop) : Prop :=

| or_introl : P -> or P Q

| or_intror : Q -> or P Q.

Notation "P \/ Q" := (or P Q) : type_scope.

Inductive True : Prop :=

I : True.

Inductive False : Prop := .

Definition not (P:Prop) := P -> False.

Notation "~ x" := (not x) : type_scope.

Notation "x <> y" := (~ (x = y)) : type_scope.

Fixpoint plus (n : nat) (m : nat) : nat :=

match n with

| O => m

| S n’ => S (plus n’ m)

end.

Notation "x + y" := (plus x y)(at level 50, left associativity) : nat_scope.

Fixpoint mult (n : nat) (m : nat) : nat :=

match n with

| 0 => 0

| S n’ => m + (mult n’ m)

end.

Notation "x * y" := (mult x y)(at level 40, left associativity) : nat_scope.

12



Inductive le : nat -> nat -> Prop :=

| le_n : forall n, le n n

| le_S : forall n m, (le n m) -> (le n (S m)).

Notation "m <= n" := (le m n).

Fixpoint beq_nat (n m : nat) : bool :=

match n, m with

| O, O => true

| S n’, S m’ => beq_nat n’ m’

| _, _ => false

end.

Fixpoint ble_nat (n m : nat) : bool :=

match n with

| O => true

| S n’ =>

match m with

| O => false

| S m’ => ble_nat n’ m’

end

end.

Inductive beautiful : nat -> Prop :=

b_0 : beautiful 0

| b_3 : beautiful 3

| b_5 : beautiful 5

| b_sum : forall n m, beautiful n -> beautiful m -> beautiful (n+m).

Inductive list (X:Type) : Type :=

| nil : list X

| cons : X -> list X -> list X.

Fixpoint In {A : Type} (x : A) (l : list A) : Prop :=

match l with

| [] => False

| x’ :: l’ => x’ = x \/ In x l’

end.

Fixpoint length (X:Type) (l:list X) : nat :=

match l with

| [] => 0

| h :: t => S (length X t)

end.

13



Fixpoint index {X : Type} (n : nat)

(l : list X) : option X :=

match l with

| [] => None

| h :: t => if beq_nat n O then Some h else index (pred n) t

end.

Fixpoint app {X : Type} (l1 l2 : list X) : (list X) :=

match l1 with

| [] => l2

| h :: t => h :: (app t l2)

end.

Notation "x ++ y" := (app x y) (at level 60, right associativity).

Fixpoint map {X Y:Type} (f:X->Y) (l:list X) : (list Y) :=

match l with

| [] => []

| h :: t => (f h) :: (map f t)

end.

Fixpoint filter {X:Type} (test: X->bool) (l:list X) : (list X) :=

match l with

| [] => []

| h :: t => if test h then h :: (filter test t)

else filter test t

end.

14


