Library Subtyping

Require Export Types.

Announcement


A review session will be held on Monday from 3-4:30. Location TBA.

Subtyping


A motivating example


In the simply typed lamdba-calculus with records from the last chapter, the term
    (\r:{y:nat}. r.y + 1) {x=10,y=11}
is not typable: it involves an application of a function that wants a one-field record to an argument that actually provides two fields, while the T_App rule demands that the domain type of the function being applied must match the type of the argument precisely.

But this is silly: we're passing the function a _better_ argument than it needs! The only thing the body of the function can possibly do with its record argument r is project the field y from it: nothing else is allowed by the type. So the presence or absence of an extra x field should make no difference at all. So, intuitively, it seems that this function should be applicable to any record value that has at least a y field.

Looking at the same thing from another point of view, a record with more fields is "at least as good in any context" as one with just a subset of these fields, in the sense that any value belonging to the longer record type can be used SAFELY in any context expecting the shorter record type. If the context expects something with the shorter type but we actually give it something with the longer type, nothing bad will happen (formally, the program will not get stuck).

The general principle at work here is called SUBTYPING. We say that "S is a subtype of T", informally written S <: T, if a value of type S can safely be used in any context where a value of type T is expected. The idea of subtyping applies not only to records, but to all of the type constructors in the language -- to functions, pairs, etc.

Subtyping and object-oriented languages


The principle of subtyping plays a fundamental role in many present-day programming languages -- in particular, it is closely related to the notion of SUBCLASSING in object-oriented languages.

An OBJECT (in Java, C#, etc.) can be thought of as a record, some of whose fields are functions ("methods") and some of whose fields are data values ("fields" or "instance variables"). Invoking a method m of an object o on some arguments a1..an consists of projecting out the m field of o and applying it to a1..an.

The type of an object can be given as either a CLASS or an INTERFACE. Both of these provide a description of which methods and which data fields the object offers.

Classes and interfaces are related by the SUBCLASS and SUBINTERFACE relations. An object belonging to a subclass (or subinterface) is required to provide all the methods and fields of one belonging to a superclass (or superinterface), plus possibly some more.

The fact that an object from a subclass (or subinterface) can be used in place of one from a superclass (/superinterface) provides a degree of flexibility that is is extremely handy for organizing complex libraries. For example, a graphical user interface toolkit like Java's AWT might define an abstract interface Component that collects together the common fields and methods of all objects having a graphical representation that can be displayed on the screen and that can interact with the user. Examples of such object would include the buttons, checkboxes, and scrollbars of a typical GUI. A method that relies only on this common interface can now be applied to any of these objects.

Of course, real object-oriented languages include many other features besides these. Fields can be updated. Fields and methods can be declared private. Classes also give _code_ that is used when constructing objects and implementing their methods, and the code in subclasses cooperate with code in superclasses via INHERITANCE. Classes can have static methods and fields, initializers, etc., etc.

To keep things simple, we won't deal with any of these issues, and we won't even talk any more about objects or classes. (There is a lot of discussion in Types and Programming Languages, for those that are interested.) Instead, we'll study the "essential core" of the subclass / subinterface relation in the stripped down setting of the STLC.

The subsumption rule


Our goal for this chapter is to add subtyping to the simply typed lambda-calculus with records. This involves two steps:
  • 1. Defining subtyping as a binary relation between types.
  • 2. Enriching the typing relation to take subtyping into account.
The second step is actually very simple. We add just a single rule to the typing relation -- the so-called RULE OF SUBSUMPTION:
                         Gamma |- t : S     S <: T
                         -------------------------                      (T_Sub)
                               Gamma |- t : T
This rule says, intuitively, that we can "forget" some of the information that we know about a term. For example, we may know that t is a record with two fields (e.g., S = {x:A->A, y:B->B} ], but choose to forget about one of the fields (T = {y:B->B}) so that we can pass t to a function that expects just a single-field record.

The subtype relation



The first step -- the definition of the relation S <: T -- is where all the action is. Let's look at each of the clauses of its definition.

To begin with, we need to formalize the basic intuition about record types that a longer record should be a subtype of a shorter one.
          for each jk in j1..jn, exists ip in i1..im with Sk <: Tp
          --------------------------------------------------------      (S_Rcd)
                     {i1:S1...im:Sm} <: {j1:T1...jn:Tn}
That is, the record on the left should have all the field labels of the one on the right (and possibly more), while the types of the common fields should be in the subtype relation. For example:
       {x:nat,y:bool} <: {x:nat}             "width subtyping"
       {x:nat} <: {}
       {x:nat,y:bool} <: {y:bool,x:nat}      "permutation"
       {x:nat,y:bool} <: {y:bool}
       {a:{x:nat}} <: {a:{}}                 "depth subtyping"
Formally, our record types are presented in a "binary" form (with constructors for nil and cons, rather than a single constructor that assembles a whole multi-field record all at once), and so we'll need to formulate subtyping in the same way. This can be accomplished by replacing the single rule above with a combination of three rules.

To state these rules, we need to begin by introducing informal notations corresponding to the constructors ty_rnil and ty_rcons. We'll write ty_rnil as {} (just like we have been), and we'll write ty_rcons k S T as k:S;T (note the semicolon).

So, for example, a record with three fields might be written j:A;k:B;l:C;{}. However, since looks a bit awkward and nonstandard, we'll introduce one final informal convention: in multi-field row types like this expression, we'll pick up the left curly brace and move it all the way to the left of the expression, changing the semicolons to commas as we go. In other words the informal expressions
     j:A;k:B;l:C;{}

and
     {j:A,k:B,l:C}

will mean the very same thing -- they will both denote this formal record type:
     ty_rcons j (ty_base A)
        (ty_rcons k (ty_base B)
           (ty_rcons l (ty_base C)
              ty_rnil))


With these notations in hand, we're ready to talk about the three subtyping rules for records.

First, any row of record types is a subtype of the empty record type:
                                 --------                          (S_RcdWidth)
                                 Tr <: {}
Second, we can apply subtyping inside the components of a compound row:
                         S1 <: T1       Sr2 <: Tr2
                        ----------------------------               (S_RcdDepth)
                          i1:S1; Sr2 <: i1:T1; Tr2
We can use S_RcdDepth and S_RcdWidth together to drop later fields of a multi-field record while keeping earlier fields, showing for example that {y:B->B, x:A->A} <: {y:B->B}. We can also use S_RcdDepth and S_RcdWidth together to show that {y:{z:B->B}, x:A->A} <: {y:{}}.

The example we originally had in mind was {x:A->A,y:B->B} <: {y:B->B}. We haven't quite achieved this yet: using just S_RcdDepth and S_RcdWidth we can only drop fields from the _end_ of a record type. To handle the original example, we also need to be able to reorder fields:
                                  i1 <> i2
                 ------------------------------------------         (S_RcdPerm)
                   i1:T1; i2:T2; Tr3 <: i2:T2; i1:T1; Tr3
For example, {x:A->A,y:B->B} <: {y:B->B,x:A->A}.

We can also include a general rule of TRANSITIVITY, which says intuitively that, if S is better than U and U is better than T, then S is better than T.
                              S <: U    U <: T
                              ----------------                        (S_Trans)
                                   S <: T
This rule allows us to paste together the proofs we've seen that {x:A->A, y:B->B} <: {y:B->B, x:A->A} (by S_RcdPerm) and that {y:B->B, x:A->A} <: {y:B->B} (by S_RcdDepth and S_RcdWidth), to yield a proof that {x:A->A, y:B->B} <: {y:B->B}.

This completes the subtyping rules for records. To finish the whole definition of subtyping, we need to consider how each of the other type constructors behaves with respect to subtyping. Since we're dealing with a very simple language with just arrows and records, we have only arrows left to deal with. A variant of the first example motivates the discussion.

Suppose we have two functions f and g with these types:
       f  :  C -> {x:A->A,y:B->B}
       g  :  (C->{y:B->B}) -> D
That is, f is a function that yields a record of type {x:A->A,y:B->B}, and g is a higher-order function that expects its (function) argument to yield a record of type {y:B->B}. Then the application g f is safe even though their types do not match up precisely, because the only thing g can do with f is to apply it to some argument (of type C); the result will actually be a two-field record, while g will be expecting only a record with a single field, but this is safe because the only thing g can then do is to project out the single field that it knows about, and this will certainly be among the two fields that are present.

This example suggests that the subtyping rule for arrow types should say that two arrow types are in the subtype relation if their results are:
                                  S2 <: T2
                              ----------------                        (S_Arrow)
                              S1->S2 <: S1->T2
We can generalize this to allow the arguments of the two arrow types to be in the subtype relation as well:
                            T1 <: S1    S2 <: T2
                            --------------------                      (S_Arrow)
                              S1->S2 <: T1->T2
Notice, here, that the argument types are subtypes "the other way round": in order to conclude that S1->S2 to be a subtype of T1->T2, it must be the case that T1 is a subtype of S1. The arrow constructor is said to be _contravariant_ in its first argument and _covariant_ in its second.

The intuition is that, if we have a function f of type S1->S2, then we know that f accepts elements of type S1; clearly, f will also accept elements of any subtype T1 of S1. The type of f also tells us that it returns elements of type S2; we can also view these results belonging to any supertype T2 of S2. That is, any function f of type S1->S2 can also be viewed as having type T1->T2.

Finally, we add one last structural rule, which (together with transitivity) ensures that the subtype relation is a preorder:
                                   ------                              (S_Refl)
                                   T <: T
We can stop here, if we like. But it is common practice to go one further step and add to the language one new type constant, called Top, together with a subtyping rule that places it above every other type in the subtype relation:
                                   --------                             (S_Top)
                                   S <: Top
The Top type is an analog of the Object type in Java and C#.

Some more examples:
  • {}->{j:A} <: {k:B}->Top
  • Top->{k:A->A,j:B->B} <: (C->C)->{j:B->B}

Variations


Real languages often choose not to adopt all of these subtyping rules. For example, in Java,
  • A subclass may not change the argument or result types of a method of its superclass (i.e., no depth subtyping or no arrow subtyping, depending how you look at it).
  • Each class has just one superclass ("single inheritance" of classes)
    • Each class member (field or method) can be assigned a single index, adding new indices "on the right" as more members are added in subclasses
    • i.e., no permutation for classes
  • A class may implement multiple interfaces ("multiple inheritance" of interfaces)
    • i.e., permutation is allowed for interfaces.

Core definitions


We've already sketched the significant extensions that we'll need to make to the STLC: (1) add the subtype relation and (2) extend the typing relation with the rule of subsumption. To make everything work smoothly, we'll also implement some technical improvements to the presentation from the last chapter; in particular, we'll add "well formedness" predicates for both terms and types that verify that the record constructors are properly used. The rest of the definitions -- in particular, the syntax and operational semantics of the language -- are identical to what we saw in the last chapter. Let's first do the identical bits.

Syntax


There are just a couple of small technical differences here from the previous system. (The way we formulate it here is a little bit nicer -- the previous system should be changed to match this one.)
  • The ty_rcd constructor has been eliminated from this presentation (and tm_rcd below). This is not essential (it is easy to add them back in), but it streamlines the development a little and we feel now that it's a bit cleaner.
  • The constructors ty_rnil and ty_rcons have been renamed ty_rnil and ty_rcons.

Inductive ty : Set :=
  (* proper types *)
  | ty_top : ty
  | ty_base : id -> ty
  | ty_arrow : ty -> ty -> ty
  (* type rows *)
  | ty_rnil : ty
  | ty_rcons : id -> ty -> ty -> ty.

Tactic Notation "ty_cases" tactic(first) tactic(c) :=
  first;
  [ c "ty_top" | c "ty_base" | c "ty_arrow" |
    c "ty_rnil" | c "ty_rcons"
  ].

Inductive tm : Set :=
  (* proper terms *)
  | tm_var : id -> tm
  | tm_app : tm -> tm -> tm
  | tm_abs : id -> ty -> tm -> tm
  | tm_proj : tm -> id -> tm
  (* term rows *)
  | tm_rnil : tm
  | tm_rcons : id -> tm -> tm -> tm.

Tactic Notation "tm_cases" tactic(first) tactic(c) :=
  first;
  [ c "tm_var" | c "tm_app" | c "tm_abs" | c "tm_proj" |
    c "tm_rnil" | c "tm_rcons" ].

Well-formedness


Next, we slightly reformulate and generalize the well-formedness condition is_tmr from the last chapter. (Again, we feel the new version is cleaner and the previous version should be rewritten to match this one.)

First, a type is a record type if it is built with either ty_nil or ty_cons.

Inductive record_ty : ty -> Prop :=
  | rty_nil :
        record_ty ty_rnil
  | rty_cons : forall i T1 T2,
        record_ty (ty_rcons i T1 T2).

Note that record_ty is not recursive -- it just checks the outermost constructor. The well_formed_ty predicate, on the other hand, verifies that the whole type is well formed in the sense that the tail of every record (the second argument to ty_rcons) is a record.

Inductive well_formed_ty : ty -> Prop :=
  | wfty_top :
        well_formed_ty ty_top
  | wfty_base : forall i,
        well_formed_ty (ty_base i)
  | wfty_arrow : forall T1 T2,
        well_formed_ty T1
     -> well_formed_ty T2
     -> well_formed_ty (ty_arrow T1 T2)
  | wfty_rnil :
        well_formed_ty ty_rnil
  | wfty_rcons : forall i T1 T2,
        well_formed_ty T1
     -> well_formed_ty T2
     -> record_ty T2
     -> well_formed_ty (ty_rcons i T1 T2).

The predicates record_tm and well_formed_tm are similar.

Inductive record_tm : tm -> Prop :=
  | rtm_nil :
        record_tm tm_rnil
  | rtm_cons : forall i t1 t2,
        record_tm (tm_rcons i t1 t2).

Inductive well_formed_tm : tm -> Prop :=
  | wftm_var : forall x,
        well_formed_tm (tm_var x)
  | wftm_app : forall t1 t2,
        well_formed_tm t1
     -> well_formed_tm t2
     -> well_formed_tm (tm_app t1 t2)
  | wftm_abs : forall x T t,
        well_formed_ty T
     -> well_formed_tm t
     -> well_formed_tm (tm_abs x T t)
  | wftm_proj : forall t i,
        well_formed_tm t
     -> well_formed_tm (tm_proj t i)
  | wftm_rnil :
        well_formed_tm tm_rnil
  | wftm_rcons : forall i t1 t2,
        well_formed_tm t1
     -> well_formed_tm t2
     -> record_tm t2
     -> well_formed_tm (tm_rcons i t1 t2).

Hint Constructors record_ty well_formed_ty.
Hint Constructors record_tm well_formed_tm.

Substitution


The definition of substitution remains the same as for the ordinary STLC with records.

Fixpoint subst (x:id) (s:tm) (t:tm) {struct t} : tm :=
  match t with
  | tm_var y => if beq_id x y then s else t
  | tm_abs y T t1 => tm_abs y T (if beq_id x y then t1 else (subst x s t1))
  | tm_app t1 t2 => tm_app (subst x s t1) (subst x s t2)
  | tm_proj t1 i => tm_proj (subst x s t1) i
  | tm_rnil => tm_rnil
  | tm_rcons i t1 tr2 => tm_rcons i (subst x s t1) (subst x s tr2)
  end.

Reduction


Likewise the definitions of the value predicate and the step relation.

Inductive value : tm -> Prop :=
  | v_abs : forall x T t,
      value (tm_abs x T t)
  | v_nil : value tm_rnil
  | v_cons : forall i v vr,
      value v ->
      value vr ->
      value (tm_rcons i v vr).

Hint Constructors value.

Fixpoint ty_lookup (i:id) (Tr:ty) {struct Tr} : option ty :=
  match Tr with
  | ty_rcons i' T Tr' => if beq_id i i' then Some T else ty_lookup i Tr'
  | _ => None
  end.

Fixpoint tm_lookup (i:id) (tr:tm) {struct tr} : option tm :=
  match tr with
  | tm_rcons i' t tr' => if beq_id i i' then Some t else tm_lookup i tr'
  | _ => None
  end.

Reserved Notation "t1 '~~>' t2" (at level 40).

Inductive step : tm -> tm -> Prop :=
  | ST_AppAbs : forall x T t12 v2,
         value v2
      -> (tm_app (tm_abs x T t12) v2) ~~> (subst x v2 t12)
  | ST_App1 : forall t1 t1' t2,
         t1 ~~> t1'
      -> (tm_app t1 t2) ~~> (tm_app t1' t2)
  | ST_App2 : forall v1 t2 t2',
         value v1
      -> t2 ~~> t2'
      -> (tm_app v1 t2) ~~> (tm_app v1 t2')
  | ST_Proj1 : forall tr tr' i,
        tr ~~> tr'
     -> (tm_proj tr i) ~~> (tm_proj tr' i)
  | ST_ProjRcd : forall tr i vi,
        value tr
     -> tm_lookup i tr = Some vi
    -> (tm_proj tr i) ~~> vi
  | ST_Rcd_Head : forall i t1 t1' tr2,
        t1 ~~> t1'
     -> (tm_rcons i t1 tr2) ~~> (tm_rcons i t1' tr2)
  | ST_Rcd_Tail : forall i v1 tr2 tr2',
        value v1
     -> tr2 ~~> tr2'
     -> (tm_rcons i v1 tr2) ~~> (tm_rcons i v1 tr2')

where "t1 '~~>' t2" := (step t1 t2).

Tactic Notation "step_cases" tactic(first) tactic(c) :=
  first;
  [ c "ST_AppAbs" | c "ST_App1" | c "ST_App2" |
    c "ST_Proj1" | c "ST_ProjRcd" |
        c "ST_Rcd" | c "ST_Rcd_Head" | c "ST_Rcd_Tail" ].

Hint Constructors step.

Subtyping


Now we come to the interesting part. We begin by defining the subtyping relation and developing some of its important technical properties.

Definition


The definition of subtyping is essentially just what we sketched in the motivating discussion, but we need to add well-formedness side conditions to some of the rules.

Inductive subtype : ty -> ty -> Prop :=
  (* Subtyping between proper types *)
  | S_Refl : forall T,
    well_formed_ty T ->
    subtype T T
  | S_Trans : forall S U T,
    subtype S U ->
    subtype U T ->
    subtype S T
  | S_Top : forall S,
    well_formed_ty S ->
    subtype S ty_top
  | S_Arrow : forall S1 S2 T1 T2,
    subtype T1 S1 ->
    subtype S2 T2 ->
    subtype (ty_arrow S1 S2) (ty_arrow T1 T2)
  (* Subtyping between type rows *)
  | S_RcdWidth : forall i T1 T2,
    well_formed_ty (ty_rcons i T1 T2) ->
    subtype (ty_rcons i T1 T2) ty_rnil
  | S_RcdDepth : forall i S1 T1 Sr2 Tr2,
    subtype S1 T1 ->
    subtype Sr2 Tr2 ->
    record_ty Sr2 ->
    record_ty Tr2 ->
    subtype (ty_rcons i S1 Sr2) (ty_rcons i T1 Tr2)
  | S_RcdPerm : forall i1 i2 T1 T2 Tr3,
    well_formed_ty (ty_rcons i1 T1 (ty_rcons i2 T2 Tr3)) ->
    i1 <> i2 ->
    subtype (ty_rcons i1 T1 (ty_rcons i2 T2 Tr3))
            (ty_rcons i2 T2 (ty_rcons i1 T1 Tr3)).

Hint Constructors subtype.

Tactic Notation "subtype_cases" tactic(first) tactic(c) :=
  first;
  [ c "S_Refl" | c "S_Trans" | c "S_Top" | c "S_Arrow" |
        c "S_RcdWidth" | c "S_RcdDepth" | c "S_RcdPerm" ].

Subtyping examples and exercises


Module Examples.

Notation x := (Loc 0).
Notation y := (Loc 1).
Notation z := (Loc 2).
Notation j := (Loc 3).
Notation k := (Loc 4).
Notation i := (Loc 5).
Notation A := (ty_base (Loc 6)).
Notation B := (ty_base (Loc 7)).
Notation C := (ty_base (Loc 8)).

Definition ty_rcd_j :=
  (ty_rcons j (ty_arrow B B) ty_rnil). (* {j:B->B} *)
Definition ty_rcd_kj :=
  ty_rcons k (ty_arrow A A) ty_rcd_j. (* {k:C->C,j:B->B} *)

Example subtyping_example_0 :
  subtype (ty_arrow C ty_rcd_kj)
          (ty_arrow C ty_rnil).
(* C->{k:A->A,j:B->B} <: C->{} *)
Proof.
  apply S_Arrow.
    apply S_Refl. auto.
    unfold ty_rcd_kj, ty_rcd_j. apply S_RcdWidth; auto.
Qed.

The following facts are mostly easy to prove in Coq. To get full benefit from the exercises, make sure you also understand how to prove them on paper!

Exercise: 2 stars

Example subtyping_example_1 :
  subtype ty_rcd_kj ty_rcd_j.
(* {k:A->A,j:B->B} <: {j:B->B} *)
Proof with eauto.
  (* FILL IN HERE (and delete "Admitted") *) Admitted.

Exercise: 1 star

Example subtyping_example_2 :
  subtype (ty_arrow ty_top ty_rcd_kj)
          (ty_arrow (ty_arrow C C) ty_rcd_j).
(* Top->{k:A->A,j:B->B} <: (C->C)->{j:B->B} *)
Proof with eauto.
  (* FILL IN HERE (and delete "Admitted") *) Admitted.

Exercise: 1 star

Example subtyping_example_3 :
  subtype (ty_arrow ty_rnil (ty_rcons j A ty_rnil))
          (ty_arrow (ty_rcons k B ty_rnil) ty_rnil).
(* {}->{j:A} <: {k:B}->{} *)
Proof with eauto.
  (* FILL IN HERE (and delete "Admitted") *) Admitted.

Exercise: 2 stars

Example subtyping_example_4 :
  subtype (ty_rcons x A (ty_rcons y B (ty_rcons z C ty_rnil)))
          (ty_rcons z C (ty_rcons y B (ty_rcons x A ty_rnil))).
(* {x:A,y:B,z:C} <: {z:C,y:B,x:A} *)
Proof with eauto.
  (* FILL IN HERE (and delete "Admitted") *) Admitted.

Definition tm_rcd_kj :=
  (tm_rcons k (tm_abs z A (tm_var z))
           (tm_rcons j (tm_abs z B (tm_var z))
                      tm_rnil)).

End Examples.

Exercise: 1 star (subtype_instances_tf_1)

Suppose we have types S, T, U, and V with S <: T and U <: V. Which of the following subtyping assertions are then true? Write TRUE or FALSE after each one.
  • T->S <: T->S
  • Top->U <: S->Top
  • (C->C)->{x:A->A,y:B->B} <: (C->C)->{y:B->B}
  • ty_rnil -> ty_rnil <: {x:A} -> Top
  • T->T->U <: S->S->V
  • (T->T)->U <: (S->S)->V
  • ((T->S)->T)->U <: ((S->T)->S)->V
  • {a:S, b:V} <: {a:T, b:U}

Exercise: 1 star (subtype_instances_tf_2)

Which of the following statements are true? Write TRUE or FALSE after each one.

  •         forall S T,
                S <: T
             -> S->S <: T->T

  •         forall S T,
                 S <: A->A
              -> exists T,
                    S = T->T /\ T <: A

  •         forall S T1 T1,
                 S <: T1 -> T2
              -> exists S1 S2,
                    S = S1 -> S2 /\ T1 <: S1 /\ S2 <: T2

  •         exists S,
                 S <: S->S

  •         exists S,
                 S->S <: S

  •         forall S T2 T2,
                 S <: {j:T1,k:T2}
              -> exists S1 S2,
                    S = {j:S1,k:S2} /\ S1 <: T1 /\ S2 <: T2

Exercise: 1 star (subtype_concepts_tf)

Which of the following statements are true, and which are false?
  • There exists a type that is a supertype of every other type.
  • There exists a type that is a subtype of every other type.
  • There exists a record type that is a subtype of every other record type.
  • There exists a record type that is a supertype of every other record type.
  • There exists an arrow type that is a subtype of every other arrow type.
  • There exists an arrow type that is a supertype of every other arrow type.
  • There is an infinite descending chain of distinct types in the subtype relation---that is, an infinite sequence of types S0, S1, etc., such that all the Si's are different and each S(i+1) is a subtype of Si.
  • There is an infinite *ascending* chain of distinct types in the subtype relation---that is, an infinite sequence of types S0, S1, etc., such that all the Si's are different and each S(i+1) is a supertype of Si.

Exercise: 1 star (proper_subtypes)

Is the following statement true or false? Briefly explain your answer.
    forall T,
         ~(exists n, T = ty_base n)
      -> exists S,
            S <: T /\ S <> T



Exercise: 1 star (small_large_1)

  • What is the *smallest* type T ("smallest" in the subtype relation) that makes the following assertion true?
          empty |- (\r:{x:T}. r.x) {x=(\z:A.z)} : A->A
  • What is the *largest* type T that makes the same assertion true?

Exercise: 1 star (small_large_2)

  • What is the *smallest* type T that makes the following assertion true?
        empty |- (\r:{y:B->B, x:A->A}. r) {x=(\z:A.z), y=(\z:B.z)} : T
  • What is the *largest* type T that makes the same assertion true?

Exercise: 1 star (small_large_3)

  • What is the *smallest* type T that makes the following assertion true?
        a:A |- (\r:{x:A, T}. (r.y) (r.x)) {y=(\z:A.z), x=a} : A
  • What is the *largest* type T that makes the same assertion true?

Exercise: 1 star (small_large_4)

  • What is the *smallest* row type Tr that makes the following assertion true?
        exists S,
          empty |- (\r:(x:A;Tr). (r.y) (r.x)) : S
  • What is the *largest* type T that makes the same assertion true?

Exercise: 1 star (smallest_1)

What is the *smallest* type T that makes the following assertion true?
      exists S, exists t,
        empty |- (\r:{x:T}. (r.x) (r.x)) t : S



Exercise: 1 star (smallest_2)

What is the *smallest* type T that makes the following assertion true?
      empty |- (\x:Top. x) {a=(\z:A.z), b=(\z:B.z)} : T


Exercise: 1 star (count_supertypes)

How many supertypes does the type {x:A, y:C->C} have? That is, how many different types T are there such that {x:A, y:C->C} <: T? (We consider two types to be different if they are written differently, even if each is a subtype of the other. For example, {x:A,y:B} and {y:B,x:A} are different.)


Properties of subtyping


Well-formedness


Lemma subtype__wf : forall S T,
  subtype S T ->
  well_formed_ty T /\ well_formed_ty S.
Proof with eauto.
  intros S T Hsub.
  (subtype_cases (induction Hsub) Case);
    intros; try (destruct IHHsub1; destruct IHHsub2)...
  Case "S_RcdPerm".
    split... inversion H. subst. inversion H5... Qed.

Lemma wf_rcd_lookup : forall i T Ti,
  well_formed_ty T ->
  ty_lookup i T = Some Ti ->
  well_formed_ty Ti.
Proof with eauto.
  intros i T.
  (ty_cases (induction T) Case); intros; try solve by inversion.
  Case "ty_rcons".
    inversion H. subst. unfold ty_lookup in H0.
    remember (beq_id i i0) as b. destruct b; subst...
    inversion H0. subst... Qed.

Exercise: 1 star (wf_variation)

The proof of the subtype__wf lemma goes by induction on the derivation of S <: T. Suppose we change the statement of the lemma to
        Lemma subtype__wf : forall S T,
             S <: T
          -> well_formed_ty T
and again start the proof by induction on the derivation of S <: T. Will we succeed in completing it? Briefly explain.

Field lookup


Our record matching lemmas get a little more complicated in the presence of subtyping for two reasons: First, record types no longer necessarily describe the exact structure of corresponding terms. Second, reasoning by induction on has_type derivations becomes harder in general, because has_type is no longer syntax directed.

Lemma rcd_types_match : forall S T i Ti,
  subtype S T ->
  ty_lookup i T = Some Ti ->
  exists Si, ty_lookup i S = Some Si /\ subtype Si Ti.
Proof with (eauto using wf_rcd_lookup).
  intros S T i Ti Hsub Hget. generalize dependent Ti.
  (subtype_cases (induction Hsub) Case); intros Ti Hget;
    try solve by inversion.
  Case "S_Refl".
    exists Ti...
  Case "S_Trans".
    destruct (IHHsub2 Ti) as [Ui Hui]... destruct Hui.
    destruct (IHHsub1 Ui) as [Si Hsi]... destruct Hsi.
    exists Si...
  Case "S_RcdDepth".
    rename i0 into k.
    unfold ty_lookup. unfold ty_lookup in Hget.
    remember (beq_id i k) as b. destruct b...
    SCase "i = k -- we're looking up the first field".
      inversion Hget. subst. exists S1...
  Case "S_RcdPerm".
    exists Ti. split.
    SCase "lookup".
      unfold ty_lookup. unfold ty_lookup in Hget.
      remember (beq_id i i1) as b. destruct b...
      SSCase "i = i1 -- we're looking up the first field".
        remember (beq_id i i2) as b. destruct b...
        SSSCase "i = i2 - -contradictory".
          destruct H0.
          apply beq_id_eq in Heqb. apply beq_id_eq in Heqb0.
          subst...
    SCase "subtype".
      inversion H. subst. inversion H5. subst... Qed.

Exercise: 3 stars

Write a careful informal proof of the rcd_types_match lemma.
(* FILL IN HERE *)

Inversion lemmas


Exercise: 3 stars (sub_inversion_arrow)

Lemma sub_inversion_arrow : forall U V1 V2,
     subtype U (ty_arrow V1 V2)
  -> exists U1, exists U2,
       (U=(ty_arrow U1 U2)) /\ (subtype V1 U1) /\ (subtype U2 V2).
Proof with eauto.
  intros U V1 V2 Hs.
  remember (ty_arrow V1 V2) as V.
  generalize dependent V2. generalize dependent V1.
  (* FILL IN HERE (and delete "Admitted") *) Admitted.

Typing


Again, the typing relation is exactly the same, except for (a) the rule of subsumption, T_Sub, and (b) some well-formedness side conditions.

Definition context := id -> (option ty).
Definition empty : context := (fun _ => None).
Definition extend (Gamma : context) (x:id) (T : ty) :=
  fun x' => if beq_id x x' then Some T else Gamma x'.

Inductive has_type : context -> tm -> ty -> Prop :=
  (* Rules for proper terms *)
  | T_Var : forall Gamma x T,
      Gamma x = Some T ->
      well_formed_ty T ->
      has_type Gamma (tm_var x) T
  | T_Abs : forall Gamma x T11 T12 t12,
      well_formed_ty T11 ->
      has_type (extend Gamma x T11) t12 T12 ->
      has_type Gamma (tm_abs x T11 t12) (ty_arrow T11 T12)
  | T_App : forall T1 T2 Gamma t1 t2,
      has_type Gamma t1 (ty_arrow T1 T2) ->
      has_type Gamma t2 T1 ->
      has_type Gamma (tm_app t1 t2) T2
  | T_Proj : forall Gamma i t T Ti,
      has_type Gamma t T ->
      ty_lookup i T = Some Ti ->
      has_type Gamma (tm_proj t i) Ti
  (* Subsumption *)
  | T_Sub : forall Gamma t S T,
      has_type Gamma t S ->
      subtype S T ->
      has_type Gamma t T

  (* Rules for rows of terms *)
  | T_RNil : forall Gamma,
      has_type Gamma tm_rnil ty_rnil
  | T_RCons : forall Gamma i t T tr Tr,
      has_type Gamma t T ->
      has_type Gamma tr Tr ->
      record_ty Tr ->
      record_tm tr ->
      has_type Gamma (tm_rcons i t tr) (ty_rcons i T Tr).

Hint Constructors has_type.

Tactic Notation "has_type_cases" tactic(first) tactic(c) :=
  first;
  [ c "T_Var" | c "T_Abs" | c "T_App" | c "T_Proj" |
    c "T_Sub" | c "T_RNil" | c "T_RCons" ].

Typing examples


Module Examples2.
Import Examples.

Exercise: 1 star

Example typing_example_0 :
  has_type empty
           (tm_rcons k (tm_abs z A (tm_var z))
                     (tm_rcons j (tm_abs z B (tm_var z))
                               tm_rnil))
           ty_rcd_kj.
(* empty |- {k=(\z:A.z), j=(\z:B.z)} : {k:A->A,j:B->B} *)
Proof.
  (* FILL IN HERE (and delete "Admitted") *) Admitted.

Exercise: 2 stars

Example typing_example_1 :
  has_type empty
           (tm_app (tm_abs x ty_rcd_j (tm_proj (tm_var x) j))
                   (tm_rcd_kj))
           (ty_arrow B B).
(* empty |- (\x:{k:A->A,j:B->B}. x.j) {k=(\z:A.z), j=(\z:B.z)} : B->B *)
Proof with eauto.
  (* FILL IN HERE (and delete "Admitted") *) Admitted.

Exercise: 2 stars, optional

Example typing_example_2 :
  has_type empty
           (tm_app (tm_abs z (ty_arrow (ty_arrow C C) ty_rcd_j)
                           (tm_proj (tm_app (tm_var z)
                                            (tm_abs x C (tm_var x)))
                                    j))
                   (tm_abs z (ty_arrow C C) tm_rcd_kj))
           (ty_arrow B B).
(* empty |- (\z:(C->C)->{j:B->B}. (z (\x:C.x)).j)
              (\z:C->C. {k=(\z:A.z), j=(\z:B.z)})
           : B->B *)

Proof with eauto.
  (* FILL IN HERE (and delete "Admitted") *) Admitted.

End Examples2.

Properties of typing


Well-formedness


Lemma has_type__wf : forall Gamma t T,
  has_type Gamma t T ->
  (well_formed_tm t) /\ (well_formed_ty T).
Proof with eauto.
  intros Gamma t T Htyp.
  (has_type_cases (induction Htyp) Case);
    try (destruct IHHtyp); try (destruct IHHtyp1; destruct IHHtyp2)...
  Case "T_App".
    inversion H0...
  Case "T_Proj".
    split...
    eapply wf_rcd_lookup...
  Case "T_Sub".
    apply subtype__wf in H.
    destruct H...
Qed.

Lemma step_preserves_record_tm : forall tr tr',
  record_tm tr ->
  tr ~~> tr' ->
  record_tm tr'.
Proof.
  intros tr tr' Hrt Hstp.
  inversion Hrt; subst; inversion Hstp; subst; eauto.
Qed.

Field lookup


Lemma lookup_field_in_value : forall v T i Ti,
  value v ->
  has_type empty v T ->
  ty_lookup i T = Some Ti ->
  exists vi, tm_lookup i v = Some vi /\ has_type empty vi Ti.
Proof with eauto.
  remember empty as Gamma.
  intros t T i Ti Hval Htyp. revert Ti HeqGamma Hval.
  (has_type_cases (induction Htyp) Case); intros; subst; try solve by inversion.
  Case "T_Sub".
    apply (rcd_types_match S) in H0... destruct H0 as [Si [HgetSi Hsub]].
    destruct (IHHtyp Si) as [vi [Hget Htyvi]]...
    exists vi...
  Case "T_RCons".
    simpl in H0. simpl. simpl in H1.
    remember (beq_id i i0) as b. destruct b.
    SCase "i is first".
      inversion H1. subst. exists t...
    SCase "i in tail".
      destruct (IHHtyp2 Ti) as [vi [get Htyvi]]...
      inversion Hval... exists vi... Qed.

Progress


Exercise: 3 stars (canonical_forms_of_arrow_types)

Lemma canonical_forms_of_arrow_types : forall Gamma s T1 T2,
     has_type Gamma s (ty_arrow T1 T2)
  -> value s
  -> exists x, exists S1, exists s2,
        s = tm_abs x S1 s2.
Proof with eauto.
  (* FILL IN HERE (and delete "Admitted") *) Admitted.

Theorem progress : forall t T,
     has_type empty t T
  -> value t \/ exists t', t ~~> t'.
Proof with eauto.
  intros t T Ht.
  remember empty as Gamma.
  revert HeqGamma.
  (has_type_cases (induction Ht) Case);
    intros HeqGamma; subst...
  Case "T_Var".
    inversion H.
  Case "T_App".
    right.
    destruct IHHt1; subst...
    SCase "t1 is a value".
      destruct IHHt2; subst...
      SSCase "t2 is a value".
        destruct (canonical_forms_of_arrow_types empty t1 T1 T2)
          as [x [S1 [t12 Heqt1]]]...
        subst. exists (subst x t2 t12)...
      SSCase "t2 steps".
        destruct H0 as [t2' Hstp]. exists (tm_app t1 t2')...
    SCase "t1 steps".
      destruct H as [t1' Hstp]. exists (tm_app t1' t2)...
  Case "T_Proj".
    right. destruct IHHt...
    SCase "rcd is value".
      destruct (lookup_field_in_value t T i Ti) as [t' [Hget Ht']]...
      exists t'...
    SCase "rcd_steps".
      destruct H0 as [t' Hstp]. exists (tm_proj t' i)...
  Case "T_RCons".
    destruct IHHt1...
    SCase "head is a value".
      destruct IHHt2...
      SSCase "tail steps".
        right. destruct H2 as [tr' Hstp].
        exists (tm_rcons i t tr')...
    SCase "head steps".
      right. destruct H1 as [t' Hstp].
      exists (tm_rcons i t' tr)... Qed.

(* Informal proof of progress: 
   
   Theorem : For any term t and type T, if empty |- t : T
     then t is a value or t ~~> t' for some term t'.

   Proof : Let t and T be given such that empty |- t : T.  We go
     by induction on the typing derivation.  Cases T_Abs and
     T_RNil are immediate because abstractions and {} are always
     values.  Case T_Var is vacuous because variables cannot be
     typed in the empty context.
     
     - If the last step in the typing derivation is by T_App, then
       there are terms t1 t2 and types T1 T2 such that 
       t = t1 t2T = T2empty |- t1 : T1 -> T2 and 
       empty |- t2 : T1.

       The induction hypotheses for these typing derivations yield
       that t1 is a value or steps, and that t2 is a value or
       steps.  We consider each case:

       -- Suppose t1 ~~> t1' for some term t1'.  Then 
          t1 t2 ~~> t1' t2 by ST_App1.

       -- Otherwise t1 is a value.
       
       --- Suppose t2 ~~> t2' for some term t2'.  Then 
           t1 t2 ~~> t1 t2' by rule ST_App2 because t1 is a value.

       --- Otherwise, t2 is a value.  By lemma
           canonical_forms_for_arrow_typest1 = \x:S1.s2 for some
           xS1, and s2.  And (\x:S1.s2) t2 ~~> [t2/x]s2 by
           ST_AppAbs, since t2 is a value.

     - If the last step of the derivation is by T_Proj, then there
       is a term tr, type Tr and label i such that t = tr.i,
       empty |- tr : Tr, and ty_lookup i Tr = Some T.

       The IH for the typing subderivation gives us that either tr
       is a value or it steps.  If tr ~~> tr' for some term tr',
       then tr.i ~~> tr'.i by rule ST_Proj1.

       Otherwise, tr is a value.  In this case, lemma
       lookup_field_in_value yields that there is a term ti such
       that tm_lookup i tr = Some ti.  It follows that tr.i ~~> ti
       by rule ST_ProjRcd.

     - If the final step of the derivation is by T_Sub, then there
       is a type S such that S <: T and empty |- t : S.  The
       desired result is exactly the induction hypothesis for the
       typing subderivation.

     - If the final step of the derivation is by T_RCons, then there
       exist some terms t1 tr, types T1 Tr and a label t such
       that t = {i=t1, tr}T = {i:T1, Tr}record_tm tr,
       record_tm Trempty |- t1 : T1 and empty |- tr : Tr.

       The induction hypotheses for these typing derivations yield
       that t1 is a value or steps, and that tr is a value or
       steps.  We consider each case:

       -- Suppose t1 ~~> t1' for some term t1'.  Then 
          {i=t1, tr} ~~> {i=t1', tr} by rule ST_Rcd_Head.

       -- Otherwise t1 is a value.
       
         --- Suppose tr ~~> tr' for some term tr'.  Then 
             {i=t1, tr} ~~> {i=t1, tr'} by rule ST_Rcd_Tail,
             since t1 is a value.

         --- Otherwise, tr is also a value.  So, {i=t1, tr} is a
             value by v_cons. *)


Inversion lemmas


Lemma typing_inversion_var : forall Gamma x T,
  has_type Gamma (tm_var x) T ->
  exists S,
    Gamma x = Some S /\ subtype S T.
Proof with eauto.
  intros Gamma x T Hty.
  remember (tm_var x) as t.
  (has_type_cases (induction Hty) Case); intros;
    inversion Heqt; subst; try solve by inversion.
  Case "T_Var".
    exists T...
  Case "T_Sub".
    destruct IHHty as [U [Hctx HsubU]]...
    exists U... Qed.

Lemma typing_inversion_app : forall Gamma t1 t2 T2,
  has_type Gamma (tm_app t1 t2) T2 ->
  exists T1,
    has_type Gamma t1 (ty_arrow T1 T2) /\
    has_type Gamma t2 T1.
Proof with eauto.
  intros Gamma t1 t2 T2 Hty.
  remember (tm_app t1 t2) as t.
  (has_type_cases (induction Hty) Case); intros;
    inversion Heqt; subst; try solve by inversion.
  Case "T_App".
    exists T1...
  Case "T_Sub".
    destruct IHHty as [U1 [Hty1 Hty2]]...
    destruct (has_type__wf _ _ _ Hty2).
    exists U1... Qed.

Lemma typing_inversion_abs : forall Gamma x S1 t2 T,
     has_type Gamma (tm_abs x S1 t2) T
  -> (exists S2, subtype (ty_arrow S1 S2) T
              /\ has_type (extend Gamma x S1) t2 S2).
Proof with eauto.
  intros Gamma x S1 t2 T H.
  remember (tm_abs x S1 t2) as t.
  (has_type_cases (induction H) Case);
    inversion Heqt; subst; intros; try solve by inversion.
  Case "T_Abs".
    destruct (has_type__wf _ _ _ H0).
    exists T12...
  Case "T_Sub".
    destruct IHhas_type as [S2 [Hsub Hty]]...
    exists S2... Qed.

(* An informal proof of typing_inversion_abs.  Note that these
   inversion lemmas weren't stated in previous files because
   Coq's built in inversion tactic gave them to us for free.
   But, in STLC with subtyping, there are multiple ways of
   deriving has_type instances for any particular term, so
   this is no longer the case.

   THEOREM: If Gamma |- \x:S1.t2 : T, then there is a type S2 such
     that Gamma, x:S1 |- t2 : S2 and S1 -> S2 <: T.

   PROOF: Let GammaxS1t2 and T be given as described.
     We go by induction on the derivation of Gamma |- \x:S1.t2 : T.
     Cases T_VarT_AppT_ProjT_RNil and T_RCons are
     vacuous as those rules cannot be used to give a type to a
     syntactic abstraction.

     - If the last step of the derivation is by T_Abs then there is
       a type T12 such that T = S1 -> T12 and 
       Gamma, x:S1 |- t2 : T12.  Then picking T12 for S2 
       satisfies the theorem: S1 -> T12 <: S1 -> T12 follows
       from S_Refl and the well-formedness theorem for has_type.

     - If the last step of the derivation is by T_Sub then there is
       a type S such that S <: T and Gamma |- \x:S1.t2 : S.  The
       IH for the typing subderivation yields that there exists a type
       S2 such that S1 -> S2 <: S and Gamma, x:S1 |- t2 : S2.
       Picking type S2 satisfies the theorem, with S1 -> S2 <: T
       following by S_Trans. *)


Lemma typing_inversion_proj : forall Gamma i t1 Ti,
  has_type Gamma (tm_proj t1 i) Ti ->
  exists T, exists Si,
    ty_lookup i T = Some Si /\ subtype Si Ti /\ has_type Gamma t1 T.
Proof with eauto.
  intros Gamma i t1 Ti H.
  remember (tm_proj t1 i) as t.
  (has_type_cases (induction H) Case);
    inversion Heqt; subst; intros; try solve by inversion.
  Case "T_Proj".
    assert (well_formed_ty Ti) as Hwf.
      SCase "pf of assertion".
        apply (wf_rcd_lookup i T Ti)...
        apply has_type__wf in H. destruct H...
    exists T. exists Ti...
  Case "T_Sub".
    destruct IHhas_type as [U [Ui [Hget [Hsub Hty]]]]...
    exists U. exists Ui... Qed.

Lemma typing_inversion_rcons : forall Gamma i ti tr T,
  has_type Gamma (tm_rcons i ti tr) T ->
  exists Si, exists Sr,
    subtype (ty_rcons i Si Sr) T /\ has_type Gamma ti Si /\
    has_type Gamma tr Sr.
Proof with eauto.
  intros Gamma i ti tr T Hty.
  remember (tm_rcons i ti tr) as t.
  (has_type_cases (induction Hty) Case);
    inversion Heqt; subst...
  Case "T_Sub".
    apply IHHty in H0.
    destruct H0 as [Ri [Rr [HsubRS [HtypRi HtypRr]]]].
    exists Ri. exists Rr...
  Case "T_RCons".
    assert (well_formed_ty (ty_rcons i T Tr)) as Hwf.
      SCase "pf of assertion".
        destruct (has_type__wf _ _ _ Hty1).
        destruct (has_type__wf _ _ _ Hty2)...
    exists T. exists Tr... Qed.

Lemma abs_arrow : forall x S1 s2 T1 T2,
  has_type empty (tm_abs x S1 s2) (ty_arrow T1 T2) ->
     subtype T1 S1
  /\ has_type (extend empty x S1) s2 T2.
Proof with eauto.
  intros x S1 s2 T1 T2 Hty.
  apply typing_inversion_abs in Hty.
  destruct Hty as [S2 [Hsub Hty]].
  apply sub_inversion_arrow in Hsub.
  destruct Hsub as [U1 [U2 [Heq [Hsub1 Hsub2]]]].
  inversion Heq; subst... Qed.

Context invariance


Inductive appears_free_in : id -> tm -> Prop :=
  | afi_var : forall x,
      appears_free_in x (tm_var x)
  | afi_app1 : forall x t1 t2,
      appears_free_in x t1 -> appears_free_in x (tm_app t1 t2)
  | afi_app2 : forall x t1 t2,
      appears_free_in x t2 -> appears_free_in x (tm_app t1 t2)
  | afi_abs : forall x y T11 t12,
        y <> x
     -> appears_free_in x t12
     -> appears_free_in x (tm_abs y T11 t12)
  | afi_proj : forall x t i,
      appears_free_in x t ->
      appears_free_in x (tm_proj t i)
  | afir_head : forall x i t tr,
      appears_free_in x t ->
      appears_free_in x (tm_rcons i t tr)
  | afir_tail : forall x i t tr,
      appears_free_in x tr ->
      appears_free_in x (tm_rcons i t tr).

Hint Constructors appears_free_in.

Lemma context_invariance : forall Gamma Gamma' t S,
     has_type Gamma t S
  -> (forall x, appears_free_in x t -> Gamma x = Gamma' x)
  -> has_type Gamma' t S.
Proof with eauto.
  intros. generalize dependent Gamma'.
  (has_type_cases (induction H) Case);
    intros Gamma' Heqv...
  Case "T_Var".
    apply T_Var... rewrite <- Heqv...
  Case "T_Abs".
    apply T_Abs... apply IHhas_type. intros x0 Hafi.
    unfold extend. remember (beq_id x x0) as e.
    destruct e...
  Case "T_App".
    apply T_App with T1...
  Case "T_RCons".
    apply T_RCons... Qed.

Lemma free_in_context : forall x t T Gamma,
   appears_free_in x t ->
   has_type Gamma t T ->
   exists T', Gamma x = Some T'.
Proof with eauto.
  intros x t T Gamma Hafi Hty.
  (has_type_cases (induction Hty) Case); subst; inversion Hafi; subst...
  Case "T_Var".
    exists T...
  Case "T_Abs".
    destruct (IHHty H5) as [T Hctx]. exists T.
    unfold extend in Hctx. apply not_eq_false_beqid in H3.
    rewrite <- H3 in Hctx... Qed.

Preservation


Lemma substitution_preserves_typing : forall Gamma x U v t S,
     has_type (extend Gamma x U) t S
  -> has_type empty v U
  -> has_type Gamma (subst x v t) S.
Proof with eauto.
  intros Gamma x U v t S Hty Hv.
  generalize dependent S. generalize dependent Gamma.
  (tm_cases (induction t) Case); intros; simpl.
  Case "tm_var".
    rename i into y.
    destruct (typing_inversion_var _ _ _ Hty) as [T [Hctx Hsub]].
    unfold extend in Hctx.
    remember (beq_id x y) as e. destruct e...
    SCase "x=y".
      apply beq_id_eq in Heqe. subst.
      inversion Hctx; subst. clear Hctx.
      apply context_invariance with empty...
      intros x Hcontra.
      destruct (free_in_context _ _ S empty Hcontra) as [T' HT']...
      inversion HT'.
    SCase "x<>y".
      destruct (subtype__wf _ _ Hsub)...
  Case "tm_app".
    destruct (typing_inversion_app _ _ _ _ Hty) as [T1 [Hty1 Hty2]].
    eapply T_App...
  Case "tm_abs".
    rename i into y. rename t into T1.
    destruct (typing_inversion_abs _ _ _ _ _ Hty)
      as [T2 [Hsub Hty2]].
    destruct (subtype__wf _ _ Hsub) as [Hwf1 Hwf2].
    inversion Hwf2. subst.
    apply T_Sub with (ty_arrow T1 T2)... apply T_Abs...
    remember (beq_id x y) as e. destruct e.
    SCase "x=y".
      eapply context_invariance...
      apply beq_id_eq in Heqe. subst.
      intros x Hafi. unfold extend.
      destruct (beq_id y x)...
    SCase "x<>y".
      apply IHt. eapply context_invariance...
      intros z Hafi. unfold extend.
      remember (beq_id y z) as e0. destruct e0...
      apply beq_id_eq in Heqe0. subst.
      rewrite <- Heqe...
  Case "tm_proj".
    destruct (typing_inversion_proj _ _ _ _ Hty)
      as [T [Ti [Hget [Hsub Hty1]]]]...
  Case "tm_rnil".
    eapply context_invariance...
    intros y Hcontra. inversion Hcontra.
  Case "tm_rcons".
    destruct (typing_inversion_rcons _ _ _ _ _ Hty) as
      [Ti [Tr [Hsub [HtypTi HtypTr]]]].
    apply T_Sub with (ty_rcons i Ti Tr)...
    apply T_RCons...
    SCase "record_ty Tr".
      apply subtype__wf in Hsub. destruct Hsub. inversion H0...
    SCase "record_tm (subst x v t2)".
      destruct (has_type__wf _ _ _ Hty). inversion H. subst.
      inversion H6; subst; simpl... Qed.

Theorem preservation : forall t t' T,
     has_type empty t T
  -> t ~~> t'
  -> has_type empty t' T.
Proof with eauto.
  intros t t' T HT.
  remember empty as Gamma. generalize dependent HeqGamma.
  generalize dependent t'.
  (has_type_cases (induction HT) Case);
    intros t' HeqGamma HE; subst; inversion HE; subst...
  Case "T_App".
    inversion HE; subst...
    SCase "ST_AppAbs".
      destruct (abs_arrow _ _ _ _ _ HT1) as [HA1 HA2].
      apply substitution_preserves_typing with T...
  Case "T_Proj".
    destruct (lookup_field_in_value _ _ _ _ H2 HT H)
      as [vi [Hget Hty]].
    rewrite H4 in Hget. inversion Hget. subst...
  Case "T_RCons".
    eauto using step_preserves_record_tm. Qed.

(* Informal proof of preservation:

   Theorem: If tt' are terms and T is a type such that 
     empty |- t : T and t ~~> t', then empty |- t' : T.

   Proof: Let t and T be given such that empty |- t : T.  We go
     by induction on the structure of this typing derivation, leaving
     t' general.  Cases T_Abs and T_RNil are vacuous because
     abstractions and {} don't step.  Case T_Var is vacuous as well,
     since the context is empty.

     * If the final step of the derivation is by T_App, then there
       are terms t1 t2 and types T1 T2 such that t = t1 t2,
       T = T2empty |- t1 : T1 -> T2 and empty |- t2 : T1.

       By inspection of the definition of the step relation, there are
       three ways t1 t2 can step.  Cases ST_App1 and ST_App2
       follow immediately by the induction hypotheses for the typing
       subderivations and a use of T_App.

       Suppose instead t1 t2 steps by ST_AppAbs.  Then 
       t1 = \x:S.t12 for some type S and term t12, and 
       t' = [t2/x]t12.
       
       By Lemma abs_arrow, we have T1 <: S and x:S1 |- s2 : T2.
       It then follows by lemma substitution_preserves_typing that
       empty |- [t2/x] t12 : T2 as desired.

     * If the final step of the derivation is by T_Proj, then there
       is a term tr, type Tr and label i such that t = tr.i,
       empty |- tr : Tr, and ty_lookup i Tr = Some T.

       The IH for the typing derivation gives us that, for any term
       tr', if tr ~~> tr' then empty |- tr' Tr.  Inspection of
       the definition of the step relation reveals that there are two
       ways a projection can step.  Case ST_Proj1 follows
       immediately by the IH.

       Instead suppose tr.i steps by ST_ProjRcd.  Then tr is a
       value and there is some term vi such that 
       tm_lookup i tr = Some vi and t' = vi.  But by lemma
       lookup_field_in_valueempty |- vi : Ti as desired.

     * If the final step of the derivation is by T_Sub, then there
       is a type S such that S <: T and empty |- t : S.  The
       result is immediate by the induction hypothesis for the typing
       subderivation and an application of T_Sub.

     * If the final step of the derivation is by T_RCons, then there
       exist some terms t1 tr, types T1 Tr and a label t such
       that t = {i=t1, tr}T = {i:T1, Tr}record_tm tr,
       record_tm Trempty |- t1 : T1 and empty |- tr : Tr.

       By the definition of the step relation, t must have stepped
       by ST_Rcd_Head or ST_Rcd_Tail.  In the first case, the
       result follows by the IH for t1's typing derivation and
       T_RCons.  In the second case, the result follows by the IH
       for tr's typing derivation, T_RCons, and a use of the
       step_preserves_record_tm lemma. *)


Exercises on typing


Exercise: 2 stars, optional (variations)

Each part of this problem suggests a different way of changing the definition of the STLC with records and subtyping. (These changes are not cumulative: each part starts from the original language.) In each part, list which properties (Progress, Preservation, both, or neither) become false. If a property becomes false, give a counterexample.
  • Suppose we add the following typing rule:
    
                                Gamma |- t : S1->S2
                        S1 <: S2      S2 <: S1     S2 <: T2
                        -----------------------------------              (T_Funny1)
                                Gamma |- t : T1->T2
    
    
  • Suppose we add the following reduction rule:
                                 ------------------                     (ST_Funny21)
                                 {} ~~> (\x:Top. x)
    
  • Suppose we add the following subtyping rule:
                                   --------------                        (S_Funny3)
                                   {} <: Top->Top
    
  • Suppose we add the following subtyping rule:
                                   --------------                        (S_Funny4)
                                   Top->Top <: {}
    
  • Suppose we add the following evaluation rule:
                                 -----------------                      (ST_Funny5)
                                 ({} t) ~~> (t {})
    
  • Suppose we add the same evaluation rule *and* a new typing rule:
                                 -----------------                      (ST_Funny5)
                                 ({} t) ~~> (t {})
    
                               ----------------------                    (T_Funny6)
                               empty |- {} : Top->Top
    
    
  • Suppose we *change* the arrow subtyping rule to:
    
                              S1 <: T1       S2 <: T2
                              -----------------------                    (S_Arrow')
                                -> S1->S2 <: T1->T2
    
    

The main exercise for the week:


Exercise: 4 stars (products)

Adding pairs, projections, and product types to the system we have defined is a relatively straightforward matter. Carry out this extension.
  • Add constructors for pairs, first and second projections, and product types to the definitions of ty and tm. (Don't forget to add corresponding cases to ty_cases and tm_cases.)
  • Extend the well-formedness relation in the obvious way.
  • Extend the operational semantics with the same reduction rules as in the last chapter.
  • Extend the subtyping relation with this rule:
                               S1 <: T1     S2 <: T2
                               ---------------------                     (Sub_Prod)
                                 S1 * S2 <: T1 * T2
    
  • Extend the typing relation with the same rules for pairs and projections as in the last chapter.
  • Extend the proofs of progress, preservation, and all their supporting lemmas to deal with the new constructs. (You'll also need to add some completely new lemmas.)