HoareHoare Logic


(* $Date: 2012-05-12 10:20:28 -0400 (Sat, 12 May 2012) $ *)

Require Export Imp.

In the past couple of chapters, we've begun applying the mathematical tools developed in the first part of the course to studying the theory of a small programming language, Imp.
  • We defined a type of abstract syntax trees for Imp, together with an evaluation relation (a partial function on states) that specifies the operational semantics of programs.
    The language we defined, though small, captures some of the key features of full-blown languages like C, C++, and Java, including the fundamental notion of mutable state and some common control structures.
  • We proved a number of metatheoretic properties — "meta" in the sense that they are properties of the language as a whole, rather than properties of particular programs in the language. These included:
    • determinism of evaluation
    • equivalence of some different ways of writing down the definitions (e.g. functional and relational definitions of arithmetic expression evaluation)
    • guaranteed termination of certain classes of programs
    • correctness (in the sense of preserving meaning) of a number of useful program transformations
    • behavioral equivalence of programs (in the optional chapter Equiv).
    If we stopped here, we would still have something useful: a set of tools for defining and discussing programming languages and language features that are mathematically precise, flexible, and easy to work with, applied to a set of key properties. All of these properties are things that language designers, compiler writers, and users might care about knowing. Indeed, many of them are so fundamental to our understanding of the programming languages we deal with that we might not consciously recognize them as "theorems." But properties that seem intuitively obvious can sometimes be quite subtle — or, in some cases, actually even wrong!
    We'll return to this theme later in the course when we discuss types and type soundness.
  • We saw a couple of examples of program verification — using the precise definition of Imp to prove formally that certain particular programs (e.g., factorial and slow subtraction) satisfied particular specifications of their behavior.
In this chapter, we'll take this last idea further. We'll develop a reasoning system called Floyd-Hoare Logic — commonly shortened to just Hoare Logic — in which each of the syntactic constructs of Imp is equipped with a single, generic "proof rule" that can be used to reason about programs involving this construct.
Hoare Logic originates in the 1960s, and it continues to be the subject of intensive research right up to the present day. It lies at the core of a huge variety of tools that are now being used to specify and verify real software systems.


Hoare Logic

Hoare Logic combines two beautiful ideas: a natural way of writing down specifications of programs, and a compositional proof technique for proving that these specifications are met — where by "compositional" we mean that the structure of proofs directly mirrors the structure of the programs that they are about.

Assertions

If we're going to talk about specifications of programs, the first thing we'll want is a way of making assertions about properties that hold at particular points during a program's execution — i.e., properties that may or may not be true of a given state of the memory.

Definition Assertion := state Prop.

Exercise: 1 star (assertions)

Paraphrase the following assertions in English.
   1) fun st =>  st X = 3
   2) fun st =>  st X = x
   3) fun st =>  st X <= st Y
   4) fun st =>  st X = 3  st X <= st Y
   5) fun st =>  st Z * st Z <= x  ~ (((S (st Z)) * (S (st Z))) <= x)
   6) fun st =>  True
   7) fun st =>  False

(* FILL IN HERE *)
This way of writing assertions is formally correct — it precisely captures what we mean, and it is exactly what we will use in Coq proofs. We'll also want a lighter, less formal notation for discussing examples, since this one is a bit heavy: (1) every single assertion that we ever write is going to begin with fun st => ; and (2) this state st is the only one that we ever use to look up variables (we will never need to talk about two different memory states at the same time). So, when writing down assertions informally, we'll make some simplifications: drop the initial fun st =>, and write just X instead of st X. Informally, instead of writing
      fun st =>  (st Z) * (st Z) <= x  ~ ((S (st Z)) * (S (st Z)) <= x)
we'll write just
         Z * Z <= x  ~((S Z) * (S Z) <= x).

Hoare Triples

Next, we need a way of specifying — making claims about — the behavior of commands.
Since we've defined assertions as a way of making claims about the properties of states, and since the behavior of a command is to transform one state to another, it is natural to express claims about commands in the following way:
  • "If command c is started in a state satisfying assertion P, and if c eventually terminates, then the final state is guaranteed to satisfy the assertion Q."
Such a claim is called a Hoare Triple. The property P is called the precondition of c, while Q is the postcondition of c.

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
  st st',
       c / st st'
       P st
       Q st'.

Since we'll be working a lot with Hoare triples, it's useful to have a compact notation:
       {{P}}  c  {{Q}}.
(Traditionally, Hoare triples are written {P} c {Q}, but single braces are already used for other things in Coq.)

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q)
                                  (at level 90, c at next level)
                                  : hoare_spec_scope.
Open Scope hoare_spec_scope.

(The hoare_spec_scope annotation here tells Coq that this notation is not global but is intended to be used in particular contexts. The Open Scope tells Coq that this file is one such context. The first notation — with missing postcondition — will not actually be used for a while; it's just a placeholder for a notation that we'll want to define later, when we discuss decorated programs.)

Exercise: 1 star (triples)

Paraphrase the following Hoare triples in English.
   1) {{True}} c {{X = 5}}

   2) {{X = x}} c {{X = x + 5)}}

   3) {{X <= Y}} c {{Y <= X}}

   4) {{True}} c {{False}}

   5) {{X = x}} 
      c
      {{Y = real_fact x}}.

   6) {{True}} 
      c 
      {{(Z * Z) <= x  ~ (((S Z) * (S Z)) <= x)}}
(* FILL IN HERE *)

Exercise: 1 star (valid_triples)

Which of the following Hoare triples are valid — i.e., the claimed relation between P, c, and Q is true?
   1) {{True}} X ::= 5 {{X = 5}}

   2) {{X = 2}} X ::= X + 1 {{X = 3}}

   3) {{True}} X ::= 5; Y ::= 0 {{X = 5}}

   4) {{X = 2  X = 3}} X ::= 5 {{X = 0}}

   5) {{True}} SKIP {{False}}

   6) {{False}} SKIP {{True}}

   7) {{True}} WHILE True DO SKIP END {{False}}

   8) {{X = 0}} 
      WHILE X == 0 DO X ::= X + 1 END 
      {{X = 1}}

   9) {{X = 1}} 
      WHILE X <> 0 DO X ::= X + 1 END 
      {{X = 100}}
(* FILL IN HERE *)
(Note that we're using informal mathematical notations for expressions inside of commands, for readability. We'll continue doing so throughout the chapter.)
To get us warmed up, here are two simple facts about Hoare triples.

Theorem hoare_post_true : (P Q : Assertion) c,
  (st, Q st)
  {{P}} c {{Q}}.
Proof.
  intros P Q c H. unfold hoare_triple.
  intros st st' Heval HP.
  apply H. Qed.

Theorem hoare_pre_false : (P Q : Assertion) c,
  (st, ~(P st))
  {{P}} c {{Q}}.
Proof.
  intros P Q c H. unfold hoare_triple.
  intros st st' Heval HP.
  unfold not in H. apply H in HP.
  inversion HP. Qed.

Weakest Preconditions

Some Hoare triples are more interesting than others. For example,
      {{ False }}  X ::= Y + 1  {{ X <= 5 }}
is not very interesting: it is perfectly valid, but it tells us nothing useful. Since the precondition isn't satisfied by any state, it doesn't describe any situations where we can use the command X ::= Y + 1 to achieve the postcondition X <= 5.
By contrast,
      {{ Y <= 4  Z = 0 }}  X ::= Y + 1 {{ X <= 5 }}
is useful: it tells us that, if we can somehow create a situation in which we know that Y <= 4 Z = 0, then running this command will produce a state satisfying the postcondition. However, this triple is still not as useful as it could be, because the Z = 0 clause in the precondition actually has nothing to do with the postcondition X <= 5. The most useful triple (for a given command and postcondition) is this one:
      {{ Y <= 4 }}  X ::= Y + 1  {{ X <= 5 }}
In other words, Y <= 4 is the weakest valid precondition of the command X ::= Y + 1 for the postcondition X <= 5.
In general, we say that "P is the weakest precondition of command c for postcondition Q" if
  • {{P}} c {{Q}}, and
  • whenever P' is an assertion such that {{P'}} c {{Q}}, we have P' st implies P st for all states st.
That is, P is the weakest precondition of c for Q if (a) P is a precondition for Q and c, and (b) P is the weakest (easiest to satisfy) assertion that guarantees Q after executing c.
The second of the conditions above is essentially a form of logical implication at the level of assertions. Because of the frequency of its occurrence, it is useful to define a little notation:

Definition assert_implies (P Q : Assertion) : Prop :=
  st, P st Q st.

We will write P Q (in ASCII, P ~~> Q) for assert_implies P Q.

Notation "P Q" := (assert_implies P Q) (at level 80).
Notation "P Q" := (P Q Q P) (at level 80).

Exercise: 1 star (wp)

What are the weakest preconditions of the following commands for the following postconditions?
  1) {{ ? }}  SKIP  {{ X = 5 }}

  2) {{ ? }}  X ::= Y + Z {{ X = 5 }}

  3) {{ ? }}  X ::= Y  {{ X = Y }}

  4) {{ ? }}  
     IFB X == 0 THEN Y ::= Z + 1 ELSE Y ::= W + 2 FI
     {{ Y = 5 }}

  5) {{ ? }}  
     X ::= 5
     {{ X = 0 }}

  6) {{ ? }}  
     WHILE True DO X ::= 0 END
     {{ X = 0 }}
(* FILL IN HERE *)

Exercise: 3 stars, optional (is_wp_formal)

Weakest preconditions can be defined formally as follows:

Definition is_wp P c Q :=
  {{P}} c {{Q}}
  P', {{P'}} c {{Q}} (st, P' st P st).

Prove formally using the definition of hoare_triple that Y <= 4 is indeed the weakest precondition of X ::= Y + 1 with respect to postcondition X <= 5.

Theorem is_wp_example :
  is_wp (fun st => st Y <= 4)
    (X ::= APlus (AId Y) (ANum 1)) (fun st => st X <= 5).
Proof.
  (* FILL IN HERE *) Admitted.

Proof Rules

The goal of Hoare logic is to provide a compositional method for proving the validity of Hoare triples. That is, the structure of a program's correctness proof should mirror the structure of the program itself. To this end, in the sections below, we'll introduce one rule for reasoning about each of the different syntactic forms of commands in Imp — one for assignment, one for sequencing, one for conditionals, etc. — plus a couple of "structural" rules that are useful for gluing things together. We will prove programs correct using these proof rules, without ever unfolding the definition of hoare_triple.

Assignment

The rule for assignment is the most fundamental of the Hoare logic proof rules. Here's how it works.
Consider this (valid) Hoare triple:
       {{ Y = 1 }}  X ::= Y  {{ X = 1 }}
In English: if we start out in a state where the value of Y is 1 and we assign Y to X, then we'll finish in a state where X is 1. That is, the property of being equal to 1 gets transferred from Y to X.
Similarly, in
       {{ Y + Z = 1 }}  X ::= Y + Z  {{ X = 1 }}
the same property (being equal to one) gets transferred to X from the expression Y + Z on the right-hand side of the assignment.
More generally, if a is any arithmetic expression, then
       {{ a = 1 }}  X ::= a {{ X = 1 }}
is a valid Hoare triple.
Even more generally, a is any arithmetic expression and Q is any property of numbers, then
       {{ Q(a) }}  X ::= a {{ Q(X) }}
is a valid Hoare triple.
Rephrasing this a bit gives us the general Hoare rule for assignment:
      {{ Q where a is substituted for X }}  X ::= a  {{ Q }}
For example, these are valid applications of the assignment rule:
      {{ (X <= 5) where X + 1 is substituted for X 
         i.e., X + 1 <= 5 }}  
      X ::= X + 1  
      {{ X <= 5 }}

      {{ (X = 3) where 3 is substituted for X 
         i.e., 3 = 3}}  
      X ::= 3  
      {{ X = 3 }}

      {{ (0 <= X  X <= 5) where 3 is substituted for X 
         i.e., (0 <= 3  3 <= 5)}}  
      X ::= 3  
      {{ 0 <= X  X <= 5 }}
To formalize the rule, we begin with the notion of "substitution in an assertion":

Definition assn_sub X a Q : Assertion :=
  fun (st : state) =>
    Q (update st X (aeval st a)).

We ask that Q holds for the state obtained by assigning a to X, i.e. the updated state in which X is bound to the result of evaluating a. Since we've chosen to represent assertions using Coq propositions, this is the only way we can "substitute" a variable inside an assertion.
Now the precise proof rule for assignment:
   (hoare_asgn)  

{{assn_sub X a Q}} X::=a {{Q}}

Theorem hoare_asgn : Q X a,
  {{assn_sub X a Q}} (X ::= a) {{Q}}.
Proof.
  unfold hoare_triple.
  intros Q X a st st' HE HQ.
  inversion HE. subst.
  unfold assn_sub in HQ. assumption. Qed.

Here's a first formal proof using this rule.

Example assn_sub_example :
  {{assn_sub X (ANum 3) (fun st => st X = 3)}}
  (X ::= (ANum 3))
  {{fun st => st X = 3}}.
Proof.
  apply hoare_asgn. Qed.

Exercise: 2 stars (hoare_asgn_examples)

Translate these informal Hoare triples...
    {{ assn_sub X (X + 1) (X <= 5) }}  X ::= X + 1  {{ X <= 5 }}
    {{ assn_sub X 3 (0 <= X  X <= 5) }}  X ::= 3  {{ 0 <= X  X <= 5 }}
...into formal statements and use hoare_asgn to prove them.

(* FILL IN HERE *)

Exercise: 2 stars (hoare_asgn_wrong)

The assignment rule looks backward to almost everyone the first time they see it. If it still seems backward to you, it may help to think a little about alternative "forward" rules. Here is a seemingly natural one:
   (hoare_asgn_wrong)  

{{ True }} X ::= a {{ X = a }}
Give a counterexample showing that this rule is incorrect (informally). Hint: The rule universally quantifies over the arithmetic expression a, and your counterexample needs to exhibit an a for which the rule doesn't work.

(* FILL IN HERE *)

Exercise: 3 stars, optional (hoare_asgn_fwd)

However, using an auxiliary variable x to remember the original value of X we can define a Hoare rule for assignment that does, intuitively, "work forwards" rather than backwards.
   (hoare_asgn_fwd)  

{{fun st => Q st  st X = x}}
X ::= a
{{fun st => Q st'  st X = aeval st' a }}
(where st' = update st X x)
Note that we use the original value of X to reconstruct the state st' before the assignment took place. Prove that this rule is correct (the first hypothesis is the functional extensionality axiom, which you will need at some point). Also note that this rule is more complicated than hoare_asgn.

Theorem hoare_asgn_fwd :
  ({X Y: Type} {f g : X Y}, ((x: X), f x = g x) f = g)
  x a Q,
  {{fun st => Q st st X = x}}
    X ::= a
  {{fun st => Q (update st X x) st X = aeval (update st X x) a }}.
Proof.
  intros functional_extensionality v a Q.
  (* FILL IN HERE *) Admitted.

Exercise: 2 stars (hoare_asgn_weakest)

Show that the precondition in the rule hoare_asgn is in fact the weakest precondition.

Theorem hoare_asgn_weakest : P X a Q,
  {{P}} (X ::= a) {{Q}}
  P assn_sub X a Q.
Proof.
(* FILL IN HERE *) Admitted.

Consequence

Sometimes the preconditions and postconditions we get from the Hoare rules won't quite be the ones we want in the particular situation at hand — they may be logically equivalent but have a different syntactic form that fails to unify with the goal we are trying to prove, or they actually may be logically weaker (for preconditions) or stronger (for postconditions) than what we need.
For instance, while
      {{assn_sub X 3 (X = 3)}} X ::= 3 {{X = 3}},
follows directly from the assignment rule,
      {{True}} X ::= 3 {{X = 3}}.
does not. This triple is also valid, but it is not an instance of hoare_asgn because True and assn_sub X 3 (X = 3) are not syntactically equal assertions. However, they are logically equivalent, so if one triple is valid, then the other must certainly be as well. We could capture this observation with the following rule:
{{P'}} c {{Q}}
 P' (hoare_consequence_pre_equiv)  

{{P}} c {{Q}}
Generalizing this line of thought a bit further, if we can derive {{P}} c {{Q}}, it is valid to change P to P' as long as P' is strong enough to imply P, and change Q to Q' as long as Q implies Q'. This observation is captured by two Rules of Consequence.
{{P'}} c {{Q}}
 P' (hoare_consequence_pre)  

{{P}} c {{Q}}
{{P}} c {{Q'}}
Q'  Q (hoare_consequence_post)  

{{P}} c {{Q}}
Here are the formal versions:

Theorem hoare_consequence_pre : (P P' Q : Assertion) c,
  {{P'}} c {{Q}}
  P P'
  {{P}} c {{Q}}.
Proof.
  intros P P' Q c Hhoare Himp.
  intros st st' Hc HP. apply (Hhoare st st').
  assumption. apply Himp. assumption. Qed.

Theorem hoare_consequence_post : (P Q Q' : Assertion) c,
  {{P}} c {{Q'}}
  Q' Q
  {{P}} c {{Q}}.
Proof.
  intros P Q Q' c Hhoare Himp.
  intros st st' Hc HP.
  apply Himp.
  apply (Hhoare st st').
  assumption. assumption. Qed.

For example, we might use the first consequence rule like this:
                {{ True }} =>
                {{ 1 = 1 }} 
    X ::= 1
                {{ X = 1 }}
Or, formally...

Example hoare_asgn_example1 :
  {{fun st => True}} (X ::= (ANum 1)) {{fun st => st X = 1}}.
Proof.
  apply hoare_consequence_pre
    with (P' := assn_sub X (ANum 1) (fun st => st X = 1)).
  apply hoare_asgn.
  intros st H. reflexivity. Qed.

Finally, for convenience in some proofs, we can state a "combined" rule of consequence that allows us to vary both the precondition and the postcondition.
{{P'}} c {{Q'}}
 P'
Q'  Q (hoare_consequence)  

{{P}} c {{Q}}

Theorem hoare_consequence : (P P' Q Q' : Assertion) c,
  {{P'}} c {{Q'}}
  P P'
  Q' Q
  {{P}} c {{Q}}.
Proof.
  intros P P' Q Q' c Hht HPP' HQ'Q.
  intros st st' Hc HP.
  apply HQ'Q. apply (Hht st st'). assumption.
  apply HPP'. assumption. Qed.

Digression: The eapply Tactic

This is a good moment to introduce another convenient feature of Coq. We had to write "with (P' := ...)" explicitly in the proof of hoare_asgn_example1 above, to make sure that all of the metavariables in the premises to the hoare_consequence_pre rule would be set to specific values; since P' doesn't appear in the conclusion of hoare_consequence_pre, the process of unifying the conclusion with the current goal doesn't constrain P' to a specific assertion.
This is a little annoying, both because the assertion is a bit long and also because the very next thing we are going to do — applying the hoare_asgn rule — will tell us exactly what it should be! We can use eapply instead of apply to tell Coq, essentially, "Be patient: The missing part is going to be filled in soon."

Example hoare_asgn_example1' :
  {{fun st => True}}
  (X ::= (ANum 1))
  {{fun st => st X = 1}}.
Proof.
  eapply hoare_consequence_pre.
  apply hoare_asgn.
  intros st H. reflexivity. Qed.

In general, eapply H tactic works just like apply H except that, instead of failing if unifying the goal with the conclusion of H does not determine how to instantiate all of the variables appearing in the premises of H, eapply H will replace these variables with existential variables (written ?nnn) as placeholders for expressions that will be determined (by further unification) later in the proof.
In order for Qed to succeed, all existential variables need to be determined by the end of the proof. Otherwise Coq will (rightfully) refuse to accept the proof. Remember that the Coq tactics build proof objects, and proof objects containing existential variables are not complete.

Lemma silly1 : (P : nat nat Prop) (Q : nat Prop),
  (x y : nat, P x y)
  (x y : nat, P x y Q x)
  Q 42.
Proof.
  intros P Q HP HQ. eapply HQ. apply HP. Admitted.

Coq gives a warning after apply HP:
     No more subgoals but non-instantiated existential variables:
     Existential 1 =
     ?171 : [P : nat  nat  Prop
             Q : nat  Prop
             HP :  x y : natP x y
             HQ :  x y : natP x y  Q x  nat
Trying to finish the proof with Qed instead of Admitted gives an error:
    Error: Attempt to save a proof with existential variables still
    non-instantiated
An additional constraint is that existential variables cannot be instantiated with terms containing (normal) variables that did not exist at the time the existential variable was created.

Lemma silly2 : (P : nat nat Prop) (Q : nat Prop),
  (y, P 42 y)
  (x y : nat, P x y Q x)
  Q 42.
Proof.
  intros P Q HP HQ. eapply HQ. destruct HP as [y HP']. Admitted.

Doing apply HP' above fails with the following error:
     ErrorImpossible to unify "?175" with "y".
In this case there is an easy fix: doing destruct HP before doing eapply HQ.

Lemma silly2_fixed : (P : nat nat Prop) (Q : nat Prop),
  (y, P 42 y)
  (x y : nat, P x y Q x)
  Q 42.
Proof.
  intros P Q HP HQ. destruct HP as [y HP']. eapply HQ. apply HP'.
Qed.

In the last step we did apply HP' which unifies the existential variable in the goal with the variable y. The assumption tactic doesn't work in this case, since it cannot handle existential variables. However, Coq also provides an eassumption tactic that solves the goal if one of the premises matches the goal up to instantiations of existential variables. We can use it instead of apply HP'.

Lemma silly2_eassumption : (P : nat nat Prop) (Q : nat Prop),
  (y, P 42 y)
  (x y : nat, P x y Q x)
  Q 42.
Proof.
  intros P Q HP HQ. destruct HP as [y HP']. eapply HQ. eassumption.
Qed.

Exercise: 2 stars (hoare_asgn_examples_2)

Translate these informal Hoare triples...
       {{ X + 1 <= 5 }}  X ::= X + 1  {{ X <= 5 }}
       {{ 0 <= 3  3 <= 5 }}  X ::= 3  {{ 0 <= X  X <= 5 }}
...into formal statements and use hoare_asgn and hoare_consequence_pre to prove them.

(* FILL IN HERE *)

Skip

Since SKIP doesn't change the state, it preserves any property P:
   (hoare_skip)  

{{ P }} SKIP {{ P }}

Theorem hoare_skip : P,
     {{P}} SKIP {{P}}.
Proof.
  intros P st st' H HP. inversion H. subst.
  assumption. Qed.

Sequencing

More interestingly, if the command c1 takes any state where P holds to a state where Q holds, and if c2 takes any state where Q holds to one where R holds, then doing c1 followed by c2 will take any state where P holds to one where R holds:
{{ P }} c1 {{ Q }}
{{ Q }} c2 {{ R }} (hoare_seq)  

{{ P }} c1;c2 {{ R }}

Theorem hoare_seq : P Q R c1 c2,
     {{Q}} c2 {{R}}
     {{P}} c1 {{Q}}
     {{P}} c1;c2 {{R}}.
Proof.
  intros P Q R c1 c2 H1 H2 st st' H12 Pre.
  inversion H12; subst.
  apply (H1 st'0 st'); try assumption.
  apply (H2 st st'0); assumption. Qed.

Note that, in the formal rule hoare_seq, the premises are given in "backwards" order (c2 before c1). This matches the natural flow of information in many of the situations where we'll use the rule: the natural way to construct a Hoare-logic proof is to begin at the end of the program (with the final postcondition) and push postconditions backwards through commands until we reach the beginning.
Informally, a nice way of recording a proof using the sequencing rule is as a "decorated program" where the intermediate assertion Q is written between c1 and c2:
      {{ a = n }}
    X ::= a;
      {{ X = n }}      <---- decoration for Q
    SKIP
      {{ X = n }}

Example hoare_asgn_example3 : a n,
  {{fun st => aeval st a = n}}
  (X ::= a; SKIP)
  {{fun st => st X = n}}.
Proof.
  intros a n. eapply hoare_seq.
  Case "right part of seq".
    apply hoare_skip.
  Case "left part of seq".
    eapply hoare_consequence_pre. apply hoare_asgn.
    intros st H. subst. reflexivity. Qed.

You will most often use hoare_seq and hoare_consequence_pre in conjunction with the eapply tactic, as done above.

Exercise: 2 stars (hoare_asgn_example4)

Translate this decorated program into a formal proof:
                   {{ True }} =>
                   {{ 1 = 1 }}
    X ::= 1;
                   {{ X = 1 }} =>
                   {{ X = 1  2 = 2 }}
    Y ::= 2
                   {{ X = 1  Y = 2 }}

Example hoare_asgn_example4 :
  {{fun st => True}} (X ::= (ANum 1); Y ::= (ANum 2))
  {{fun st => st X = 1 st Y = 2}}.
Proof.
  (* FILL IN HERE *) Admitted.

Exercise: 3 stars (swap_exercise)

Write an Imp program c that swaps the values of X and Y and show (in Coq) that it satisfies the following specification:
      {{X <= Y}} c {{Y <= X}}

(* FILL IN HERE *)

Exercise: 3 stars, optional (hoarestate1)

Explain why the following proposition can't be proven:
       (a : aexp) (n : nat),
         {{fun st => aeval st a = n}} (X ::= (ANum 3); Y ::= a
         {{fun st => st Y = n}}.

(* FILL IN HERE *)

Conditionals

What sort of rule do we want for reasoning about conditional commands? Certainly, if the same assertion Q holds after executing either branch, then it holds after the whole conditional. So we might be tempted to write:
{{P}} c1 {{Q}}
{{P}} c2 {{Q}}  

{{P}} IFB b THEN c1 ELSE c2 {{Q}}
However, this is rather weak. For example, using this rule, we cannot show that:
     {{True}} 
     IFB X == 0
     THEN Y ::= 2
     ELSE Y ::= X + 1 
     FI
     {{ X <= Y }}
since the rule tells us nothing about the state in which the assignments take place in the "then" and "else" branches.
But, actually, we can say something more precise. In the "then" branch, we know that the boolean expression b evaluates to true, and in the "else" branch, we know it evaluates to false. Making this information available in the premises of the rule gives us more information to work with when reasoning about the behavior of c1 and c2 (i.e., the reasons why they establish the postcondition Q).
{{P   b}} c1 {{Q}}
{{P  ~b}} c2 {{Q}} (hoare_if)  

{{P}} IFB b THEN c1 ELSE c2 FI {{Q}}
To interpret this rule formally, we need to do a little work.
Strictly speaking, the assertion we've written, P b, is the conjunction of an assertion and a boolean expression, which doesn't typecheck. To fix this, we need a way of formally "lifting" any bexp b to an assertion. We'll write bassn b for the assertion "the boolean expression b evaluates to true (in the given state)."

Definition bassn b : Assertion :=
  fun st => (beval st b = true).

A couple of useful facts about bassn:

Lemma bexp_eval_true : b st,
  beval st b = true (bassn b) st.
Proof.
  intros b st Hbe.
  unfold bassn. assumption. Qed.

Lemma bexp_eval_false : b st,
  beval st b = false ~ ((bassn b) st).
Proof.
  intros b st Hbe contra.
  unfold bassn in contra.
  rewrite contra in Hbe. inversion Hbe. Qed.

Now we can formalize the Hoare proof rule for conditionals and prove it correct.

Theorem hoare_if : P Q b c1 c2,
  {{fun st => P st bassn b st}} c1 {{Q}}
  {{fun st => P st ~(bassn b st)}} c2 {{Q}}
  {{P}} (IFB b THEN c1 ELSE c2 FI) {{Q}}.
Proof.
  intros P Q b c1 c2 HTrue HFalse st st' HE HP.
  inversion HE; subst.
  Case "b is true".
    apply (HTrue st st').
      assumption.
      split. assumption.
             apply bexp_eval_true. assumption.
  Case "b is false".
    apply (HFalse st st').
      assumption.
      split. assumption.
             apply bexp_eval_false. assumption. Qed.

Here is a formal proof that the program we used to motivate the rule satisfies the specification we gave.

Example if_example :
    {{fun st => True}}
  IFB (BEq (AId X) (ANum 0))
    THEN (Y ::= (ANum 2))
    ELSE (Y ::= APlus (AId X) (ANum 1))
  FI
    {{fun st => st X <= st Y}}.
Proof.
  (* WORKED IN CLASS *)
  apply hoare_if.
  Case "Then".
    eapply hoare_consequence_pre. apply hoare_asgn.
    unfold bassn, assn_sub, update, assert_implies. simpl. intros st [_ H].
    symmetry in H; apply beq_nat_eq in H.
    rewrite H. omega.
  Case "Else".
    eapply hoare_consequence_pre. apply hoare_asgn.
    unfold assn_sub, update, assert_implies; simpl; intros st _. omega.
Qed.

Exercise: One-sided conditionals

Exercise: 4 stars, recommended (if1_hoare)

In this exercise we consider extending Imp with "one-sided conditionals" of the form IF1 b THEN c FI. Here b is a boolean expression, and c is a command. If b evaluates to true, then command c is evaluated. If b evaluates to false, then IF1 b THEN c FI does nothing.
We recommend that you do this exercise before the ones that follow, as it should help solidify your understanding of the material.
We first extend the syntax of commands, and introduce the usual notations. We use a separate module to prevent polluting the global name space.

Module If1.

Inductive com : Type :=
  | CSkip : com
  | CAss : id aexp com
  | CSeq : com com com
  | CIf : bexp com com com
  | CWhile : bexp com com
  | CIf1 : bexp com com.

Tactic Notation "com_cases" tactic(first) ident(c) :=
  first;
  [ Case_aux c "SKIP" | Case_aux c "::=" | Case_aux c ";"
  | Case_aux c "IFB" | Case_aux c "WHILE" | Case_aux c "CIF1" ].

Notation "'SKIP'" :=
  CSkip.
Notation "c1 ; c2" :=
  (CSeq c1 c2) (at level 80, right associativity).
Notation "X '::=' a" :=
  (CAss X a) (at level 60).
Notation "'WHILE' b 'DO' c 'END'" :=
  (CWhile b c) (at level 80, right associativity).
Notation "'IFB' e1 'THEN' e2 'ELSE' e3 'FI'" :=
  (CIf e1 e2 e3) (at level 80, right associativity).
Notation "'IF1' b 'THEN' c 'FI'" :=
  (CIf1 b c) (at level 80, right associativity).

We now extend the evaluation relation to accommodate IF1 branches. What rule(s) need to be added to ceval to evaluate one-sided conditionals?

Reserved Notation "c1 '/' st '' st'" (at level 40, st at level 39).

Inductive ceval : com state state Prop :=
  | E_Skip : st : state, SKIP / st st
  | E_Ass : (st : state) (a1 : aexp) (n : nat) (X : id),
            aeval st a1 = n (X ::= a1) / st update st X n
  | E_Seq : (c1 c2 : com) (st st' st'' : state),
            c1 / st st' c2 / st' st'' (c1 ; c2) / st st''
  | E_IfTrue : (st st' : state) (b1 : bexp) (c1 c2 : com),
               beval st b1 = true
               c1 / st st' (IFB b1 THEN c1 ELSE c2 FI) / st st'
  | E_IfFalse : (st st' : state) (b1 : bexp) (c1 c2 : com),
                beval st b1 = false
                c2 / st st' (IFB b1 THEN c1 ELSE c2 FI) / st st'
  | E_WhileEnd : (b1 : bexp) (st : state) (c1 : com),
                 beval st b1 = false (WHILE b1 DO c1 END) / st st
  | E_WhileLoop : (st st' st'' : state) (b1 : bexp) (c1 : com),
                  beval st b1 = true
                  c1 / st st'
                  (WHILE b1 DO c1 END) / st' st''
                  (WHILE b1 DO c1 END) / st st''
(* FILL IN HERE *)

  where "c1 '/' st '' st'" := (ceval c1 st st').

Tactic Notation "ceval_cases" tactic(first) ident(c) :=
  first;
  [ Case_aux c "E_Skip" | Case_aux c "E_Ass" | Case_aux c "E_Seq"
  | Case_aux c "E_IfTrue" | Case_aux c "E_IfFalse"
  | Case_aux c "E_WhileEnd" | Case_aux c "E_WhileLoop"
  (* FILL IN HERE *)
  ].

We repeat the definition and notation of Hoare triples.

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
  st st',
       c / st st'
       P st
       Q st'.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q)
                                  (at level 90, c at next level)
                                  : hoare_spec_scope.

Now state and prove a theorem, hoare_if1, that expresses an appropriate Hoare logic proof rule for one-sided conditionals. Try to come up with a rule that is both sound and as precise as possible.

(* FILL IN HERE *)

For full credit, prove formally that your rule is precise enough to show the following valid Hoare triple:
  {{ X + Y = Z }}
  IF1 Y <> 0 THEN
    X ::= X + Y
  FI
  {{ X = Z }}
Hint: Your proof of this triple may need to use the other proof rules also. Because we're working in a separate module, you'll need to copy here the rules you find necessary.

Lemma hoare_if1_good :
  {{ fun st => st X + st Y = st Z }}
  IF1 BNot (BEq (AId Y) (ANum 0)) THEN
    X ::= APlus (AId X) (AId Y)
  FI
  {{ fun st => st X = st Z }}.
Proof. (* FILL IN HERE *) Admitted.

End If1.

Loops

Finally, we need a rule for reasoning about while loops. Suppose we have a loop
      WHILE b DO c END
and we want to find a pre-condition P and a post-condition Q such that
      {{P}} WHILE b DO c END {{Q}} 
is a valid triple.
First of all, let's think about the case where b is false at the beginning — i.e., let's assume that the loop body never executes at all. In this case, the loop behaves like SKIP, so we might be tempted to write
      {{P}} WHILE b DO c END {{P}}.
But, as we remarked above for the conditional, we know a little more at the end — not just P, but also the fact that b is false in the current state. So we can enrich the postcondition a little:
      {{P}} WHILE b DO c END {{P  ~b}}
What about the case where the loop body does get executed? In order to ensure that P holds when the loop finally exits, we certainly need to make sure that the command c guarantees that P holds whenever c is finished. Moreover, since P holds at the beginning of the first execution of c, and since each execution of c re-establishes P when it finishes, we can always assume that P holds at the beginning of c. This leads us to the following rule:
{{P}} c {{P}}  

{{P}} WHILE b DO c END {{P  ~b}}
The proposition P is called an invariant.
This is almost the rule we want, but again it can be improved a little: at the beginning of the loop body, we know not only that P holds, but also that the guard b is true in the current state. This gives us a little more information to use in reasoning about c (showing that it establishes the invariant by the time it finishes). This gives us the final version of the rule:
{{P  b}} c {{P}} (hoare_while)  

{{P}} WHILE b DO c END {{P  ~b}}

Lemma hoare_while : P b c,
  {{fun st => P st bassn b st}} c {{P}}
  {{P}} WHILE b DO c END {{fun st => P st ~ (bassn b st)}}.
Proof.
  intros P b c Hhoare st st' He HP.
  (* Like we've seen before, we need to reason by induction 
     on He, because, in the "keep looping" case, its hypotheses 
     talk about the whole loop instead of just c *)

  remember (WHILE b DO c END) as wcom.
  ceval_cases (induction He) Case; try (inversion Heqwcom); subst.

  Case "E_WhileEnd".
    split. assumption. apply bexp_eval_false. assumption.

  Case "E_WhileLoop".
    apply IHHe2. reflexivity.
    apply (Hhoare st st'). assumption.
      split. assumption. apply bexp_eval_true. assumption. Qed.

Example while_example :
    {{fun st => st X <= 3}}
  WHILE (BLe (AId X) (ANum 2))
  DO X ::= APlus (AId X) (ANum 1) END
    {{fun st => st X = 3}}.
Proof.
  eapply hoare_consequence_post.
  apply hoare_while.
  eapply hoare_consequence_pre.
  apply hoare_asgn.
  unfold bassn, assn_sub, assert_implies, update. simpl.
    intros st [H1 H2]. apply ble_nat_true in H2. omega.
  unfold bassn, assert_implies. intros st [Hle Hb].
    simpl in Hb. remember (ble_nat (st X) 2) as le. destruct le.
    apply ex_falso_quodlibet. apply Hb; reflexivity.
    symmetry in Heqle. apply ble_nat_false in Heqle. omega.
Qed.

We can also use the while rule to prove the following Hoare triple, which may seem surprising at first...

Theorem always_loop_hoare : P Q,
  {{P}} WHILE BTrue DO SKIP END {{Q}}.
Proof.
  intros P Q.
  apply hoare_consequence_pre with (P' := fun st : state => True).
  eapply hoare_consequence_post.
  apply hoare_while.
  Case "Loop body preserves invariant".
    apply hoare_post_true. intros st. apply I.
  Case "Loop invariant and negated guard imply postcondition".
    simpl. intros st [Hinv Hguard].
    apply ex_falso_quodlibet. apply Hguard. reflexivity.
  Case "Precondition implies invariant".
    intros st H. constructor. Qed.

Actually, this result shouldn't be surprising. If we look back at the definition of hoare_triple, we can see that it asserts something meaningful only when the command terminates.

Print hoare_triple.

If the command doesn't terminate, we can prove anything we like about the post-condition. Here's a more direct proof of the same fact:

Theorem always_loop_hoare' : P Q,
  {{P}} WHILE BTrue DO SKIP END {{Q}}.
Proof.
  unfold hoare_triple. intros P Q st st' contra.
  apply loop_never_stops in contra. inversion contra.
Qed.

Hoare rules that only talk about terminating commands are often said to describe a logic of "partial" correctness. It is also possible to give Hoare rules for "total" correctness, which build in the fact that the commands terminate. However, in this course we will focus only on partial correctness.

Exercise: REPEAT


Module RepeatExercise.

Exercise: 4 stars (hoare_repeat)

In this exercise, we'll add a new command to our language of commands: REPEAT c UNTIL a END. You will write the evaluation rule for repeat and add a new Hoare rule to the language for programs involving it.

Inductive com : Type :=
  | CSkip : com
  | CAsgn : id aexp com
  | CSeq : com com com
  | CIf : bexp com com com
  | CWhile : bexp com com
  | CRepeat : com bexp com.

REPEAT behaves like WHILE, except that the loop guard is checked after each execution of the body, with the loop repeating as long as the guard stays false. Because of this, the body will always execute at least once.

Tactic Notation "com_cases" tactic(first) ident(c) :=
  first;
  [ Case_aux c "SKIP" | Case_aux c "::=" | Case_aux c ";"
  | Case_aux c "IFB" | Case_aux c "WHILE" | Case_aux c "CRepeat" ].

Notation "'SKIP'" :=
  CSkip.
Notation "c1 ; c2" :=
  (CSeq c1 c2) (at level 80, right associativity).
Notation "X '::=' a" :=
  (CAsgn X a) (at level 60).
Notation "'WHILE' b 'DO' c 'END'" :=
  (CWhile b c) (at level 80, right associativity).
Notation "'IFB' e1 'THEN' e2 'ELSE' e3 'FI'" :=
  (CIf e1 e2 e3) (at level 80, right associativity).
Notation "'REPEAT' e1 'UNTIL' b2 'END'" :=
  (CRepeat e1 b2) (at level 80, right associativity).

Add new rules for REPEAT to ceval below. You can use the rules for WHILE as a guide, but remember that the body of a REPEAT should always execute at least once, and that the loop ends when the guard becomes true. Then update the ceval_cases tactic to handle these added cases.

Inductive ceval : state com state Prop :=
  | E_Skip : st,
      ceval st SKIP st
  | E_Ass : st a1 n X,
      aeval st a1 = n
      ceval st (X ::= a1) (update st X n)
  | E_Seq : c1 c2 st st' st'',
      ceval st c1 st'
      ceval st' c2 st''
      ceval st (c1 ; c2) st''
  | E_IfTrue : st st' b1 c1 c2,
      beval st b1 = true
      ceval st c1 st'
      ceval st (IFB b1 THEN c1 ELSE c2 FI) st'
  | E_IfFalse : st st' b1 c1 c2,
      beval st b1 = false
      ceval st c2 st'
      ceval st (IFB b1 THEN c1 ELSE c2 FI) st'
  | E_WhileEnd : b1 st c1,
      beval st b1 = false
      ceval st (WHILE b1 DO c1 END) st
  | E_WhileLoop : st st' st'' b1 c1,
      beval st b1 = true
      ceval st c1 st'
      ceval st' (WHILE b1 DO c1 END) st''
      ceval st (WHILE b1 DO c1 END) st''
(* FILL IN HERE *)
.

Tactic Notation "ceval_cases" tactic(first) ident(c) :=
  first;
  [ Case_aux c "E_Skip" | Case_aux c "E_Ass" | Case_aux c "E_Seq"
  | Case_aux c "E_IfTrue" | Case_aux c "E_IfFalse"
  | Case_aux c "E_WhileEnd" | Case_aux c "E_WhileLoop"
(* FILL IN HERE *)
].

A couple of definitions from above, copied here so they use the new ceval.

Notation "c1 '/' st '' st'" := (ceval st c1 st')
                                 (at level 40, st at level 39).

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion)
                        : Prop :=
  st st', (c / st st') P st Q st'.

Notation "{{ P }} c {{ Q }}" :=
  (hoare_triple P c Q) (at level 90, c at next level).

To make sure you've got the evaluation rules for REPEAT right, prove that ex1_repeat evaluates correctly.

Definition ex1_repeat :=
  REPEAT
    X ::= ANum 1;
    Y ::= APlus (AId Y) (ANum 1)
  UNTIL (BEq (AId X) (ANum 1)) END.

Theorem ex1_repeat_works :
  ex1_repeat / empty_state update (update empty_state X 1) Y 1.
Proof.
  (* FILL IN HERE *) Admitted.

Now state and prove a theorem, hoare_repeat, that expresses an appropriate proof rule for repeat commands. Use hoare_while as a model, and try to make your rule as precise as possible.

(* FILL IN HERE *)

For full credit, make sure (informally) that your rule can be used to prove the following valid Hoare triple:
  {{ X > 0 }}
  REPEAT
    Y ::= X;
    X ::= X - 1
  UNTIL X = 0 END
  {{ X = 0  Y > 0 }}

End RepeatExercise.

Exercise: HAVOC

Exercise: 3 stars (himp_hoare)

In this exercise, we will derive proof rules for the HAVOC command which we studied in the last chapter. First, we enclose this work in a separate module, and recall the syntax and big-step semantics of Himp commands.

Module Himp.

Inductive com : Type :=
  | CSkip : com
  | CAsgn : id aexp com
  | CSeq : com com com
  | CIf : bexp com com com
  | CWhile : bexp com com
  | CHavoc : id com.

Tactic Notation "com_cases" tactic(first) ident(c) :=
  first;
  [ Case_aux c "SKIP" | Case_aux c "::=" | Case_aux c ";"
  | Case_aux c "IFB" | Case_aux c "WHILE" | Case_aux c "HAVOC" ].

Notation "'SKIP'" :=
  CSkip.
Notation "X '::=' a" :=
  (CAsgn X a) (at level 60).
Notation "c1 ; c2" :=
  (CSeq c1 c2) (at level 80, right associativity).
Notation "'WHILE' b 'DO' c 'END'" :=
  (CWhile b c) (at level 80, right associativity).
Notation "'IFB' e1 'THEN' e2 'ELSE' e3 'FI'" :=
  (CIf e1 e2 e3) (at level 80, right associativity).
Notation "'HAVOC' X" := (CHavoc X) (at level 60).

Reserved Notation "c1 '/' st '' st'" (at level 40, st at level 39).

Inductive ceval : com state state Prop :=
  | E_Skip : st : state, SKIP / st st
  | E_Ass : (st : state) (a1 : aexp) (n : nat) (X : id),
            aeval st a1 = n (X ::= a1) / st update st X n
  | E_Seq : (c1 c2 : com) (st st' st'' : state),
            c1 / st st' c2 / st' st'' (c1 ; c2) / st st''
  | E_IfTrue : (st st' : state) (b1 : bexp) (c1 c2 : com),
               beval st b1 = true
               c1 / st st' (IFB b1 THEN c1 ELSE c2 FI) / st st'
  | E_IfFalse : (st st' : state) (b1 : bexp) (c1 c2 : com),
                beval st b1 = false
                c2 / st st' (IFB b1 THEN c1 ELSE c2 FI) / st st'
  | E_WhileEnd : (b1 : bexp) (st : state) (c1 : com),
                 beval st b1 = false (WHILE b1 DO c1 END) / st st
  | E_WhileLoop : (st st' st'' : state) (b1 : bexp) (c1 : com),
                  beval st b1 = true
                  c1 / st st'
                  (WHILE b1 DO c1 END) / st' st''
                  (WHILE b1 DO c1 END) / st st''
  | E_Havoc : (st : state) (X : id) (n : nat),
              (HAVOC X) / st update st X n

  where "c1 '/' st '' st'" := (ceval c1 st st').

Tactic Notation "ceval_cases" tactic(first) ident(c) :=
  first;
  [ Case_aux c "E_Skip" | Case_aux c "E_Ass" | Case_aux c "E_Seq"
  | Case_aux c "E_IfTrue" | Case_aux c "E_IfFalse"
  | Case_aux c "E_WhileEnd" | Case_aux c "E_WhileLoop"
  | Case_aux c "E_Havoc" ].

The definition of Hoare triples is exactly as before. Unlike our notion of equivalence, which had subtle consequences with occassionally nonterminating commands (exercise havoc_diverge), this definition is still fully satisfactory. Convince yourself of this before proceeding.

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
  st st', c / st st' P st Q st'.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q)
                                  (at level 90, c at next level)
                                  : hoare_spec_scope.

Complete the Hoare rule for HAVOC commands below by defining havoc_pre and prove that the resulting rule is correct.

Definition havoc_pre (X : id) (Q : Assertion) : Assertion :=
(* FILL IN HERE *) admit.

Theorem hoare_havoc : (Q : Assertion) (X : id),
  {{ havoc_pre X Q }} HAVOC X {{ Q }}.
Proof.
  (* FILL IN HERE *) Admitted.

Like in the hoare_asgn_weakest exercise above, show that your havoc_pre returns the weakest precondition.

Lemma hoare_havoc_weakest : (P Q : Assertion) (X : id),
  {{ P }} HAVOC X {{ Q }}
  P havoc_pre X Q.
Proof.
(* FILL IN HERE *) Admitted.

(* /SOLUTION *)
End Himp.

Review of Hoare Logic

Above, we've introduced Hoare Logic as a tool to reasoning about Imp programs. In the reminder of this chapter we will explore a systematic way to use Hoare Logic to prove properties about programs. The rules of Hoare Logic are the following:
   (hoare_asgn)  

{{assn_sub X a Q}} X::=a {{Q}}
   (hoare_skip)  

{{ P }} SKIP {{ P }}
{{ P }} c1 {{ Q }}
{{ Q }} c2 {{ R }} (hoare_seq)  

{{ P }} c1;c2 {{ R }}
{{P   b}} c1 {{Q}}
{{P  ~b}} c2 {{Q}} (hoare_if)  

{{P}} IFB b THEN c1 ELSE c2 FI {{Q}}
{{P  b}} c {{P}} (hoare_while)  

{{P}} WHILE b DO c END {{P  ~b}}
{{P'}} c {{Q'}}
 P'
Q'  Q (hoare_consequence)  

{{P}} c {{Q}}

Decorated Programs

The beauty of Hoare Logic is that it is compositional — the structure of proofs exactly follows the structure of programs. This fact suggests that we could record the essential ideas of a proof informally (leaving out some low-level calculational details) by decorating programs with appropriate assertions around each statement. Such a decorated program carries with it an (informal) proof of its own correctness.
For example, here is a complete decorated program:
      {{ True }} =>
      {{ x = x }}
    X ::= x
      {{ X = x }} => 
      {{ X = x  z = z }}
    Z ::= z;              
      {{ X = x  Z = z }} =>
      {{ Z - X = z - x }}
    WHILE X <> 0 DO
        {{ Z - X = z - x  X <> 0 }} =>
        {{ (Z - 1) - (X - 1) = z - x }}
      Z ::= Z - 1;               
        {{ Z - (X - 1) = z - x }}
      X ::= X - 1 
        {{ Z - X = z - x }} 
    END;
      {{ Z - X = z - x  ~ (X <> 0) }} =>
      {{ Z = z - x }} =>
      {{ Z + 1 = z - x + 1 }}
    Z ::= Z + 1
      {{ Z = z - x + 1 }}
Concretely, a decorated program consists of the program text interleaved with assertions. To check that a decorated program represents a valid proof, we check that each individual command is locally consistent with its accompanying assertions in the following sense:
  • SKIP is locally consistent if its precondition and postcondition are the same:
        {{ P }} 
        SKIP
        {{ P }} 
  • The sequential composition of commands c1 and c2 is locally consistent (with respect to assertions P and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally consistent (with respect to Q and R):
        {{ P }} 
        c1;
        {{ Q }} 
        c2
        {{ R }}
  • An assignment is locally consistent if its precondition is the appropriate substitution of its postcondition:
        {{ P where a is substituted for X }}  
        X ::= a  
        {{ P }}
  • A conditional is locally consistent (with respect to assertions P and Q) if the assertions at the top of its "then" and "else" branches are exactly Pb and P/\~b and if its "then" branch is locally consistent (with respect to Pb and Q) and its "else" branch is locally consistent (with respect to P/\~b and Q):
        {{ P }} 
        IFB b THEN
          {{ P  b }} 
          c1 
          {{ Q }}
        ELSE
          {{ P  ~b }} 
          c2
          {{ Q }}
        FI
        {{ Q }}
  • A while loop is locally consistent if its postcondition is P/\~b (where P is its precondition) and if the pre- and postconditions of its body are exactly Pb and P:
        {{ P }} 
        WHILE b DO
          {{ P  b }} 
          c1 
          {{ P }}
        END
        {{ P  ~b }} 
  • A pair of assertions separated by => is locally consistent if the first implies the second (in all states):
        {{ P }} =>
        {{ P' }} 
    This corresponds to the application of hoare_consequence and is the only place in a decorated program where checking if the decorations are correct is not fully mechanical and syntactic, but it involves logical and maybe arithmetic reasoning.

Sample Hoare Logic Proofs


Example: Slow Subtraction

We've seen an Imp program for subtracting one number from another by repeatedly subtracting one from each number until the one being subtracted reaches zero.
Here is a full proof — presented as a decorated program — that this program meets a natural specification:
    (1)      {{ X = x  Z = z }} =>                      
    (2)      {{ Z - X = z - x }}                      
           WHILE X <> 0 DO                            
    (3)        {{ Z - X = z - x  X <> 0 }} =>       
    (4)        {{ (Z - 1) - (X - 1) = z - x }}        
             Z ::= Z - 1;
    (5)        {{ Z - (X - 1) = z - x }}              
             X ::= X - 1
    (6)        {{ Z - X = z - x }}                    
           END
    (7)      {{ Z - X = z - x  ~ (X <> 0) }} =>     
    (8)      {{ Z = z - x }}                          
The decorations were constructed as follows:
  • Begin with the undecorated program (the unnumbered lines).
  • Add the specification — i.e., the outer precondition (1) and postcondition (8).
  • Write down the invariant of the loop (6).
  • Following the format dictated by the hoare_while rule, add the final use of the rule of consequence — the assertion in line (7) and the check that (7) implies (8).
  • Check that the loop invariant is an invariant of the loop body by using the assignment rule twice to push the invariant backwards from the end of the loop body to the beginning (line (5) and then line (4)), and then filling in the rule of consequence asserting that the invariant plus the fact that the loop guard is true (line (3)) implies line (4).
  • Check that the invariant is established at the beginning of the loop verifying that line (2) is implied by line (1).
As in most Hoare Logic proofs, the only challenging part of this process is finding the right loop invariant. There is no foolproof procedure for this, but a helpful heuristic is to begin by assumimng that the loop invariant is exactly the desired postcondition (i.e., that lines (6) and (8) are the same) and then calculating a bit to find out why this assertion is not an invariant of the loop body.
In this case, it quickly becomes clear that assertion (8) is not an invariant of the loop body because the loop body changes the variable Z, but (obviously) not the global constants x and z. So we need to generalize (8) to some statement that is equivalent to (8) when X is 0, since this will be the case when the loop terminates, and that "fills the gap" in some appropriate way when X is nonzero.
From this informal proof, it is now easy to read off a formal proof in terms of the Hoare rules:

Definition subtract_slowly : com :=
  WHILE BNot (BEq (AId X) (ANum 0)) DO
    Z ::= AMinus (AId Z) (ANum 1);
    X ::= AMinus (AId X) (ANum 1)
  END.

Definition subtract_slowly_invariant x z :=
  fun st => minus (st Z) (st X) = minus z x.

Theorem subtract_slowly_correct : x z,
  {{fun st => st X = x st Z = z}}
  subtract_slowly
  {{fun st => st Z = minus z x}}.
Proof.
  (* Note that we do NOT unfold the definition of hoare_triple
     anywhere in this proof!  The goal is to use only the Hoare
     rules. Your proofs should do the same. *)


  intros x z. unfold subtract_slowly.
  (* First we need to transform the pre and postconditions so
     that hoare_while will apply.  In particular, the
     precondition should be the loop invariant. *)

  eapply hoare_consequence with (P' := subtract_slowly_invariant x z).
  apply hoare_while.

  Case "Loop body preserves invariant".
    (* Split up the two assignments with hoare_seq - using eapply 
       lets us solve the second one immediately with hoare_asgn *)

    eapply hoare_seq. apply hoare_asgn.
    (* Now for the first assignment, transform the precondition
       so we can use hoare_asgn *)

    eapply hoare_consequence_pre. apply hoare_asgn.
    (* Finally, we need to justify the implication generated by
       hoare_consequence_pre (this bit of reasoning is elided in the
       informal proof) *)

    unfold subtract_slowly_invariant, assn_sub, update, bassn. simpl.
    intros st [Inv GuardTrue].
    (* Could alternatively do case analysis on 
        negb (beq_nat (st X) 0) here;
        but SearchAbout reveals some nice lemmas *)

    SearchAbout [negb true]. rewrite negb_true_iff in GuardTrue.
    SearchAbout [beq_nat false]. apply beq_nat_false in GuardTrue.
    omega. (* slow but effective! *)
    (* Faster variant: rewrite <- Inv. clear Inv. omega. *)
  Case "Initial state satisfies invariant".
    (* This is the subgoal generated by the precondition part of our
       first use of hoare_consequence.  It's the first implication
       written in the decorated program (though we elided the actual
       proof there). *)

    unfold subtract_slowly_invariant.
    intros st [HX HZ]. omega.
  Case "Invariant and negated guard imply postcondition".
   (* This is the subgoal generated by the postcondition part of
      out first use of hoare_consequence.  This implication is
      the one written after the while loop in the informal proof. *)

    intros st [Inv GuardFalse].
    unfold subtract_slowly_invariant in Inv.
    unfold bassn in GuardFalse. simpl in GuardFalse.
    (* SearchAbout helps again to find the right lemmas *)
    SearchAbout [not true]. rewrite not_true_iff_false in GuardFalse.
    SearchAbout [negb false]. rewrite negb_false_iff in GuardFalse.
    SearchAbout [beq_nat true]. apply beq_nat_true in GuardFalse.
    omega. Qed.

Exercise: Reduce to Zero

Exercise: 2 stars (reduce_to_zero_correct)

Here is a while loop that is so simple it needs no invariant:
          {{ True }}
        WHILE X <> 0 DO
            {{ True  X <> 0 }} =>
            {{ True }}
          X ::= X - 1
            {{ True }}
        END
          {{ True  X = 0 }} =>
          {{ X = 0 }}
Your job is to translate this proof to Coq. Refer to the slow_subtraction example for ideas.

Definition reduce_to_zero : com :=
  WHILE BNot (BEq (AId X) (ANum 0)) DO
    X ::= AMinus (AId X) (ANum 1)
  END.

Theorem reduce_to_zero_correct :
  {{fun st => True}}
  reduce_to_zero
  {{fun st => st X = 0}}.
Proof.
  (* FILL IN HERE *) Admitted.

Exercise: Slow Addition

The following program adds the variable X into the variable Z by repeatedly decrementing X and incrementing Z.

Definition add_slowly : com :=
  WHILE BNot (BEq (AId X) (ANum 0)) DO
    Z ::= APlus (AId Z) (ANum 1);
    X ::= AMinus (AId X) (ANum 1)
  END.

Exercise: 3 stars (add_slowly_decoration)

Following the pattern of the subtract_slowly example above, pick a precondition and postcondition that give an appropriate specification of add_slowly; then (informally) decorate the program accordingly.

(* FILL IN HERE *)

Exercise: 3 stars (add_slowly_formal)

Now write down your specification of add_slowly formally, as a Coq Hoare_triple, and prove it valid.

(* FILL IN HERE *)

Example: Parity

Here's another, slightly trickier example. Make sure you understand the decorated program completely. You may find it instructive to start with the bare program and try to fill in the decorations yourself. Notice exactly where the condition X<=x comes up.
    {{ X = x }} =>
    {{ X = x  0 = 0 }}
  Y ::= 0;
    {{ X = x  Y = 0 }} =>
    {{ (Y=0  ev (x-X))  X<=x }} 
  WHILE X <> 0 DO
      {{ (Y=0  ev (x-X))  X<=x  X<>0 }} =>
      {{ (1-Y)=0  ev (x-(X-1))  X-1<=x }} 
    Y ::= 1 - Y;
      {{ Y=0  ev (x-(X-1))  X-1<=x }} 
    X ::= X - 1
      {{ Y=0  ev (x-X X<=x }} 
  END
    {{ (Y=0  ev (x-X))  X<=x  ~(X<>0) }} =>
    {{ Y=0  ev x }}
And here is the formal version of this proof. Skim them, but you do not need to understand every detail (though the details are not actually very hard), since all the important ideas are already in the informal version.

Definition find_parity : com :=
  Y ::= (ANum 0);
  WHILE (BNot (BEq (AId X) (ANum 0))) DO
    Y ::= AMinus (ANum 1) (AId Y);
    X ::= AMinus (AId X) (ANum 1)
  END.

Definition find_parity_invariant x :=
  fun st =>
     st X <= x ((st Y = 0 ev (x - st X))
                     (st Y = 1 ~ev (x - st X))).

We'll need the following lemma...

Lemma not_ev_ev_S_gen: n,
  (~ ev n ev (S n))
  (~ ev (S n) ev (S (S n))).
Proof.
  induction n as [| n'].
  Case "n = 0".
    split; intros H.
    SCase "".
      apply ex_falso_quodlibet. apply H. apply ev_0.
    SCase "".
      apply ev_SS. apply ev_0.
  Case "n = S n'".
    inversion IHn' as [Hn HSn]. split; intros H.
    SCase "".
      apply HSn. apply H.
    SCase "".
      apply ev_SS. apply Hn. intros contra.
      apply H. apply ev_SS. apply contra. Qed.

Lemma not_ev_ev_S : n,
  ~ ev n ev (S n).
Proof.
  intros n.
  destruct (not_ev_ev_S_gen n) as [H _].
  apply H.
Qed.

Theorem find_parity_correct : x,
  {{fun st => st X = x}}
  find_parity
  {{fun st => st Y = 0 ev x}}.
Proof.
  intros x. unfold find_parity.
  apply hoare_seq with (Q := find_parity_invariant x).
  eapply hoare_consequence.
  apply hoare_while with (P := find_parity_invariant x).
  Case "Loop body preserves invariant".
    eapply hoare_seq.
    apply hoare_asgn.
    eapply hoare_consequence_pre.
    apply hoare_asgn.
    intros st [[Inv1 Inv2] GuardTrue].
    unfold find_parity_invariant, bassn, assn_sub, aeval in *.
    rewrite update_eq.
    rewrite (update_neq Y X).
    rewrite (update_neq X Y).
    rewrite update_eq.
    simpl in GuardTrue. destruct (st X).
      inversion GuardTrue. simpl.
    split. omega.
    inversion Inv2 as [[H1 H2] | [H1 H2]]; rewrite H1;
                     [right|left]; (split; simpl; [omega |]).
    apply ev_not_ev_S in H2.
    replace (S (x - S n)) with (x-n) in H2 by omega.
    rewrite minus_n_O. assumption.
    apply not_ev_ev_S in H2.
    replace (S (x - S n)) with (x - n) in H2 by omega.
    rewrite minus_n_O. assumption.
    reflexivity. reflexivity.
  Case "Precondition implies invariant".
    intros st H. assumption.
  Case "Invariant implies postcondition".
    unfold bassn, find_parity_invariant. simpl.
    intros st [[Inv1 Inv2] GuardFalse].
    destruct (st X).
      split; intro.
        inversion Inv2.
           inversion H0 as [_ H1]. replace (x-0) with x in H1 by omega.
           assumption.
           inversion H0 as [H0' _]. rewrite H in H0'. inversion H0'.
        inversion Inv2.
           inversion H0. assumption.
           inversion H0 as [_ H1]. replace (x-0) with x in H1 by omega.
           apply ex_falso_quodlibet. apply H1. assumption.
      apply ex_falso_quodlibet. apply GuardFalse. reflexivity.
  Case "invariant established before loop".
    eapply hoare_consequence_pre.
    apply hoare_asgn.
    intros st H.
    unfold assn_sub, find_parity_invariant, update. simpl.
    subst.
    split.
    omega.
    replace (st X - st X) with 0 by omega.
    left. split. reflexivity.
    apply ev_0. Qed.

Exercise: 2 stars (wrong_find_parity_invariant)

A plausible first attempt at stating an invariant for find_parity is the following.

Definition find_parity_invariant' x :=
  fun st =>
    (st Y) = 0 ev (x - st X).

Why doesn't this work? (Hint: Don't waste time trying to answer this exercise by attempting a formal proof and seeing where it goes wrong. Just think about whether the loop body actually preserves the property.)

(* FILL IN HERE *)

Example: Finding Square Roots

Here's another example, starting with the formal version this time.

Definition sqrt_loop : com :=
  WHILE BLe (AMult (APlus (ANum 1) (AId Z))
                   (APlus (ANum 1) (AId Z)))
            (AId X) DO
    Z ::= APlus (ANum 1) (AId Z)
  END.

Definition sqrt_com : com :=
  Z ::= ANum 0;
  sqrt_loop.

Definition sqrt_spec (x : nat) : Assertion :=
  fun st =>
       ((st Z) * (st Z)) <= x
     ~ (((S (st Z)) * (S (st Z))) <= x).

Definition sqrt_inv (x : nat) : Assertion :=
  fun st =>
       st X = x
     ((st Z) * (st Z)) <= x.

Theorem random_fact_1 : st,
     (S (st Z)) * (S (st Z)) <= st X
     bassn (BLe (AMult (APlus (ANum 1) (AId Z))
                       (APlus (ANum 1) (AId Z)))
                (AId X)) st.
Proof.
  intros st Hle. unfold bassn. simpl.
  destruct (st X) as [|x'].
  Case "st X = 0".
    inversion Hle.
  Case "st X = S x'".
    simpl in Hle. apply le_S_n in Hle.
    remember (ble_nat (plus (st Z)
                      ((st Z) * (S (st Z)))) x')
      as ble.
    destruct ble. reflexivity.
    symmetry in Heqble. apply ble_nat_false in Heqble.
    unfold not in Heqble. apply Heqble in Hle. inversion Hle.
Qed.

Theorem random_fact_2 : st,
     bassn (BLe (AMult (APlus (ANum 1) (AId Z))
                       (APlus (ANum 1) (AId Z)))
                (AId X)) st
       aeval st (APlus (ANum 1) (AId Z))
     * aeval st (APlus (ANum 1) (AId Z))
     <= st X.
Proof.
  intros st Hble. unfold bassn in Hble. simpl in *.
  destruct (st X) as [| x'].
  Case "st X = 0".
    inversion Hble.
  Case "st X = S x'".
    apply ble_nat_true in Hble. omega. Qed.

Theorem sqrt_com_correct : x,
  {{fun st => True}} (X ::= ANum x; sqrt_com) {{sqrt_spec x}}.
Proof.
  intros x.
  apply hoare_seq with (Q := fun st => st X = x).
  Case "sqrt_com".
    unfold sqrt_com.
    apply hoare_seq with (Q := fun st => st X = x
                                       st Z = 0).
    SCase "sqrt_loop".
      unfold sqrt_loop.
      eapply hoare_consequence.
      apply hoare_while with (P := sqrt_inv x).

      SSCase "loop preserves invariant".
        eapply hoare_consequence_pre.
        apply hoare_asgn. intros st H.
        unfold assn_sub. unfold sqrt_inv in *.
        inversion H as [[HX HZ] HP]. split.
        SSSCase "X is preserved".
          rewrite update_neq; try assumption; try reflexivity.
        SSSCase "Z is updated correctly".
          rewrite (update_eq (aeval st (APlus (ANum 1) (AId Z))) Z st).
          subst. apply random_fact_2. assumption.

      SSCase "invariant is true initially".
        intros st H. inversion H as [HX HZ].
        unfold sqrt_inv. split. assumption.
        rewrite HZ. simpl. omega.

      SSCase "after loop, spec is satisfied".
        intros st H. unfold sqrt_spec.
        inversion H as [HX HP].
        unfold sqrt_inv in HX. inversion HX as [HX' Harith].
        split. assumption.
        intros contra. apply HP. clear HP.
        simpl. simpl in contra.
        apply random_fact_1. subst x. assumption.

    SCase "Z set to 0".
      eapply hoare_consequence_pre. apply hoare_asgn.
      intros st HX.
      unfold assn_sub. split.
      rewrite update_neq. assumption. reflexivity.
      rewrite update_eq. reflexivity.

  Case "assignment of X".
    eapply hoare_consequence_pre. apply hoare_asgn.
    intros st H.
    unfold assn_sub. rewrite update_eq. reflexivity. Qed.

Exercise: 3 stars (sqrt_informal)

Write an informal decorated program corresponding to this formal correctness proof.

(* FILL IN HERE *)

Exercise: Factorial


Module Factorial.

Recall the mathematical factorial function...

Fixpoint real_fact (n:nat) : nat :=
  match n with
  | O => 1
  | S n' => n * (real_fact n')
  end.

... and the Imp program that we wrote to calculate factorials:

Definition fact_body : com :=
  Y ::= AMult (AId Y) (AId Z);
  Z ::= AMinus (AId Z) (ANum 1).

Definition fact_loop : com :=
  WHILE BNot (BEq (AId Z) (ANum 0)) DO
    fact_body
  END.

Definition fact_com : com :=
  Z ::= (AId X);
  Y ::= ANum 1;
  fact_loop.

Exercise: 3 stars, optional (fact_informal)

Decorate the fact_com program to show that it satisfies the specification given by the pre and postconditions below. As usual, feel free to elide the algebraic reasoning about arithmetic, the less-than relation, etc., that is formally required by the rule of consequence:
(* FILL IN HERE *)
    {{ X = x }}
  Z ::= X;
  Y ::= 1;
  WHILE Z <> 0 DO
    Y ::= Y * Z;
    Z ::= Z - 1
  END
    {{ Y = real_fact x }}

Exercise: 4 stars, optional (fact_formal)

Prove formally that fact_com satisfies this specification, using your informal proof as a guide. You may want to state the loop invariant separately (as we did in the examples).

Theorem fact_com_correct : x,
  {{fun st => st X = x}} fact_com
  {{fun st => st Y = real_fact x}}.
Proof.
  (* FILL IN HERE *) Admitted.

End Factorial.

Formalizing Decorated Programs (Optional)

The informal conventions for decorated programs amount to a way of displaying Hoare triples in which commands are annotated with enough embedded assertions that checking the validity of the triple is reduced to simple logical and algebraic calculations showing that some assertions imply others.
In this optional section, we show that this informal presentation style can actually be made completely formal.

Syntax

The first thing we need to do is to formalize a variant of the syntax of commands with embedded assertions. We call the new commands decorated commands, or dcoms.

Inductive dcom : Type :=
  | DCSkip : Assertion dcom
  | DCSeq : dcom dcom dcom
  | DCAsgn : id aexp Assertion dcom
  | DCIf : bexp Assertion dcom Assertion dcom
            Assertion dcom
  | DCWhile : bexp Assertion dcom Assertion dcom
  | DCPre : Assertion dcom dcom
  | DCPost : dcom Assertion dcom.

Tactic Notation "dcom_cases" tactic(first) ident(c) :=
  first;
  [ Case_aux c "Skip" | Case_aux c "Seq" | Case_aux c "Asgn"
  | Case_aux c "If" | Case_aux c "While"
  | Case_aux c "Pre" | Case_aux c "Post" ].

Notation "'SKIP' {{ P }}"
      := (DCSkip P)
      (at level 10) : dcom_scope.
Notation "l '::=' a {{ P }}"
      := (DCAsgn l a P)
      (at level 60, a at next level) : dcom_scope.
Notation "'WHILE' b 'DO' {{ Pbody }} d 'END' {{ Ppost }}"
      := (DCWhile b Pbody d Ppost)
      (at level 80, right associativity) : dcom_scope.
Notation "'IFB' b 'THEN' {{ P }} d 'ELSE' {{ P' }} d' 'FI' {{ Q }}"
      := (DCIf b P d P' d' Q)
      (at level 80, right associativity) : dcom_scope.
Notation "'=>' {{ P }} d"
      := (DCPre P d)
      (at level 90, right associativity) : dcom_scope.
Notation "{{ P }} d"
      := (DCPre P d)
      (at level 90) : dcom_scope.
Notation "d '=>' {{ P }}"
      := (DCPost d P)
      (at level 91, right associativity) : dcom_scope.
Notation " d ; d' "
      := (DCSeq d d')
      (at level 80, right associativity) : dcom_scope.

Delimit Scope dcom_scope with dcom.

To avoid clashing with the existing Notation definitions for ordinary commands, we introduce these notations in a special scope called dcom_scope, and we wrap examples with the declaration % dcom to signal that we want the notations to be interpreted in this scope.
Careful readers will note that we've defined two notations for the DCPre constructor, one with and one without a =>. The "without" version is intended to be used to supply the initial precondition at the very top of the program.

Example dec_while : dcom := (
  {{ fun st => True }}
  WHILE (BNot (BEq (AId X) (ANum 0)))
  DO
    {{ fun st => True bassn (BNot (BEq (AId X) (ANum 0))) st}}
    X ::= (AMinus (AId X) (ANum 1))
    {{ fun _ => True }}
  END
  {{ fun st => True ~bassn (BNot (BEq (AId X) (ANum 0))) st}} =>
  {{ fun st => st X = 0 }}
) % dcom.

It is easy to go from a dcom to a com by erasing all annotations.

Fixpoint extract (d:dcom) : com :=
  match d with
  | DCSkip _ => SKIP
  | DCSeq d1 d2 => (extract d1 ; extract d2)
  | DCAsgn X a _ => X ::= a
  | DCIf b _ d1 _ d2 _ => IFB b THEN extract d1 ELSE extract d2 FI
  | DCWhile b _ d _ => WHILE b DO extract d END
  | DCPre _ d => extract d
  | DCPost d _ => extract d
  end.

The choice of exactly where to put assertions in the definition of dcom is a bit subtle. The simplest thing to do would be to annotate every dcom with a precondition and postcondition. But this would result in very verbose programs with a lot of repeated annotations: for example, a program like SKIP;SKIP would have to be annotated as
        {{P}} ({{P}} SKIP {{P}}) ; ({{P}} SKIP {{P}}) {{P}},
with pre- and post-conditions on each SKIP, plus identical pre- and post-conditions on the semicolon!
Instead, the rule we've followed is this:
  • The post-condition expected by each dcom d is embedded in d
  • The pre-condition is supplied by the context.
In other words, the invariant of the representation is that a dcom d together with a precondition P determines a Hoare triple {{P}} (extract d) {{post d}}, where post is defined as follows:

Fixpoint post (d:dcom) : Assertion :=
  match d with
  | DCSkip P => P
  | DCSeq d1 d2 => post d2
  | DCAsgn X a Q => Q
  | DCIf _ _ d1 _ d2 Q => Q
  | DCWhile b Pbody c Ppost => Ppost
  | DCPre _ d => post d
  | DCPost c Q => Q
  end.

We can define a similar function that extracts the "initial precondition" from a decorated program.

Fixpoint pre (d:dcom) : Assertion :=
  match d with
  | DCSkip P => fun st => True
  | DCSeq c1 c2 => pre c1
  | DCAsgn X a Q => fun st => True
  | DCIf _ _ t _ e _ => fun st => True
  | DCWhile b Pbody c Ppost => fun st => True
  | DCPre P c => P
  | DCPost c Q => pre c
  end.

This function is not doing anything sophisticated like calculating a weakest precondition; it just recursively searches for an explicit annotation at the very beginning of the program, returning default answers for programs that lack an explicit precondition (like a bare assignment or SKIP).
Using pre and post, and assuming that we adopt the convention of always supplying an explicit precondition annotation at the very beginning of our decorated programs, we can express what it means for a decorated program to be correct as follows:

Definition dec_correct (d:dcom) :=
  {{pre d}} (extract d) {{post d}}.

To check whether this Hoare triple is valid, we need a way to extract the "proof obligations" from a decorated program. These obligations are often called verification conditions, because they are the facts that must be verified to see that the decorations are logically consistent and thus add up to a complete proof of correctness.

Extracting Verification Conditions

The function verification_conditions takes a dcom d together with a precondition P and returns a proposition that, if it can be proved, implies that the triple {{P}} (extract d) {{post d}} is valid. It does this by walking over d and generating a big conjunction including all the "local checks" that we listed when we described the informal rules for decorated programs. (Strictly speaking, we need to massage the informal rules a little bit to add some uses of the rule of consequence, but the correspondence should be clear.)

Fixpoint verification_conditions (P : Assertion) (d:dcom) : Prop :=
  match d with
  | DCSkip Q =>
      (P Q)
  | DCSeq d1 d2 =>
      verification_conditions P d1
       verification_conditions (post d1) d2
  | DCAsgn X a Q =>
      (P assn_sub X a Q)
  | DCIf b P1 d1 P2 d2 Q =>
      ((fun st => P st bassn b st) P1)
       ((fun st => P st ~ (bassn b st)) P2)
       (Q = post d1) (Q = post d2)
       verification_conditions P1 d1
       verification_conditions P2 d2
  | DCWhile b Pbody d Ppost =>
      (* post d is the loop invariant and the initial precondition *)
      (P post d)
       (Pbody = (fun st => post d st bassn b st))
       (Ppost = (fun st => post d st ~(bassn b st)))
       verification_conditions Pbody d
  | DCPre P' d =>
      (P P') verification_conditions P' d
  | DCPost d Q =>
      verification_conditions P d (post d Q)
  end.

And now, the key theorem, which captures the claim that the verification_conditions function does its job correctly. Not surprisingly, we need all of the Hoare Logic rules in the proof. We have used in variants of several tactics before to apply them to values in the context rather than the goal. An extension of this idea is the syntax tactic in *, which applies tactic in the goal and every hypothesis in the context. We most commonly use this facility in conjunction with the simpl tactic, as below.

Theorem verification_correct : d P,
  verification_conditions P d {{P}} (extract d) {{post d}}.
Proof.
  dcom_cases (induction d) Case; intros P H; simpl in *.
  Case "Skip".
    eapply hoare_consequence_pre.
      apply hoare_skip.
      assumption.
  Case "Seq".
    inversion H as [H1 H2]. clear H.
    eapply hoare_seq.
      apply IHd2. apply H2.
      apply IHd1. apply H1.
  Case "Asgn".
    eapply hoare_consequence_pre.
      apply hoare_asgn.
      assumption.
  Case "If".
    inversion H as [HPre1 [HPre2 [Hd1 [Hd2 [HThen HElse]]]]]; clear H.
    subst.
    apply hoare_if.
      eapply hoare_consequence_pre. apply IHd1. eassumption. assumption.
      rewrite Hd2.
      eapply hoare_consequence_pre. apply IHd2. eassumption. assumption.
  Case "While".
    inversion H as [Hpre [Hbody [Hpost Hd]]]; subst; clear H.
    eapply hoare_consequence_pre.
    apply hoare_while with (P := post d).
      apply IHd. apply Hd.
      assumption.
  Case "Pre".
    inversion H as [HP Hd]; clear H.
    eapply hoare_consequence_pre. apply IHd. apply Hd. assumption.
  Case "Post".
    inversion H as [Hd HQ]; clear H.
    eapply hoare_consequence_post. apply IHd. apply Hd. assumption.
Qed.

Examples

The propositions generated by verification_conditions are fairly big, and they contain many conjuncts that are essentially trivial.

Eval simpl in (verification_conditions (fun st => True) dec_while).
(* ====>
 = (((fun _ : state => True) ~~> (fun _ : state => True)) /\
    ((fun _ : state => True) ~~> (fun _ : state => True)) /\
    (fun st : state => True /\ bassn (BNot (BEq (AId X) (ANum 0))) st) =
    (fun st : state => True /\ bassn (BNot (BEq (AId X) (ANum 0))) st) /\
    (fun st : state => True /\ ~ bassn (BNot (BEq (AId X) (ANum 0))) st) =
    (fun st : state => True /\ ~ bassn (BNot (BEq (AId X) (ANum 0))) st) /\
    (fun st : state => True /\ bassn (BNot (BEq (AId X) (ANum 0))) st) ~~>
    assn_sub X (AMinus (AId X) (ANum 1)) (fun _ : state => True)) /\
   (fun st : state => True /\ ~ bassn (BNot (BEq (AId X) (ANum 0))) st) ~~>
   (fun st : state => st X = 0) *)


We can certainly work with them using just the tactics we have so far, but we can make things much smoother with a bit of automation. We first define a custom verify tactic that applies splitting repeatedly to turn all the conjunctions into separate subgoals and then uses omega and eauto (a handy general-purpose automation tactic that we'll discuss in detail later) to deal with as many of them as possible.

Tactic Notation "verify" :=
  apply verification_correct;
  repeat split;
  simpl; unfold assert_implies;
  unfold bassn in *; unfold beval in *; unfold aeval in *;
  unfold assn_sub; intros;
  repeat rewrite update_eq;
  repeat (rewrite update_neq; [| reflexivity]);
  simpl in *;
  repeat match goal with [H : _ _ _] => destruct H end;
  repeat rewrite not_true_iff_false in *;
  repeat rewrite not_false_iff_true in *;
  repeat rewrite negb_true_iff in *;
  repeat rewrite negb_false_iff in *;
  repeat rewrite beq_nat_true_iff in *;
  repeat rewrite beq_nat_false_iff in *;
  try eauto; try omega.

What's left after verify does its thing is "just the interesting parts" of checking that the decorations are correct. For very simple examples verify immediately solves the goal (provided that the annotations are correct).

Theorem dec_while_correct :
  dec_correct dec_while.
Proof. verify. Qed.

Another example (formalizing a decorated program we've seen before):

Example subtract_slowly_dec (x:nat) (z:nat) : dcom := (
    {{ fun st => st X = x st Z = z }}
  WHILE BNot (BEq (AId X) (ANum 0))
  DO {{ fun st => st Z - st X = z - x
                  bassn (BNot (BEq (AId X) (ANum 0))) st }}
     Z ::= AMinus (AId Z) (ANum 1)
       {{ fun st => st Z - (st X - 1) = z - x }} ;
     X ::= AMinus (AId X) (ANum 1)
       {{ fun st => st Z - st X = z - x }}
  END
    {{ fun st => st Z
                 - st X
                 = z - x
               ~ bassn (BNot (BEq (AId X) (ANum 0))) st }}
    =>
    {{ fun st => st Z = z - x }}
) % dcom.

Theorem subtract_slowly_dec_correct : x z,
  dec_correct (subtract_slowly_dec x z).
Proof. intros x z. verify. (* this grinds for a bit! *) Qed.

Exercise: 3 stars, optional (slow_assignment_dec)

A roundabout way of assigning a number currently stored in X to the variable Y is to start Y at 0, then decrement X until it hits 0, incrementing Y at each step.
Here is an informal decorated program that implements this idea given a parameter x:
      {{ True }}
    X ::= x
      {{ X = x }} ;
    Y ::= 0
      {{ X = x  Y = 0 }} ;
    WHILE X <> 0 DO
        {{ X + Y = x  X > 0 }}
      X ::= X - 1
        {{ Y + X + 1 = x }} ;
      Y ::= Y + 1
        {{ Y + X = x }}
    END
      {{ Y = x  X = 0 }}
Write a corresponding formal decorated program (parametrized by x) and prove it correct.

Example slow_assignment_dec (x:nat) : dcom :=
(* FILL IN HERE *) admit.

Theorem slow_assignment_dec_correct : x,
  dec_correct (slow_assignment_dec x).
Proof. (* FILL IN HERE *) Admitted.

Exercise: 4 stars, optional (factorial_dec)

Remember the factorial function we worked with before:

Fixpoint real_fact (n:nat) : nat :=
  match n with
  | O => 1
  | S n' => n * (real_fact n')
  end.

Following the pattern of subtract_slowly_dec, write a decorated Imp program that implements the factorial function, and prove it correct.

(* FILL IN HERE *)

Definition div_mod_dec (a b : nat) : dcom := (
{{ fun st => True }} =>
  {{ fun st => b * 0 + a = a }}
  X ::= ANum a
  {{ fun st => b * 0 + st X = a }};
  Y ::= ANum 0
  {{ fun st => b * st Y + st X = a }};
  WHILE (BLe (ANum b) (AId X)) DO
    {{ fun st => b * st Y + st X = a (bassn (BLe (ANum b) (AId X)) st) }} =>
    {{ fun st => b * (st Y + 1) + (st X - b) = a }}
    X ::= AMinus (AId X) (ANum b)
    {{ fun st => b * (st Y + 1) + st X = a }};
    Y ::= APlus (AId Y) (ANum 1)
    {{ fun st => b * st Y + st X = a }}
  END
  {{ fun st => b * st Y + st X = a ~(bassn (BLe (ANum b) (AId X)) st) }} =>
  {{ fun st => b * st Y + st X = a (st X < b) }}
)%dcom.

Theorem div_mod_dec_correct : a b,
  dec_correct (div_mod_dec a b).
Proof.
  intros a b. verify.
  Case "1". apply ble_nat_true in H0. rewrite mult_plus_distr_l. omega.
  Case "2". apply ble_nat_false in H0. omega.
            (* more automation would help  here *)
Qed.