StlcThe Simply Typed Lambda-Calculus
Require Export Types.
The Simply Typed Lambda-Calculus
Overview
- variables
- function abstractions
- application
t ::= x variable
| λx:T1.t2 abstraction
| t1 t2 application
| true constant true
| false constant false
| if t1 then t2 else t3 conditional
| λx:T1.t2 abstraction
| t1 t2 application
| true constant true
| false constant false
| if t1 then t2 else t3 conditional
- λx:Bool. x
- (λx:Bool. x) true
- λx:Bool. if x then false else true
- λx:Bool. true
- λx:Bool. λy:Bool. x
- (λx:Bool. λy:Bool. x) false true
- λf:Bool→Bool. f (f true)
- (λf:Bool→Bool. f (f true)) (λx:Bool. false)
T ::= Bool
| T1 → T2
For example:
| T1 → T2
- λx:Bool. false has type Bool→Bool
- λx:Bool. x has type Bool→Bool
- (λx:Bool. x) true has type Bool
- λx:Bool. λy:Bool. x has type Bool→Bool→Bool (i.e. Bool → (Bool→Bool))
- (λx:Bool. λy:Bool. x) false has type Bool→Bool
- (λx:Bool. λy:Bool. x) false true has type Bool
Module STLC.
Inductive ty : Type :=
| TBool : ty
| TArrow : ty → ty → ty.
Inductive tm : Type :=
| tvar : id → tm
| tapp : tm → tm → tm
| tabs : id → ty → tm → tm
| ttrue : tm
| tfalse : tm
| tif : tm → tm → tm → tm.
Tactic Notation "t_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "tvar" | Case_aux c "tapp"
| Case_aux c "tabs" | Case_aux c "ttrue"
| Case_aux c "tfalse" | Case_aux c "tif" ].
first;
[ Case_aux c "tvar" | Case_aux c "tapp"
| Case_aux c "tabs" | Case_aux c "ttrue"
| Case_aux c "tfalse" | Case_aux c "tif" ].
Note that an abstraction λx:T.t (formally, tabs x T t) is
always annotated with the type T of its parameter, in contrast
to Coq (and other functional languages like ML, Haskell, etc.),
which use type inference to fill in missing annotations. We're
not considering type inference here, to keep things simple.
Some examples...
Definition x := (Id 0).
Definition y := (Id 1).
Definition z := (Id 2).
Hint Unfold x.
Hint Unfold y.
Hint Unfold z.
Hint Unfold y.
Hint Unfold z.
idB = λx:Bool. x
Notation idB :=
(tabs x TBool (tvar x)).
idBB = λx:Bool→Bool. x
Notation idBB :=
(tabs x (TArrow TBool TBool) (tvar x)).
idBBBB = λx:(Bool→Bool) → (Bool→Bool). x
Notation idBBBB :=
(tabs x (TArrow (TArrow TBool TBool)
(TArrow TBool TBool))
(tvar x)).
k = λx:Bool. λy:Bool. x
Notation k := (tabs x TBool (tabs y TBool (tvar x))).
notB = λx:Bool. if x then false else true
Notation notB := (tabs x TBool (tif (tvar x) tfalse ttrue)).
(We write these as Notations rather than Definitions to make
things easier for auto.)
Operational Semantics
Values
- We can say that λx:T.t1 is a value only when t1 is a
value — i.e., only if the function's body has been
reduced (as much as it can be without knowing what argument it
is going to be applied to).
- Or we can say that λx:T.t1 is always a value, no matter whether t1 is one or not — in other words, we can say that reduction stops at abstractions.
Eval simpl in (fun x:bool => 3 + 4)
yields fun x:bool => 7.
Inductive value : tm → Prop :=
| v_abs : ∀x T t,
value (tabs x T t)
| v_true :
value ttrue
| v_false :
value tfalse.
Hint Constructors value.
Free Variables and Substitution
(λx:Bool. if x then true else x) false
to
if false then true else false
by substituting false for the parameter x in the body of the
function.
- [x:=true] (if x then x else false) yields if true then true else false
- [x:=true] x yields true
- [x:=true] (if x then x else y) yields if true then true else y
- [x:=true] y yields y
- [x:=true] false yields false (vacuous substitution)
- [x:=true] (λy:Bool. if y then x else false) yields λy:Bool. if y then true else false
- [x:=true] (λy:Bool. x) yields λy:Bool. true
- [x:=true] (λy:Bool. y) yields λy:Bool. y
- [x:=true] (λx:Bool. x) yields λx:Bool. x
[x:=s]x = s
[x:=s]y = y if x <> y
[x:=s](λx:T11.t12) = λx:T11. t12
[x:=s](λy:T11.t12) = λy:T11. [x:=s]t12 if x <> y
[x:=s](t1 t2) = ([x:=s]t1) ([x:=s]t2)
[x:=s]true = true
[x:=s]false = false
[x:=s](if t1 then t2 else t3) =
if [x:=s]t1 then [x:=s]t2 else [x:=s]t3
... and formally:
[x:=s]y = y if x <> y
[x:=s](λx:T11.t12) = λx:T11. t12
[x:=s](λy:T11.t12) = λy:T11. [x:=s]t12 if x <> y
[x:=s](t1 t2) = ([x:=s]t1) ([x:=s]t2)
[x:=s]true = true
[x:=s]false = false
[x:=s](if t1 then t2 else t3) =
if [x:=s]t1 then [x:=s]t2 else [x:=s]t3
Reserved Notation "'[' x ':=' s ']' t" (at level 20).
Fixpoint subst (x:id) (s:tm) (t:tm) : tm :=
match t with
| tvar x' =>
if beq_id x x' then s else t
| tabs x' T t1 =>
tabs x' T (if beq_id x x' then t1 else ([x:=s] t1))
| tapp t1 t2 =>
tapp ([x:=s] t1) ([x:=s] t2)
| ttrue =>
ttrue
| tfalse =>
tfalse
| tif t1 t2 t3 =>
tif ([x:=s] t1) ([x:=s] t2) ([x:=s] t3)
end
where "'[' x ':=' s ']' t" := (subst x s t).
Technical note: Substitution becomes trickier to define if we
consider the case where s, the term being substituted for a
variable in some other term, may itself contain free variables.
Since we are only interested here in defining the step relation
on closed terms (i.e., terms like λx:Bool. x, that do not mention
variables are not bound by some enclosing lambda), we can skip
this extra complexity here, but it must be dealt with when
formalizing richer languages.
The definition that we gave above uses Coq's Fixpoint facility
to define substitution as a function. Suppose, instead, we
wanted to define substitution as an inductive relation substi.
We've begun the definition by providing the Inductive header and
one of the constructors; your job is to fill in the rest of the
constructors.
Exercise: 3 stars (substi)
Inductive substi (s:tm) (x:id) : tm → tm → Prop :=
| s_var1 :
substi s x (tvar x) s
(* FILL IN HERE *)
.
Hint Constructors substi.
Theorem substi_correct : ∀s x t t',
[x:=s]t = t' ↔ substi s x t t'.
Proof.
(* FILL IN HERE *) Admitted.
☐
Reduction
(λx:T.t12) v2 ⇒ [x:=v2]t12
is traditionally called "beta-reduction".
value v2 | (ST_AppAbs) |
(λx:T.t12) v2 ⇒ [x:=v2]t12 |
t1 ⇒ t1' | (ST_App1) |
t1 t2 ⇒ t1' t2 |
value v1 | |
t2 ⇒ t2' | (ST_App2) |
v1 t2 ⇒ v1 t2' |
(ST_IfTrue) | |
(if true then t1 else t2) ⇒ t1 |
(ST_IfFalse) | |
(if false then t1 else t2) ⇒ t2 |
t1 ⇒ t1' | (ST_If) |
(if t1 then t2 else t3) ⇒ (if t1' then t2 else t3) |
Reserved Notation "t1 '⇒' t2" (at level 40).
Inductive step : tm → tm → Prop :=
| ST_AppAbs : ∀x T t12 v2,
value v2 →
(tapp (tabs x T t12) v2) ⇒ [x:=v2]t12
| ST_App1 : ∀t1 t1' t2,
t1 ⇒ t1' →
tapp t1 t2 ⇒ tapp t1' t2
| ST_App2 : ∀v1 t2 t2',
value v1 →
t2 ⇒ t2' →
tapp v1 t2 ⇒ tapp v1 t2'
| ST_IfTrue : ∀t1 t2,
(tif ttrue t1 t2) ⇒ t1
| ST_IfFalse : ∀t1 t2,
(tif tfalse t1 t2) ⇒ t2
| ST_If : ∀t1 t1' t2 t3,
t1 ⇒ t1' →
(tif t1 t2 t3) ⇒ (tif t1' t2 t3)
where "t1 '⇒' t2" := (step t1 t2).
Tactic Notation "step_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "ST_AppAbs" | Case_aux c "ST_App1"
| Case_aux c "ST_App2" | Case_aux c "ST_IfTrue"
| Case_aux c "ST_IfFalse" | Case_aux c "ST_If" ].
Hint Constructors step.
Notation multistep := (multi step).
Notation "t1 '⇒*' t2" := (multistep t1 t2) (at level 40).
Lemma step_example1 :
(tapp idBB idB) ⇒* idB.
Proof.
eapply multi_step.
apply ST_AppAbs.
apply v_abs.
simpl.
apply multi_refl. Qed.
Example:
((λx:Bool→Bool. x) ((λx:Bool→Bool. x) (λx:Bool. x)))
⇒* (λx:Bool. x)
i.e.
⇒* (λx:Bool. x)
(idBB (idBB idB)) ⇒* idB.
Lemma step_example2 :
(tapp idBB (tapp idBB idB)) ⇒* idB.
Proof.
eapply multi_step.
apply ST_App2. auto.
apply ST_AppAbs. auto.
eapply multi_step.
apply ST_AppAbs. simpl. auto.
simpl. apply multi_refl. Qed.
Example:
((λx:Bool→Bool. x) (λx:Bool. if x then false
else true)) true)
⇒* false
i.e.
else true)) true)
⇒* false
((idBB notB) ttrue) ⇒* tfalse.
Lemma step_example3 :
tapp (tapp idBB notB) ttrue ⇒* tfalse.
Proof.
eapply multi_step.
apply ST_App1. apply ST_AppAbs. auto. simpl.
eapply multi_step.
apply ST_AppAbs. auto. simpl.
eapply multi_step.
apply ST_IfTrue. apply multi_refl. Qed.
Example:
((λx:Bool→Bool. x) ((λx:Bool. if x then false
else true) true))
⇒* false
i.e.
else true) true))
⇒* false
(idBB (notB ttrue)) ⇒* tfalse.
Lemma step_example4 :
tapp idBB (tapp notB ttrue) ⇒* tfalse.
Proof.
eapply multi_step.
apply ST_App2. auto.
apply ST_AppAbs. auto. simpl.
eapply multi_step.
apply ST_App2. auto.
apply ST_IfTrue.
eapply multi_step.
apply ST_AppAbs. auto. simpl.
apply multi_refl. Qed.
A more automatic proof
Lemma step_example1' :
(tapp idBB idB) ⇒* idB.
Proof. normalize. Qed.
Again, we can use the normalize tactic from above to simplify
the proof.
Lemma step_example2' :
(tapp idBB (tapp idBB idB)) ⇒* idB.
Proof.
normalize.
Qed.
Lemma step_example3' :
tapp (tapp idBB notB) ttrue ⇒* tfalse.
Proof. normalize. Qed.
Lemma step_example4' :
tapp idBB (tapp notB ttrue) ⇒* tfalse.
Proof. normalize. Qed.
Lemma step_example5 :
(tapp (tapp idBBBB idBB) idB)
⇒* idB.
Proof.
(* FILL IN HERE *) Admitted.
(* FILL IN HERE *)
☐
Contexts
Module PartialMap.
Definition partial_map (A:Type) := id → option A.
Definition empty {A:Type} : partial_map A := (fun _ => None).
Informally, we'll write Γ, x:T for "extend the partial
function Γ to also map x to T." Formally, we use the
function extend to add a binding to a partial map.
Definition extend {A:Type} (Γ : partial_map A) (x:id) (T : A) :=
fun x' => if beq_id x x' then Some T else Γ x'.
Lemma extend_eq : ∀A (ctxt: partial_map A) x T,
(extend ctxt x T) x = Some T.
Proof.
intros. unfold extend. rewrite ← beq_id_refl. auto.
Qed.
intros. unfold extend. rewrite ← beq_id_refl. auto.
Qed.
Lemma extend_neq : ∀A (ctxt: partial_map A) x1 T x2,
beq_id x2 x1 = false →
(extend ctxt x2 T) x1 = ctxt x1.
Proof.
intros. unfold extend. rewrite H. auto.
Qed.
intros. unfold extend. rewrite H. auto.
Qed.
End PartialMap.
Definition context := partial_map ty.
Typing Relation
Γ x = T | (T_Var) |
Γ ⊢ x ∈ T |
Γ , x:T11 ⊢ t12 ∈ T12 | (T_Abs) |
Γ ⊢ λx:T11.t12 ∈ T11->T12 |
Γ ⊢ t1 ∈ T11->T12 | |
Γ ⊢ t2 ∈ T11 | (T_App) |
Γ ⊢ t1 t2 ∈ T12 |
(T_True) | |
Γ ⊢ true ∈ Bool |
(T_False) | |
Γ ⊢ false ∈ Bool |
Γ ⊢ t1 ∈ Bool Γ ⊢ t2 ∈ T Γ ⊢ t3 ∈ T | (T_If) |
Γ ⊢ if t1 then t2 else t3 ∈ T |
Reserved Notation "Gamma '⊢' t '∈' T" (at level 40).
Inductive has_type : context → tm → ty → Prop :=
| T_Var : ∀Γ x T,
Γ x = Some T →
Γ ⊢ tvar x ∈ T
| T_Abs : ∀Γ x T11 T12 t12,
extend Γ x T11 ⊢ t12 ∈ T12 →
Γ ⊢ tabs x T11 t12 ∈ TArrow T11 T12
| T_App : ∀T11 T12 Γ t1 t2,
Γ ⊢ t1 ∈ TArrow T11 T12 →
Γ ⊢ t2 ∈ T11 →
Γ ⊢ tapp t1 t2 ∈ T12
| T_True : ∀Γ,
Γ ⊢ ttrue ∈ TBool
| T_False : ∀Γ,
Γ ⊢ tfalse ∈ TBool
| T_If : ∀t1 t2 t3 T Γ,
Γ ⊢ t1 ∈ TBool →
Γ ⊢ t2 ∈ T →
Γ ⊢ t3 ∈ T →
Γ ⊢ tif t1 t2 t3 ∈ T
where "Gamma '⊢' t '∈' T" := (has_type Γ t T).
Tactic Notation "has_type_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "T_Var" | Case_aux c "T_Abs"
| Case_aux c "T_App" | Case_aux c "T_True"
| Case_aux c "T_False" | Case_aux c "T_If" ].
Hint Constructors has_type.
Example typing_example_1 :
empty ⊢ tabs x TBool (tvar x) ∈ TArrow TBool TBool.
Proof.
apply T_Abs. apply T_Var. reflexivity. Qed.
Note that since we added the has_type constructors to the hints
database, auto can actually solve this one immediately.
Example typing_example_1' :
empty ⊢ tabs x TBool (tvar x) ∈ TArrow TBool TBool.
Proof. auto. Qed.
Another example:
empty ⊢ λx:A. λy:A→A. y (y x))
∈ A → (A→A) → A.
∈ A → (A→A) → A.
Example typing_example_2 :
empty ⊢
(tabs x TBool
(tabs y (TArrow TBool TBool)
(tapp (tvar y) (tapp (tvar y) (tvar x))))) ∈
(TArrow TBool (TArrow (TArrow TBool TBool) TBool)).
Proof with auto using extend_eq.
apply T_Abs.
apply T_Abs.
eapply T_App. apply T_Var...
eapply T_App. apply T_Var...
apply T_Var...
Qed.
empty ⊢
(tabs x TBool
(tabs y (TArrow TBool TBool)
(tapp (tvar y) (tapp (tvar y) (tvar x))))) ∈
(TArrow TBool (TArrow (TArrow TBool TBool) TBool)).
Proof with auto using extend_eq.
apply T_Abs.
apply T_Abs.
eapply T_App. apply T_Var...
eapply T_App. apply T_Var...
apply T_Var...
Qed.
Exercise: 2 stars, optional (typing_example_2_full)
Prove the same result without using auto, eauto, or eapply.Example typing_example_2_full :
empty ⊢
(tabs x TBool
(tabs y (TArrow TBool TBool)
(tapp (tvar y) (tapp (tvar y) (tvar x))))) ∈
(TArrow TBool (TArrow (TArrow TBool TBool) TBool)).
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars (typing_example_3)
Formally prove the following typing derivation holds:
empty ⊢ λx:Bool→B. λy:Bool→Bool. λz:Bool.
y (x z)
∈ T.
y (x z)
∈ T.
Example typing_example_3 :
∃T,
empty ⊢
(tabs x (TArrow TBool TBool)
(tabs y (TArrow TBool TBool)
(tabs z TBool
(tapp (tvar y) (tapp (tvar x) (tvar z)))))) ∈
T.
Proof with auto.
(* FILL IN HERE *) Admitted.
☐
We can also show that terms are not typable. For example, let's
formally check that there is no typing derivation assigning a type
to the term λx:Bool. λy:Bool, x y — i.e.,
~ ∃T,
empty ⊢ λx:Bool. λy:Bool, x y : T.
empty ⊢ λx:Bool. λy:Bool, x y : T.
Example typing_nonexample_1 :
~ ∃T,
empty ⊢
(tabs x TBool
(tabs y TBool
(tapp (tvar x) (tvar y)))) ∈
T.
Proof.
intros Hc. inversion Hc.
(* The clear tactic is useful here for tidying away bits of
the context that we're not going to need again. *)
inversion H. subst. clear H.
inversion H5. subst. clear H5.
inversion H4. subst. clear H4.
inversion H2. subst. clear H2.
inversion H5. subst. clear H5.
(* rewrite extend_neq in H1. rewrite extend_eq in H1. *)
inversion H1. Qed.
~ ∃T,
empty ⊢
(tabs x TBool
(tabs y TBool
(tapp (tvar x) (tvar y)))) ∈
T.
Proof.
intros Hc. inversion Hc.
(* The clear tactic is useful here for tidying away bits of
the context that we're not going to need again. *)
inversion H. subst. clear H.
inversion H5. subst. clear H5.
inversion H4. subst. clear H4.
inversion H2. subst. clear H2.
inversion H5. subst. clear H5.
(* rewrite extend_neq in H1. rewrite extend_eq in H1. *)
inversion H1. Qed.
Exercise: 3 stars, optional (typing_nonexample_3)
Another nonexample:
~ (∃S, ∃T,
empty ⊢ λx:S. x x : T).
empty ⊢ λx:S. x x : T).
Example typing_nonexample_3 :
~ (∃S, ∃T,
empty ⊢
(tabs x S
(tapp (tvar x) (tvar x))) ∈
T).
Proof.
(* FILL IN HERE *) Admitted.
☐
End STLC.
(* $Date: 2013-04-17 11:24:12 -0400 (Wed, 17 Apr 2013) $ *)