
Neural	Networks

1Robot Image Credit: Viktoriya Sukhanova © 123RF.com

These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their
course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes,
provided that you include proper attribution. Please send comments and corrections to Eric.

Neural	Function
• Brain	function	(thought)	occurs	as	the	result	of	
the	firing	of	neurons

• Neurons	connect	to	each	other	through	synapses,	
which	propagate	action	potential (electrical	
impulses)	by	releasing	neurotransmitters
– Synapses	can	be	excitatory	(potential-increasing)	or	
inhibitory	(potential-decreasing),	and	have	varying	
activation	thresholds

– Learning	occurs	as	a	result	of	the	synapses’ plasticicity:	
They	exhibit	long-term	changes	in	connection	strength

• There	are	about	1011	neurons	and	about	1014
synapses	in	the	human	brain!

2Based	on	slide	by	T.	Finin,	M.	desJardins,	L	Getoor,	R.	Par

Biology	of	a	Neuron

3

Brain	Structure
• Different	areas	of	the	brain	have	different	functions

– Some	areas	seem	to	have	the	same	function	in	all	humans	
(e.g.,	Broca’s region	for	motor	speech);	the	overall	layout	
is	generally	consistent

– Some	areas	are	more	plastic,	and	vary	in	their	function;	
also,	the	lower-level	structure	and	function	vary	greatly

• We	don’t	know	how	different	functions	are	
“assigned” or	acquired
– Partly	the	result	of	the	physical	layout	/	connection	to	
inputs	(sensors)	and	outputs	(effectors)

– Partly	the	result	of	experience	(learning)

• We	really don’t	understand	how	this	neural	structure	
leads	to	what	we	perceive	as	“consciousness” or	
“thought”

4Based	on	slide	by	T.	Finin,	M.	desJardins,	L	Getoor,	R.	Par

The	“One	Learning	Algorithm”	Hypothesis

5

Auditory	cortex	learns	to	see

Auditory	Cortex

[Roe	et	al.,	1992]

Somatosensory	cortex	
learns	to	see

[Metin &	Frost,	1989]

Somatosensor
y	Cortex

Based	on	slide	by	Andrew	Ng

Sensor	Representations	in	the	Brain

6

Seeing	with	your	tongue Human	echolocation	(sonar)

Haptic belt:	Direction	sense Implanting	a	3rd eye

[BrainPort;	Welsh	&	Blasch,	1997;	Nagel	et	al.,	2005;	Constantine-Paton	&	Law,	2009]

Slide	by	Andrew	Ng

Comparison	of	computing	power

• Computers	are	way	faster	than	neurons…
• But	there	are	a	lot	more	neurons	than	we	can	reasonably	

model	in	modern	digital	computers,	and	they	all	fire	in	
parallel

• Neural	networks	are	designed	to	be	massively	parallel
• The	brain	is	effectively	a	billion	times	faster

INFORMATION	CIRCA	2012 Computer Human	Brain
Computation	Units 10-core	Xeon:	109 Gates 1011 Neurons

Storage	Units 109 bits	RAM,	1012 bits	disk 1011 neurons,	1014 synapses

Cycle	time 10-9 sec 10-3 sec

Bandwidth 109 bits/sec 1014 bits/sec

7

Neural	Networks
• Origins:	Algorithms	that	try	to	mimic	the	brain.
• Very	widely	used	in	80s	and	early	90s;	popularity	
diminished	in	late	90s.

• Recent	resurgence:	State-of-the-art	technique	for	
many	applications

• Artificial	neural	networks	are	not	nearly	as	complex	
or	intricate	as	the	actual	brain	structure

8Based	on	slide	by	Andrew	Ng

Neural	networks

• Neural	networks	are	made	up	of	nodes or	units,	
connected	by	links

• Each	link	has	an	associated	weight and	activation	level
• Each	node	has	an	input	function (typically	summing	over	

weighted	inputs),	an	activation	function,	and	an	output

Output units

Hidden units

Input units
Layered feed-forward network

9Based	on	slide	by	T.	Finin,	M.	desJardins,	L	Getoor,	R.	Par

Neuron	Model:	Logistic	Unit

10

Sigmoid	(logistic)	activation	function: g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓T
x

h✓(x) = g (✓|
x)

x0 = 1
x0 = 1

“bias	unit”

h✓(x) =
1

1 + e�✓T
x

x =

2

664

x0

x1

x2

x3

3

775 ✓ =

2

664

✓0
✓1
✓2
✓3

3

775
✓0

✓1

✓2

✓3

Based	on	slide	by	Andrew	Ng

X

h✓(x) =
1

1 + e�✓T
x

Neural	Network

12

Layer	3
(Output	Layer)

Layer	1
(Input	Layer)

Layer	2
(Hidden	Layer)

x0 = 1bias	units a(2)0

Slide	by	Andrew	Ng

Feed-Forward Process
• Input	layer	units	are	set	by	some	exterior	function	
(think	of	these	as	sensors),	which	causes	their	output	
links	to	be	activated at	the	specified	level

• Working	forward	through	the	network,	the	input	
function of	each	unit	is	applied	to	compute	the	input	
value
– Usually	this	is	just	the	weighted	sum	of	the	activation	on	
the	links	feeding	into	this	node

• The	activation	function transforms	this	input	
function	into	a	final	value
– Typically	this	is	a	nonlinear function,	often	a	sigmoid
function	corresponding	to	the	“threshold” of	that	node

13Based	on	slide	by	T.	Finin,	M.	desJardins,	L	Getoor,	R.	Par

Neural	Network

14

ai
(j) = “activation”	of	unit	i in	layer	j
Θ(j) = weight	matrix	controlling	function	

mapping	from	layer	j to	layer	j +	1

If	network	has	sj units	in	layer	j and	sj+1 units	in	layer	j+1,	
then	Θ(j) has	dimension	sj+1 × (sj+1) .

⇥(1) 2 R3⇥4 ⇥(2) 2 R1⇥4

Slide	by	Andrew	Ng

h✓(x) =
1

1 + e�✓T
x

⇥(1) ⇥(2)

Feed-Forward	Steps:

Vectorization

15

a

(2)
1 = g

⇣
⇥(1)

10 x0 +⇥(1)
11 x1 +⇥(1)

12 x2 +⇥(1)
13 x3

⌘
= g

⇣
z

(2)
1

⌘

a

(2)
2 = g

⇣
⇥(1)

20 x0 +⇥(1)
21 x1 +⇥(1)

22 x2 +⇥(1)
23 x3

⌘
= g

⇣
z

(2)
2

⌘

a

(2)
3 = g

⇣
⇥(1)

30 x0 +⇥(1)
31 x1 +⇥(1)

32 x2 +⇥(1)
33 x3

⌘
= g

⇣
z

(2)
3

⌘

h⇥(x) = g

⇣
⇥(2)

10 a
(2)
0 +⇥(2)

11 a
(2)
1 +⇥(2)

12 a
(2)
2 +⇥(2)

13 a
(2)
3

⌘
= g

⇣
z

(3)
1

⌘

a

(2)
1 = g

⇣
⇥(1)

10 x0 +⇥(1)
11 x1 +⇥(1)

12 x2 +⇥(1)
13 x3

⌘
= g

⇣
z

(2)
1

⌘

a

(2)
2 = g

⇣
⇥(1)

20 x0 +⇥(1)
21 x1 +⇥(1)

22 x2 +⇥(1)
23 x3

⌘
= g

⇣
z

(2)
2

⌘

a

(2)
3 = g

⇣
⇥(1)

30 x0 +⇥(1)
31 x1 +⇥(1)

32 x2 +⇥(1)
33 x3

⌘
= g

⇣
z

(2)
3

⌘

h⇥(x) = g

⇣
⇥(2)

10 a
(2)
0 +⇥(2)

11 a
(2)
1 +⇥(2)

12 a
(2)
2 +⇥(2)

13 a
(2)
3

⌘
= g

⇣
z

(3)
1

⌘

a

(2)
1 = g

⇣
⇥(1)

10 x0 +⇥(1)
11 x1 +⇥(1)

12 x2 +⇥(1)
13 x3

⌘
= g

⇣
z

(2)
1

⌘

a

(2)
2 = g

⇣
⇥(1)

20 x0 +⇥(1)
21 x1 +⇥(1)

22 x2 +⇥(1)
23 x3

⌘
= g

⇣
z

(2)
2

⌘

a

(2)
3 = g

⇣
⇥(1)

30 x0 +⇥(1)
31 x1 +⇥(1)

32 x2 +⇥(1)
33 x3

⌘
= g

⇣
z

(2)
3

⌘

h⇥(x) = g

⇣
⇥(2)

10 a
(2)
0 +⇥(2)

11 a
(2)
1 +⇥(2)

12 a
(2)
2 +⇥(2)

13 a
(2)
3

⌘
= g

⇣
z

(3)
1

⌘

a

(2)
1 = g

⇣
⇥(1)

10 x0 +⇥(1)
11 x1 +⇥(1)

12 x2 +⇥(1)
13 x3

⌘
= g

⇣
z

(2)
1

⌘

a

(2)
2 = g

⇣
⇥(1)

20 x0 +⇥(1)
21 x1 +⇥(1)

22 x2 +⇥(1)
23 x3

⌘
= g

⇣
z

(2)
2

⌘

a

(2)
3 = g

⇣
⇥(1)

30 x0 +⇥(1)
31 x1 +⇥(1)

32 x2 +⇥(1)
33 x3

⌘
= g

⇣
z

(2)
3

⌘

h⇥(x) = g

⇣
⇥(2)

10 a
(2)
0 +⇥(2)

11 a
(2)
1 +⇥(2)

12 a
(2)
2 +⇥(2)

13 a
(2)
3

⌘
= g

⇣
z

(3)
1

⌘

Based	on	slide	by	Andrew	Ng

z

(2) = ⇥(1)
x

a

(2) = g(z(2))

Add a(2)0 = 1

z

(3) = ⇥(2)
a

(2)

h⇥(x) = a

(3) = g(z(3))

z

(2) = ⇥(1)
x

a

(2) = g(z(2))

Add a(2)0 = 1

z

(3) = ⇥(2)
a

(2)

h⇥(x) = a

(3) = g(z(3))

z

(2) = ⇥(1)
x

a

(2) = g(z(2))

Add a(2)0 = 1

z

(3) = ⇥(2)
a

(2)

h⇥(x) = a

(3) = g(z(3))⇥(1) ⇥(2)

h✓(x) =
1

1 + e�✓T
x

Other	Network	Architectures

L denotes	the	number	of	layers

contains	the	numbers	of	nodes	at	each	layer
– Not	counting	bias	units
– Typically,	s0 = d (#	input	features)	and	sL-1=K (#	classes)	

16

Layer	3Layer	1 Layer	2 Layer	4

h✓(x) =
1

1 + e�✓T
x

s 2 N+L

s =	[3,	3,	2,	1]

Multiple	Output	Units:		One-vs-Rest

17

Pedestrian Car Motorcycle Truck

h⇥(x) 2 RK

when	pedestrian												when	car														when	motorcycle													when	truck

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We	want:

Slide	by	Andrew	Ng

Multiple	Output	Units:		One-vs-Rest

• Given	{(x1,y1), (x2,y2), ..., (xn,yn)}
• Must	convert	labels	to	1-of-K representation

– e.g.,																				when	motorcycle,																						when	car,	etc.	
18

h⇥(x) 2 RK

when	pedestrian												when	car														when	motorcycle													when	truck

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We	want:

yi =

2

664

0
1
0
0

3

775yi =

2

664

0
0
1
0

3

775

Based	on	slide	by	Andrew	Ng

Neural	Network	Classification

19

Binary	classification
y =	0	or	1

1	output	unit	(sL-1= 1)

Multi-class	classification (K classes)

K output	units	(sL-1= K)

y 2 RK

pedestrian			car					motorcycle			truck

e.g.											,													,																	,

Given:
{(x1,y1), (x2,y2), ..., (xn,yn)}

contains	#	nodes	at	each	layer
– s0 = d (#	features)	

s 2 N+L

Slide	by	Andrew	Ng

Understanding	Representations

20

Representing	Boolean	Functions

21

Simple	example:	AND

x1 x2 hΘ(x)
0 0
0 1
1 0
1 1

g(z) =
1

1 + e�z

Logistic	/	Sigmoid	Function

hΘ(x) = g(-30 + 20x1 + 20x2)

-30

+20

+20
h✓(x) =

1

1 + e�✓T
x

Based	on	slide	and	example	by	Andrew	Ng

x1 x2 hΘ(x)
0 0 g(-30) ≈	0
0 1 g(-10) ≈	0
1 0 g(-10) ≈	0
1 1 g(10) ≈	1

Representing	Boolean	Functions

22

-10

+20
+20

h✓(x) =
1

1 + e�✓T
x

OR
-30

+20
+20

h✓(x) =
1

1 + e�✓T
x

AND

+10

-20
h✓(x) =

1

1 + e�✓T
x

NOT
+10

-20
-20

h✓(x) =
1

1 + e�✓T
x

(NOT	x1)	AND	(NOT	x2)

Combining	Representations	to	Create	
Non-Linear	Functions

23

-10
+20
+20

h✓(x) =
1

1 + e�✓T
x

OR
-30

+20
+20

h✓(x) =
1

1 + e�✓T
x

AND
+10

-20
-20

h✓(x) =
1

1 + e�✓T
x

(NOT	x1)	AND	(NOT	x2)

III

III IV

not(XOR)
-10

+20

+20
h✓(x) =

1

1 + e�✓T
x

-30
+20

+20 in	I

+10
-20

-20

in	III I or III

Based	on	example	by	Andrew	Ng

Layering	Representations

Each	image	is	“unrolled”	into	a	vector	x of	pixel	intensities

24

20	× 20	pixel	images
d =	400					10	classes

x1 ... x20
x21 ... x40
x41 ... x60

x381 ... x400

...

Layering	Representations

25

x1

x2

x3

x4

x5

xd

“0”

“1”

“9”

Input	Layer

Output	Layer
Hidden	Layer

Visualization	of	
Hidden	Layer

26

LeNet 5	Demonstration:		http://yann.lecun.com/exdb/lenet/	

Neural	Network	Learning

27

Perceptron	Learning	Rule

Equivalent	to	the	intuitive	rules:
– If	output	is	correct,	don’t	change	the	weights
– If	output	is	low	(h(x)	=	0,	y =	1),	increment	
weights	for	all	the	inputs	which	are	1

– If	output	is	high	(h(x)	=	1,	y =	0),	decrement	
weights	for	all	inputs	which	are	1

Perceptron	Convergence	Theorem:	
• If	there	is	a	set	of	weights	that	is	consistent	with	the	training	

data	(i.e.,	the	data	is	linearly	separable),	the	perceptron	
learning	algorithm	will	converge	[Minicksy &	Papert,	1969]

29

✓ ✓ + ↵(y � h(x))x

Batch	Perceptron

30

1.) Given training data

�
(x

(i), y(i))
 n

i=1
2.) Let ✓ [0, 0, . . . , 0]
2.) Repeat:

2.) Let � [0, 0, . . . , 0]
3.) for i = 1 . . . n, do
4.) if y(i)x(i)

✓ 0 // prediction for i

th
instance is incorrect

5.) � �+ y(i)x(i)

6.) � �/n // compute average update

6.) ✓ ✓ + ↵�
8.) Until k�k2 < ✏

• Simplest	case:		α	=	1	and	don’t	normalize,	yields	the	fixed	
increment	perceptron

• Each	increment	of	outer	loop	is	called	an	epoch
Based	on	slide	by	Alan	Fern

Learning	in	NN:	Backpropagation
• Similar	to	the	perceptron	learning	algorithm,	we	cycle	
through	our	examples
– If	the	output	of	the	network	is	correct,	no	changes	are	made
– If	there	is	an	error,	weights	are	adjusted	to	reduce	the	error

• The	trick	is	to	assess	the	blame	for	the	error	and	divide	
it	among	the	contributing	weights

31Based	on	slide	by	T.	Finin,	M.	desJardins,	L	Getoor,	R.	Par

J(✓) = � 1

n

nX

i=1

[yi log h✓(xi) + (1� yi) log (1� h✓(xi))] +
�

2n

dX

j=1

✓2j

Cost	Function

32

Logistic	Regression:

Neural	Network:

h⇥ 2 RK
(h⇥(x))i = ithoutput

J(⇥) =� 1

n

"
nX

i=1

KX

k=1

yik log (h⇥(xi))k + (1� yik) log
⇣
1� (h⇥(xi))k

⌘#

+

�

2n

L�1X

l=1

sl�1X

i=1

slX

j=1

⇣
⇥

(l)
ji

⌘2

h⇥ 2 RK
(h⇥(x))i = ithoutput

J(⇥) =� 1

n

"
nX

i=1

KX

k=1

yik log (h⇥(xi))k + (1� yik) log
⇣
1� (h⇥(xi))k

⌘#

+

�

2n

L�1X

l=1

sl�1X

i=1

slX

j=1

⇣
⇥

(l)
ji

⌘2

h⇥ 2 RK
(h⇥(x))i = ithoutput

J(⇥) =� 1

n

"
nX

i=1

KX

k=1

yik log (h⇥(xi))k + (1� yik) log
⇣
1� (h⇥(xi))k

⌘#

+

�

2n

L�1X

l=1

sl�1X

i=1

slX

j=1

⇣
⇥

(l)
ji

⌘2 kth class: true,	predicted
not	kth class: true,	predicted

Based	on	slide	by	Andrew	Ng

Optimizing	the	Neural	Network

33

Need	code	to	compute:
•
•

Solve	via:	

J(⇥) =� 1

n

"
nX

i=1

KX

k=1

yik log(h⇥(xi))k + (1� yik) log
⇣
1� (h⇥(xi))k

⌘#

+

�

2n

L�1X

l=1

sl�1X

i=1

slX

j=1

⇣
⇥

(l)
ji

⌘2

J(Θ) is	not	convex,	so	GD	on	a	
neural	net	yields	a	local	optimum
• But,	tends	to	work	well	in	practice

Based	on	slide	by	Andrew	Ng

Forward	Propagation
• Given	one	labeled	training	instance	(x, y):

Forward	Propagation
• a(1) = x
• z(2) = Θ(1)a(1)

• a(2) = g(z(2)) [add	a0
(2)]

• z(3) = Θ(2)a(2)

• a(3) = g(z(3)) [add	a0
(3)]

• z(4) = Θ(3)a(3)

• a(4) = hΘ(x) = g(z(4))

34

a(1)

a(2) a(3) a(4)

Based	on	slide	by	Andrew	Ng

Backpropagation Intuition
• Each	hidden	node	j is	“responsible” for	some	
fraction	of	the	error	δj(l) in	each	of	the	output	nodes	
to	which	it	connects

• δj(l) is	divided	according	to	the	strength	of	the	
connection	betweenhidden	node	and	the	output	
node

• Then,	the	“blame”	is	propagated	back	to	provide	the	
error	values	for	the	hidden	layer

35Based	on	slide	by	T.	Finin,	M.	desJardins,	L	Getoor,	R.	Par

�(l)j =

@

@z(l)j

cost(xi)

where cost(xi) = yi log h⇥(xi) + (1� yi) log(1� h⇥(xi))

Backpropagation Intuition

δj(l) = “error”	of	node	j in	layer	l
Formally,

36

�(4)1�(3)1�(2)1

�(2)2 �(3)2

Based	on	slide	by	Andrew	Ng

Backpropagation Intuition

δj(l) = “error”	of	node	j in	layer	l
Formally,

37

�(4)1�(3)1�(2)1

�(2)2 �(3)2

Based	on	slide	by	Andrew	Ng

δ(4) = a(4) – y

�(l)j =

@

@z(l)j

cost(xi)

where cost(xi) = yi log h⇥(xi) + (1� yi) log(1� h⇥(xi))

Backpropagation Intuition

δj(l) = “error”	of	node	j in	layer	l
Formally,

38

�(4)1�(3)1�(2)1

�(2)2 �(3)2

⇥(3)
12

δ2(3) = Θ12
(3)×δ1(4)

Based	on	slide	by	Andrew	Ng

�(l)j =

@

@z(l)j

cost(xi)

where cost(xi) = yi log h⇥(xi) + (1� yi) log(1� h⇥(xi))

Backpropagation Intuition

δj(l) = “error”	of	node	j in	layer	l
Formally,

39

�(3)1�(2)1

�(2)2 �(3)2

δ2(3) = Θ12
(3) ×δ1(4)

δ1(3) = Θ11
(3)×δ1(4)

�(4)1

Based	on	slide	by	Andrew	Ng

�(l)j =

@

@z(l)j

cost(xi)

where cost(xi) = yi log h⇥(xi) + (1� yi) log(1� h⇥(xi))

Backpropagation Intuition

δj(l) = “error”	of	node	j in	layer	l
Formally,

40

�(4)1�(3)1�(2)1

�(2)2 �(3)2

⇥(2)
12

⇥(2)
22

δ2(2) = Θ12
(2)×δ1(3) +	Θ22

(2)×δ2(3)

Based	on	slide	by	Andrew	Ng

�(l)j =

@

@z(l)j

cost(xi)

where cost(xi) = yi log h⇥(xi) + (1� yi) log(1� h⇥(xi))

Backpropagation:	Gradient	Computation
Let	δj(l) = “error”	of	node	j in	layer	l

(#layers	L =	4)

Backpropagation
• δ(4) = a(4) – y
• δ(3) = (Θ(3))Tδ(4) .* g’(z(3))
• δ(2) = (Θ(2))Tδ(3) .* g’(z(2))
• (No	δ(1))

41

g’(z(3)) = a(3) .* (1–a(3))

g’(z(2)) = a(2) .* (1–a(2))

@

@⇥(l)
ij

J(⇥) = a(l)j �(l+1)
i (ignoring	λ;	if	λ = 0)

δ(4)
δ(3)δ(2)

Element-wise	
product	.*

Based	on	slide	by	Andrew	Ng

Backpropagation

42

Note:		Can	vectorize as
�(l)

ij = �(l)
ij + a(l)j �(l+1)

i

�(l) = �(l) + �(l+1)a(l)
|

�(l)
ij = �(l)

ij + a(l)j �(l+1)
i

�(l) = �(l) + �(l+1)a(l)
|

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥(l) randomly (NOT to 0!)
Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation
Compute �(L) = a

(L) � yi
Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0
1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reachedD(l) is	the	matrix	of	partial	derivatives	of	J(Θ)

Based	on	slide	by	Andrew	Ng

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥(l) randomly (NOT to 0!)
Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation
Compute �(L) = a

(L) � yi
Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0
1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥(l) randomly (NOT to 0!)
Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation
Compute �(L) = a

(L) � yi
Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0
1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥(l) randomly (NOT to 0!)
Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation
Compute �(L) = a

(L) � yi
Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0
1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥(l) randomly (NOT to 0!)
Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation
Compute �(L) = a

(L) � yi
Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0
1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

(Used	to	accumulate	gradient)

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥(l) randomly (NOT to 0!)
Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation
Compute �(L) = a

(L) � yi
Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0
1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

Training	a	Neural	Network	via	Gradient	
Descent	with	Backprop

43

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥(l) randomly (NOT to 0!)
Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation
Compute �(L) = a

(L) � yi
Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0
1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

(Used	to	accumulate	gradient)

Based	on	slide	by	Andrew	Ng

Backpropagation

Backprop Issues
“Backprop is	the	cockroach	of	machine	learning.		It’s	
ugly,	and	annoying,	but	you	just	can’t	get	rid	of	it.”

-Geoff	Hinton

Problems:	
• black	box
• local	minima

44

Implementation	Details

45

Random	Initialization
• Important	to	randomize	initial	weight	matrices
• Can’t	have	uniform	initial	weights,	as	in	logistic	regression

– Otherwise,	all	updates	will	be	identical	&	the	net	won’t	learn

46

�(4)1�(3)1�(2)1

�(2)2 �(3)2

Implementation	Details
• For	convenience,	compress	all	parameters	into	θ

– “unroll”	Θ(1), Θ(2),... , Θ(L-1) into	one	long	vector	θ
• E.g.,	if	Θ(1) is	10	x	10,	then	the	first	100	entries	of	θ contain	the	
value	in	Θ(1)

– Use	the	reshape command	to	recover	the	original	matrices
• E.g.,	if	Θ(1) is	10	x	10,	then

theta1 = reshape(theta[0:100], (10, 10))

• Each	step,	check	to	make	sure	that	J(θ) decreases

• Implement	a	gradient-checking	procedure	to	ensure	that	
the	gradient	is	correct...

47

J(✓i+c)

J(✓i�c)

✓i�c ✓i+c

Gradient	Checking
Idea: estimate	gradient	numerically	to	verify	
implementation,	then	turn	off	gradient	checking

49

θi+c = [θ1, θ2, ..., θi –1, θi+c, θi+1, ...]

c ⇡ 1E-4
@

@✓i
J(✓) ⇡ J(✓i+c)� J(✓i�c)

2c

J(✓)

Change	ONLY	the	i th

entry	in	θ,	increasing	
(or	decreasing)	it	by	c

Based	on	slide	by	Andrew	Ng

Gradient	Checking

50

✓ 2 Rm ✓ is an “unrolled” version of ⇥

(1),⇥(2), . . .

✓ = [✓1, ✓2, ✓3, . . . , ✓m]

@

@✓1
J(✓) ⇡ J([✓1 + c, ✓2, ✓3, . . . , ✓m])� J([✓1 � c, ✓2, ✓3, . . . , ✓m])

2c
@

@✓2
J(✓) ⇡ J([✓1, ✓2 + c, ✓3, . . . , ✓m])� J([✓1, ✓2 � c, ✓3, . . . , ✓m])

2c
.

.

.

@

@✓m
J(✓) ⇡ J([✓1, ✓2, ✓3, . . . , ✓m + c])� J([✓1, ✓2, ✓3, . . . , ✓m � c])

2c

Check	that	the	approximate	numerical	gradient	matches	the	
entries	in	the	Dmatrices	

Put	in	vector	called	gradApprox

Based	on	slide	by	Andrew	Ng

Implementation	Steps
• Implement	backprop to	compute	DVec

– DVec is	the	unrolled		{D(1), D(2), ... }	matrices

• Implement	numerical	gradient	checking	to	compute	gradApprox
• Make	sure	DVec has	similar	values	to	gradApprox
• Turn	off	gradient	checking.	Using	backprop code	for	learning.

Important:	Be	sure	to	disable	your	gradient	checking	code	before	
training	your	classifier.	
• If	you	run	the	numerical	gradient	computation	on	every	iteration	

of	gradient	descent,	your	code	will	be	very slow

51Based	on	slide	by	Andrew	Ng

Putting	It	All	Together

52

Training	a	Neural	Network
Pick	a	network	architecture	(connectivity	pattern	between	nodes)

• #	input	units	=	#	of	features	in	dataset
• #	output	units	=	#	classes

Reasonable	default:	1	hidden	layer
• or	if	>1	hidden	layer,	have	same	#	hidden	units	in	
every	layer	(usually	the	more	the	better)

53Based	on	slide	by	Andrew	Ng

Training	a	Neural	Network
1. Randomly	initialize	weights
2. Implement	forward	propagation	to	get	hΘ(xi)

for	any	instance	xi

3. Implement	code	to	compute	cost	function	J(Θ)
4. Implement	backprop to	compute	partial	derivatives

5. Use	gradient	checking	to	compare																			
computed	using	backpropagation vs.	the	numerical	
gradient	estimate.		
– Then,	disable	gradient	checking	code

6. Use	gradient	descent	with	backprop to	fit	the	network
54Based	on	slide	by	Andrew	Ng

