
Deep	Learning:
Restricted	Boltzmann	Machines	

&	Deep	Belief	Nets

Based	on	slides	by	Geoffrey	Hinton,	Sue	Becker,	Yann
LeCun,	Yoshua Bengio,	Frank	Wood	

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others
who made their course materials freely available online. Feel free to reuse or adapt these slides for
your own academic purposes, provided that you include proper attribution. Please send comments
and corrections to Eric.

Neural	Networks

2

Compare outputs with
correct answer to get

error signal

outputs

inputs

hidden layers

Back-propagate	
error	signal	to	get	
derivatives	for	

learning

What	is	wrong	with	back-propagation?
• It	requires	labeled	training	data

– Almost	all	data	is	unlabeled

• The	learning	time	does	not	scale	well
– It	is	very	slow	in	nets	with	multiple	hidden	layers

• It	can	get	stuck	in	poor	local	optima
– These	are	often	quite	good,	but	for	deep	nets	they	
are	far	from	optimal

3

Motivations
• Supervised	training	of	deep	models	(e.g.	many-layered	
NNets)	is	difficult	(optimization	problem)

• Shallow	models	(SVMs,	one-hidden-layer	NNets,	
boosting,	etc…)	are	unlikely	candidates	for	learning	high-
level	abstractions	needed	for	AI

• Unsupervised	learning	could	do	“local-learning” (each	
module	tries	its	best	to	model	what	it	sees)

• Inference	(+	learning)	is	intractable	in	directed	graphical	
models	with	many	hidden	variables

• Current	unsupervised	learning	methods	don’t	easily	
extend	to	learn	multiple	levels	of	representation

Belief	Nets
• A	belief	net	is	a	directed	acyclic	

graph	composed	of	stochastic	
variables.

• Can	observe	some	of	the	
variables	and	we	would	like	to	
solve	two	problems:

• The	inference	problem:
Infer	the	states	of	the	
unobserved	variables.

• The	learning	problem:
Adjust	the	interactions	
between	variables	to	make	the	
network	more	likely	to	
generate	the	observed	data.

stochastic
hidden								
cause

visible	
effect

Use	nets	composed	of	layers	of	
stochastic	binary	variables	with	
weighted	connections.		Later,	we	will	
generalize	to	other	types	of	variable.

Explaining	away	(Judea	Pearl)
• Even	if	two	hidden	causes	are	independent,	they	can	become	

dependent	when	we	observe	an	effect	that	they	can	both	
influence.	
– If	we	learn	that	there	was	an	earthquake	it	reduces	the	
probability	that	the	house	jumped	because	of	a	truck.

truck	hits	house earthquake

house	jumps

P(J	|	T)	=	0.9

P(T)=e-10 P(E)=e-10

P(J	|	E)	=	0.9

P(J)=e-20

Why	multilayer	learning	is	
hard	in	a	sigmoid	belief	net

• To	learn	Θ,	we	need	the	posterior	
distribution	in	the	first	hidden	layer.

• Problem	1:	The	posterior	is	typically	
intractable	because	of	“explaining	
away”.

• Problem	2: The	posterior	depends	on	
the	prior	created	by	higher	layers	as	
well	as	the	likelihood.	
– So	to	learn	Θ,	we	need	to	know	the	
weights	in	higher	layers,	even	if	we	
are	only	approximating	the	
posterior.	All	the	weights	interact.

• Problem	3: We	need	to	integrate	over	
all	possible	configurations	of	the	higher	
variables	to	get	the	prior	for	first	
hidden	layer.	Yuk!

data

hidden	variables

hidden	variables

hidden	variables

likelihood Θ

prior

Stochastic	binary	neurons
Have	a	state	of	1	or	0,	which	is	a	stochastic	function	of	the	neuron’s	
bias b and	the	input	state	s it	receives	from	other	neurons.

0.5

0
0

1

p(ai = 1) =

1

1 + exp(�bi �
P

j xj⇥ji)

p(ai = 1) =

1

1 + exp(�bi �
P

j sj⇥ji)

bi +
X

j

sj⇥ji

P (ai = 1) =

1

1 + exp(�
P

j sj⇥ji/T)
=

1

1 + exp(��Ei/T)

Energy gap = �Ei = E(ai = 0)� E(ai = 1)

Stochastic	units	
Replace	the	binary	threshold	units	by	binary	stochastic	units	that	
make	biased	random	decisions.

– The	temperature	controls	the	amount	of	noise
– Decreasing	all	the	energy	gaps	between	configurations	is	
equivalent	to	raising	the	noise	level

temperature

Restricted	Boltzmann	Machines

• Restrict	the	connectivity	to	make	learning	
easier
– Only	one	layer	of	hidden	units

• Deal	with	more	layers	later

– No	connections	between	hidden	units
• In	an	RBM,	the	hidden	units	are	conditionally	

independent	given	the	visible	states	
– So	can	quickly	get	an	unbiased	sample	
from	the	posterior	distribution	when	
given	a	data-vector

– This	is	a	big	advantage	over	directed	
belief	nets

hidden

i

j

visible

The	energy	of	a	joint	configuration	
(ignoring	bias	terms)

weight	between	
units	i and	j

Energy	with	configuration	v
on	the	visible	units	and	h
on	the	hidden	units

binary	state	of	
visible	unit	i

E(v,h) = �
X

i,j

vihj⇥ij

binary	state	of	
hidden	unit	j

�@E(v,h)

@⇥ij
= vihj

Weights	à Energies	à Probabilities

• Each	possible	joint	configuration	of	the	visible	
and	hidden	units	has	an	energy
– The	energy	is	determined	by	the	weights	and	biases

• The	energy	of	a	joint	configuration	of	the	visible	and	
hidden	units	determines	its	probability:

• The	probability	of	a	configuration	over	the	visible	
units	is	found	by	summing	the	probabilities	of	all	
the	joint	configurations	that	contain	it.	

P (v,h) / e�E(v,h)

Using	energies	to	define	probabilities

• Probability	of	a	joint	configuration	over	both	
visible	and	hidden	units

• Probability	of	a	particular	configuration	of	the	
visible	units

P (v,h) =
e�E(v,h)

P
u,g e

�E(u,g)

P (v) =

P
h e�E(v,h)

P
u,g e

�E(u,g)

A	picture	of	the	Boltzmann	machine	learning	
algorithm	for	an	RBM

i

t	=	0

Start	with	a	training	vector	on	the	visible	units.

Then	alternate	between	updating	all	the	hidden	units	in	
parallel	and	updating	all	the	visible	units	in	parallel.

a	fantasy

@ logP (v)

@⇥ij
= E0(vihj)� E1(vihj)

j

E0(vihj)

i

j

E1(vihj)

i

j

E1(vihj)

i

j

t	=	1 t	=	2 t	=	
∞

visible

hidden

A	very	surprising	fact
• Everything	that	one	weight	needs	to	know	about	the	
other	weights	and	the	data	in	order	to	do	maximum	
likelihood	learning	is	contained	in	the	difference	of	
two	correlations.

Derivative	of	log	
probability	of	
one	training	
vector

Expected	value	of	
product	of	states	at	
thermal	equilibrium	
when	the	training	
vector	is	clamped	on	
the	visible	units

Expected	value	of	
product	of	states	at	
thermal	equilibrium	
when	nothing	is	
clamped

@ logP (v)

@⇥ij
= E0(vihj)� E1(vihj)

A	picture	of	the	Boltzmann	machine	learning	
algorithm	for	an	RBM

i

j

i

j

i

j

i

j

t	=	0																	t	=	1																		t	=	2																															t	=	infinity

Problem:		this	Markov	chain	may	take	a	very	long	
time	to	converge!

Solution:		Contrastive	Divergence	

E0(vihj) E1(vihj) E1(vihj)

Contrastive	Divergence	Learning:
A	quick	way	to	learn	an	RBM

i

j

i

j

t	=	0																	t	=	1			

Start	with	a	training	vector	on	the	
visible	units.

Update	all	the	hidden	units	in	parallel

Update	the	all	the	visible	units	in	
parallel	to	get	a	“reconstruction”.

Update	the	hidden	units	again.	

This	is	not	following	the	gradient	of	the	log	likelihood.	But	it	works	well.	

It	is	approximately	following	the	gradient	of	another	objective	function	(Carreira-
Perpinan &	Hinton,	2005).

reconstructiondata

E0(vihj) E1(vihj)

�⇥ij = ✏[E0(vihj)� E1(vihj)]

How	to	learn	a	set	of	features	that	are	good	for	
reconstructing	images	of	the	digit	2

50	binary	
feature	
neurons

16	x	16	
pixel					
image

50	binary	
feature	
neurons

16	x	16	
pixel					
image

Increment weights	
between	an	active	pixel	
and	an	active	feature

Decrement	weights	
between	an	active	pixel	
and	an	active	feature

data	
(reality)

reconstruction				
(better	than	reality)

Each	neuron	grabs	a	different	feature.

The	Final	50 x	256	Weights

Reconstruction	
from	activated	
binary	featuresData

Reconstruction	
from	activated	
binary	featuresData

How	well	can	we	reconstruct	the	digit	images	
from	the	binary	feature	activations?

New	test	images	from	
the	digit	class	that	the	
model	was	trained	on

Images	from	an	unfamiliar	
digit	class	(the	network	tries	
to	see	every	image	as	a	2)

Using	an	RBM	to	learn	a	model	of	a	digit	class

Reconstructions	by	
model	trained	on	2’s

Reconstructions	by	
model	trained	on	3’s

Data

i

j

i

j

reconstructiondata

256	visible	
units	(pixels)

100	hidden	units	
(features)

E0(vihj) E1(vihj)

Training	a	Deep	Belief	Network	
(the	main	reason	RBM’s	are	interesting)

• First	train	a	layer	of	features	that	receive	input	
directly	from	the	pixels.

• Then	treat	the	activations	of	the	trained	features	as	if	
they	were	pixels	and	learn	features	of	features	in	a	
second	hidden	layer.

• It	can	be	proved	that	each	time	we	add	another	layer	
of	features	we	improve	a	variational lower	bound	on	
the	log	probability	of	the	training	data.
– The	proof	is	slightly	complicated.	
– But	it	is	based	on	a	neat	equivalence	between	an	RBM	and	
a	deep	directed	model

The	Generative	Model	After	Learning	3	Layers

To	generate	data:	
1. Get	an	equilibrium	sample	from	the	

top-level	RBM	by	performing	
alternating	Gibbs	sampling	for	a	
long	time.

2. Perform	a	top-down	pass	to	get	
states	for	all	the	other	layers.

So	the	lower	level	bottom-up	
connections	are	not part	of	the	
generative	model.	They	are	just	used	
for	inference.

h2

data

h1

h3

⇥3

⇥2

⇥1

Why	does	greedy	learning	work?
• Each	RBM	converts	its	data	distribution	into	

an	aggregated	posterior	distribution	over	
its	hidden	units.	

• This	divides	the	task	of	modeling	its	data	
into	two	tasks:
– Task	1:	Learn	generative	weights	that	can	convert	
the	aggregated	posterior	distribution	over	the	
hidden	units	back	into	the	data	distribution.

– Task	2:	Learn	to	model	the	aggregated	posterior	
distribution	over	the	hidden	units.

– The	RBM	does	a	good	job	of	task	1	and	a	
moderately	good	job	of	task	2.

• Task	2	is	easier	(for	the	next	RBM)	than	
modeling	the	original	data	because	the	
aggregated	posterior	distribution	is	closer	
to	a	distribution	that	an	RBM	can	model	
perfectly.

Aggregated	
posterior	

distribution	on	
hidden	units

Data	
distribution	on	
visible	units

P (v | h,⇥)

P (h | ⇥)

Task 1

Task 2

Why	does	greedy	learning	work?
• The	weights	Θ in	the	bottom	level	RBM	define							

P(v | h) and	they	also,	indirectly,	define	P(h).
• So	we	can	express	the	RBM	model	as

• If	we	leave	P(v | h,Θ) alone	and	improve	P(h|Θ),	
we	will	improve	P(v).	

• To	improve	P(h),	we	need	it	to	be	a	better	model	of	
the	aggregated	posterior	distribution	over	hidden	
vectors	produced	by	applying	Θ to	the	data.
– Accomplished	by	the	next	higher	layer

P (v) =
X

h

P (v | h,⇥)P (h | ⇥)

Why	greedy	learning	works
• Each	time	we	learn	a	new	layer,	the	inference	at	the	layer	

below	becomes	incorrect,	but	the	variational bound	on	the	
log	prob of	the	data	improves	(only	true	in	theory)

• Since	the	bound	starts	as	an	equality,	learning	a	new	layer	
never	decreases	the	log	prob of	the	data,	provided	we	start	
the	learning	from	the	tied	weights	that	implement	the	
complementary	prior

• Now	that	we	have	a	guarantee	we	can	loosen	the	restrictions	
and	still	feel	confident
– Allow	layers	to	vary	in	size
– Do	not	start	the	learning	at	each	layer	from	the	weights	in	
the	layer	below

A	neural	network	model	of	
digit	recognition

2000	top-level	units

500	units	

500	units	

28	x	28	
pixel					
image

10	label	units

The	model	learns	a	joint	density	for	labels	
and	images.	

To	perform	recognition	we	can	start	with	a	
neutral	state	of	the	label	units	and	do	one	
or	two	iterations	of	the	top-level	RBM.

Or	we	can	just	compute	the	free	energy	of	
the	RBM	with	each	of	the	10	labels

The	top	two	layers	form	a	
restricted	Boltzmann	machine	
whose	free	energy	landscape	
models	the	low	dimensional	
manifolds	of	the	digits.

The	valleys	have	names:

Movie	of	the	network	generating	digits

(available	at	www.cs.toronto/~hinton)

Fine-tuning	with	a	contrastive	version	of	
the	“wake-sleep” algorithm

After	learning	many	layers	of	features,	we	can	fine-tune	the	
features	to	improve	generation.

1.		Do	a	stochastic	bottom-up	pass
– Adjust	the	top-down	weights	to	be	good	at	reconstructing	
the	feature	activities	in	the	layer	below.

2. Do	a	few	iterations	of	sampling	in	the	top	level	RBM
– Adjust	the	weights	in	the	top-level	RBM.

3. Do	a	stochastic	top-down	pass
– Adjust	the	bottom-up	weights	to	be	good	at	reconstructing	
the	feature	activities	in	the	layer	above.

Not	required!		But	helps	the	recognition	rate.

Limits	of	the	Generative	Model

1.		Designed	for	images	where	non-binary	values	can	be	treated	
as	probabilities.

2. Top-down	feedback	only	in	the	highest	(associative)	layer.
3. No	systematic	way	to	deal	with	invariance.
4. Assumes	segmentation	already	performed	and	does	not	learn	

to	attend	to	the	most	informative	parts	of	objects.

Deep	Net	Activation	Functions

Other	Deep	Architectures:	
Convolutional	Neural	Network

[Image credit: http://timdettmers.com/2015/03/26/convolution-deep-learning/]

Other	Deep	Architectures:	
Convolutional	Neural	Network

[Image credit: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/]

[Image credit: http://rnd.azoft.com/wp-content/uploads_rnd/2016/11/overall-1024x256.png]

Other	Deep	Architectures:	
Long	Short-Term	Memory	(LSTM)

[Image credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Deep	Learning	in	the	Headlines

48

pixels

edges

object parts
(combination
of edges)

object models

Deep	Belief	Net	on	Face	Images

Based	on	materials	
by	Andrew	Ng

49

Examples	of	learned	object	parts	from	object	categories

Learning	of	Object	Parts

Faces Cars Elephants Chairs

Slide	credit:	Andrew	Ng
50

Training	on	Multiple	Objects

Trained	on	4	classes	(cars,	faces,	
motorbikes,	airplanes).	
Second	layer:	Shared-features	
and	object-specific	features.
Third	layer:	More	specific	
features.	

Slide	credit:	Andrew	Ng
51

Scene	Labeling	via	Deep	Learning

[Farabet et	al.	ICML	2012,	PAMI	2013] 52

Input	images

Samples	from	
feedforward	
Inference	
(control)

Samples	from	
Full	posterior
inference	

Inference	from	Deep	Learned	Models
Generating	posterior	samples	from	faces	by	“filling	in” experiments
(cf.	Lee	and	Mumford,	2003).		Combine	bottom-up	and	top-down	inference.	

Slide	credit:	Andrew	Ng
53

Machine	Learning	in	
Automatic	Speech	Recognition

A	Typical	Speech	Recognition	System

ML	used	to	predict	of	phone	states	from	the	sound	spectrogram	

Deep	learning	has	state-of-the-art	results

# Hidden	Layers 1 2 4 8	 10 12

Word	Error	Rate	% 16.0 12.8 11.4 10.9 11.0 11.1

Baseline	GMM	performance	=	15.4%
[Zeiler et	al.	“On	rectified	linear	units	for	speech	
recognition”	ICASSP	2013]

54

Impact	of	Deep	Learning	in	Speech	Technology

Slide	credit:	Li	Deng,	MS	Research
55

