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CIS 419/519

Primer - Single Variable, Vector and Matrix Calculus

In this primer, we start off by giving a brief recap on key concepts of single variable calculus,

following by an extension of these concepts to vectors and matrices. In many areas of machine

learning, the problems and analysis often involve partial derivatives with respect to vectors and

matrices. Some of these areas include optimization, probability, regression and classification.

Hence, it is important to understand single-variable calculus, as well as vector and matrix

calculus in order to appreciate the mathematics behind the applications in machine learning.

Here we provide a list of useful concepts, derivatives and differentiation rules often encountered

in machine learning, taken from the references stated at the end of the notebook. For a more

comprehensive list, refer to [1] and [2]. Note that the denominator layout convention is adopted

in this document.

Key concepts in single variable calculus

Derivative:

Given , the derivative of  with respect to  is defined as

This can be interpreted as the limit of the difference quotient or slope of the function. In other

words, we first evaluate  at two points,  and  and compute the value of the difference

quotient, i.e. , which is the slope of the secant line (blue) shown in

the left figure below. By shifting the two points closer to each other, i.e., , this secant

line becomes a tangent line, shown in the figure on the right. The slope of this tangent line (blue

line in the right plot) is the derivative of  evaluated at , .

h > 0 f x

:= lim
δx→0

. (1)
df

dx

f(x + δx) − f(x)

δx

f x x + δx

=
f(x+δx)−f(x)

(x+δx)−x

f(x+δx)−f(x)
δx

δx → 0

f x
df

dx
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Maxima and Minima:

One of the most important applications of calculus is its ability to sniff out the maximum or the

minimum of a function. In optimization problems we are looking for the largest value or the

smallest value that a function can take. By finding the minima and maxima of a function we

determine where is the function at a high or a low point. In a smoothly changing function a

maximum or minimum is always where the function flattens out i.e when the slope of the

function or the derivative of the function is 0.

Take  to be a function of . Then the value of  for which the derivative of  with

respect to  is equal to zero corresponds to a maximum or a minimum point of the function 

. To deterrmine whether the point is a maximum or a minimum, we perform the second

derivate test by taking the derivative of the slope  or the second derivative of the original

function . When a function's slope is zero at , and the second derivative at  is less than

0, it is a local maximum and greater than 0, it is a local minimum.

Common Derivatives:

A list of common derivatives are given in this figure [3]:

f(x) x x f(x)
x

f(x)
df

dx

f(x) x x
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Taylor Series (Optional on first reading):

For a smooth function  that is infinitely differentiable, we define the Taylor series of  at a point

 as

Taylor series have two primary applications. In theoretical applications, when we want to

understand a function that is too complex, an application of the Taylor series allows us to

approximate it into a polynomial. In numerical applications, functions like  or  are

difficult for machines to compute. They can store tables of values at a fixed precision, but it still

leaves open questions like "What is the  digit of ?" Taylor series are often helpful

to answer such questions.

Differentiation rules:

Denoting the derivative of  and  as  and  and ,  is any real

number, we have

Higher order derivatives (Optional on first reading):

The second derivative of  is defined as the derivative of the first derivative,

and in general, the  derivative of  is defined as the derivative of the  derivative,

Multivariable Calculus

In this section, common derivatives and differentiation rules with respect to vectors and

matrices are listed. Observe that most of the basic rules such as product, quotient, chain and

sum rules still apply.

f f

x0

T∞(x) :=
∞

∑
k=0

(x − x0)k. (2)
f (k)(x0)

k!

ex cos(x)

1000th cos(1)

f(x) g(x) f(x)′ g(x)′ g ∘ f := g(f(x)) c

(cf)′ = cf ′ (3)

(f ± g)′ = f ′ ± g′ (4)

(fg)′ = f ′g + fg′ (Product Rule) (5)

( )
′

= (Quotient Rule) (6)
f

g

f ′g − fg′

g2

(g ∘ f)′ = g′(f)f ′ (Chain Rule) (7)

f

= f ′′(x) = f (2)(x) := (f ′(x)) (8)
d2f

dx2

d

dx

nth f (n − 1)th

= f (n)(x) := (f (n−1)(x)) (9)
dnf

dxn
d

dx
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Common derivatives

Differentiation of a scalar

Partial Derivatives:

When a function has multiple variables, it helps to try to isolate how each variable changes

when others are held constant. This is called a partial derivative, and can be expressed as:

For example, if we have a scalar function , then:

Gradient: For a scalar function , where  is a vector with  variables, ,

we can define the gradient of  with respect to  as

In other words, the gradient is a vector consisting of the partial derivatives of  with respect to

its arguments, .

Geometrically, the gradient evaluated at any given point  is a vector that is normal to the

tangent plane at , as shown in the figure below, where an example in 3 dimensions with 

 is plotted. In this figure,  denotes the gradient.

f

= lim
δx→0

,

⋮

= lim
δx→0

∂f

∂x1

f(x1 + δx,x2, … ,xn) − f(x)

δx

∂f

∂xn

f(x1,x2, … ,xn + δx) − f(x)

δx

f(x, y) = 2xy2

= 2y2 (10)
∂f

∂x

= 4xy (11)
∂f

∂y

f(x) x n x := [x1, … ,xn]T

f x

= ∇xf :=

⎡
⎢
⎢
⎢
⎢
⎣

⋮

⎤
⎥
⎥
⎥
⎥
⎦

(12)
∂f

∂x

∂f

∂x1

∂f

∂xn

f

x1, … ,xn

x

x

x = [x0, y0, z0]T ∇F(x0, y0, z0)
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Source: [4]

The gradient of a function points in the direction of that functions greatest ascent, or the

direction it increases most (of course, this means the opposite of that gradient points in the

direction of steepest descent). Thus, by evaluating gradients at different values of our function,

we can more efficiently move toward a local maximum or minimum of that function. This can be

incredibly useful in machine learning, where we are often trying to find the minimum of a

function as part of optimization.

For more geometric interpretations, here are some video resources that explains the gradient in

different ways:

https://www.youtube.com/watch?v=QQPz3eXXgQI

https://www.youtube.com/watch?v=AXH9Xm6Rbfc

Hessian (Optional on first reading): And differentiating this scalar function  again (twice)

with respect to a vector  with  variables, we get the Hessian,

We can also differentiate  with respect to a matrix  of dimensions  to get

f

x n

:=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

…

⋮ ⋱ ⋮

…

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)
∂f

∂x

∂2f

∂x2
1

∂2f

∂x1xn

∂2f

∂xnx1

∂2f

∂x2
n

f X n × m

https://www.youtube.com/watch?v=QQPz3eXXgQI
https://www.youtube.com/watch?v=AXH9Xm6Rbfc
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Differentiation of a vector

Consider a vector  with  variables, . Differentiating this with respect to a

scalar  gives

Jacobian: If  is a vector with  variables, , differentiating it with respect to

another vector  gives the Jacobian,

The vectors of the Jacobian are the gradients of the respective components of a function.

To get the derivative of a vector  with respect to a matrix  of dimensions 

, it is essentially a concatenation of the derivatives of the scalar elements of  with

respect to ,

where

Useful Identities

In this section, we provide some useful identities that may be encountered in mathematics for

machine learning.

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

…

⋮ ⋱ ⋮

…

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(14)
∂f

∂X

∂f
∂x11

∂f
∂x1m

∂f
∂xn1

∂f

∂xnm

f

f n f := [f1, … , fn]T

x

= [ , … , ] (15)
∂f

∂x

∂f1

∂x

∂fn
∂x

f n f := [f1, … , fn]T

x

:=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

…

⋮ ⋱ ⋮

…

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(16)
∂f

∂x

∂f1

∂x1

∂f1

∂xn

∂fn
∂x1

∂fn
∂xn

f := [f1, … , fn] X

n × m f

X

=

⎡
⎢
⎢
⎢
⎢
⎣

⋮

⎤
⎥
⎥
⎥
⎥
⎦

, (17)
∂f

∂X

∂f1

∂X

∂fn
∂X

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

…

⋮ ⋱ ⋮

…

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, i = 1, … ,n. (18)
∂fi
∂X

∂fi
∂x11

∂fi
∂x1m

∂fi
∂xn1

∂fi
∂xnm
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Derivatives with respect to vectors

Given a vector  that is not a function of  and a matrix  which is also not a function of , we

have

and

and

and

Given scalars  and  which are functions of  and a scalar  that is independent of ,

Given vectors  and  which are functions of , and a matrix  that is not a function of 

,

Derivatives with respect to matrices

Given vectors  and  which are not functions of , and a matrix  that is not a function of ,

and

Denoting the trace of a matrix  as , we also have the following useful expressions,

f x A x

= 0 and = I, (19)
∂f

∂x

∂x

∂x

= f and = A
T

f , (20)
∂f

T
x

∂x

∂f
T

Ax

∂x

= AT and = A, (21)
∂Ax

∂x

∂xTA

∂x

= (A + AT )x, = 2x. (22)
∂xTAx

∂x

∂xTx

∂x

f(x) g(x) x a x

= a , = + . (23)
∂af

∂x

∂f

∂x

∂(f + g)

∂x

∂f

∂x

∂g

∂x

f(x) g(x) x A x

= g + f . (24)
∂f

T
g

∂x

∂f

∂x

∂g

∂x

= Ag + AT f . (25)
∂f

T
Ag

∂x

∂f

∂x

∂g

∂x

f g X A X

= fgT , = gf
T , (26)

∂f TXg

∂X

∂f TXTg

∂X

= (A + AT )(Xf + g)f T , = AXgf T +
∂(Xf + g)TA(Xf + g)

∂X

∂(Xf)TA(Xg)

∂X

X tr(X)

= I, = A
T , = A, = (A + A

T∂tr(X)

∂X

tr(AX)

∂X

tr(AXT )

∂X

tr(XTAX)

∂X
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An Example of the Chain rule [2]

In many machine learning applications, we find good model parameters by performing gradient

descent, which relies on the fact that we can compute the gradient of a loss function with

respect
to the parameters of the model. For a given loss function, we can
obtain the gradient

with respect to the model parameters using calculus
and applying the chain rule. As an example,

consider the function

Applying the chain rule along with other differentiation rules, the gradient can be computed as

Writing out the gradient in this explicit way is often impractical since it
often results in a very

lengthy expression for a derivative. In the context of deep neural network models, we will study

an approach to handle this, called backpropagation, which makes it much more efficient to

compute the gradient
of a loss function with respect to the model parameters.

More resources:

For those who would like more online resources on calculus, below are some of them,

Paul Dawkins's online notes on Calculus I (subsequent Calculus modules are also linked

from this page): https://tutorial.math.lamar.edu/Classes/CalcI/CalcI.aspx

Brandon Leonard's video lectures on Calculus I (subsequent Calculus modules are in his

youtube page): https://youtube.com/playlist?list=PLF797E961509B4EB5

Links to several pages for calculus resources: http://calculus.org/
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While some of the above rules are lengthy, they can be simplified if the matrices are symmetric,

i.e., .A = AT

f(x) = √x2 + exp(x2) + cos(x2 + exp(x2)). (29)

= − sin(x2 + exp(x2))(2x + 2x exp(x2))

= 2x( − sin(x2 + exp(x2))) (1 + exp(x2)).

df

dx

2x + 2x exp(x2)

2√x2 + exp(x2)

1

2√x2 + exp(x2)

https://tutorial.math.lamar.edu/Classes/CalcI/CalcI.aspx
https://youtube.com/playlist?list=PLF797E961509B4EB5
http://calculus.org/
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