
Announcements

• Homework 3 due in one week

• Quiz 3 due tomorrow



Project

• Everyone should be on a project team now!
• Email me ASAP if not!

• Project Milestone 1 due in 2 weeks (10/18) at 8pm
• 1 page plan (details shortly)
• Should be easy, but please don’t procrastinate!



Project

• Project Instructions
• https://docs.google.com/document/d/1q_iR-EH28eqwq2oCi9uSpBnWRKP8XFrN/

• Project Milestone 1
• https://docs.google.com/document/d/1R8SL6gcI0GlqmeB_p8fv_jVX7b62mIZ5/

https://docs.google.com/document/d/1q_iR-EH28eqwq2oCi9uSpBnWRKP8XFrN/
https://docs.google.com/document/d/1R8SL6gcI0GlqmeB_p8fv_jVX7b62mIZ5/


Goal

• Build experience experimenting with machine learning algorithms on 
real-world datasets
• Lots of insights that you don’t get from lectures, or even homework!
• Build intuition for relative importance of different design decisions
• Learn to start simple and increment from there



Datasets

• Computer vision
• CIFAR-10 dataset
• 10-class classificaIon dataset (cat, dog, deer, car, truck, etc.)
• hKps://www.cs.toronto.edu/~kriz/cifar.html

• Natural language processing (NLP)
• IMDB reviews dataset
• SenIment predicIon dataset (binary classificaIon)
• hKps://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-

movie-reviews

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews


Datasets

• Strongly encourage subsetting data while prototyping algorithms
• Typically, a thousand examples is plenty to train on for prototyping

• You should scale up the dataset when performing final 
training/evaluation runs
• However, if you have limited compute, you are free to subset the dataset 

even for final training/evaluation runs to a reasonable extent
• E.g., you should probably have at least a few thousand training examples)



Compute

• You are strongly encouraged to use (relatively) small architectures

• Thus, you should be able to use Google Colab for all evaluations

• You may also consider signing up for Amazon SageMaker Studio Lab
• https://studiolab.sagemaker.aws

https://studiolab.sagemaker.aws/


Implementation

• For each dataset, you must implement:
• One traditional pipeline (e.g., logistic/softmax regression, etc.)
• One deep learning pipeline (e.g., CNNs, RNNs, transformers, etc.)

• Four pipelines total



Traditional Pipeline

• For NLP:
• You should use feature engineering in the tradiIonal pipeline
• You are allowed (but not required) to use pretrained word embeddings
• You may want to try using PCA or LASSO regularizaIon for feature selecIon
• You should experiment with different sets of features

• For computer vision:
• You should try so^max regression
• You should make sure to standardize your features as described in class



Deep Learning Pipeline

• For at least one of the two datasets, you should build your own 
architecture from scratching in PyTorch
• MLPs do not count!

• If using a preexisting architecture, you should compare training from 
scratch vs. finetuning a pretrained model

• For architectures that you build yourself, you should compare varying 
hyperparameters including the dimension of intermediate layers and 
the number of intermediate layers



Keep It Simple!

• For the architecture(s) you implement yourself, keep it simple!

• Even very simple architectures such as a single convolutional or LSTM 
layer can already be very effective



Evaluation

• You are expected to perform two evaluations:
• Standard evaluation: Evaluate performance on test set, including different 

hyperparameter choices
• Robustness evaluation: Evaluate performance on dataset shifts



Test Set Performance

• Report the test set performance of your approach

• Hyperparameter variaXons
• Tradi<onal pipeline: At least one hyperparameter of your learning algorithm
• Deep learning pipeline: Hyperparameters described on a previous slide



Dataset ShiAs

• For each dataset, you should try some kind of shift to the inputs, 
ideally finding one that breaks your model
• Computer vision: Change contrast or brightness of images, rotate images, etc.
• NLP: Train on short reviews and test on long reviews, swap out words with 

their synonyms, etc.



Grading

• Most of your grade is on completing all the tasks described above

• A part is on comprehensive exploration of design choices
• Milestone 2: 2/10 points
• Milestone 3: 3/15 points
• Tentative breakdown

• Examples:
• Trying interesting features or feature selection techniques
• Comparing interesting variations of neural network architectures
• Devise interesting choices of dataset shift



Project Milestone 1 (1 Page)

• Part 1: Implementation
• Provide plans for feature engineering
• Brainstorm neural network architectures (optional)

• Part 2: Evaluation
• Describe hyperparameters you intend to vary
• Brainstorm dataset shifts

• Describe how you are going to split work among your group
• Everyone should contribute to each part!
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Recap: Ensemble Design Decisions

• How to learn the base models?
• Bagging (randomize dataset)
• BoosIng (weighted dataset)

• How to combine the learned base models?
• Averaging (regression) or majority vote (classificaIon)



Recap: Bagging

• Step 1: Create bootstrap replicates of the original training dataset

• Step 2: Train a classifier for each replicate

• Step 3 (Optional): Use held-out validation set to weight models
• Can just use average predictions



Recap: Bagging

Original
Training Data ...

𝛽! 𝛽" 𝛽#

...



Recap: Random Forests

• Ensemble of decision trees using bagging
• Typically use simple average (over probabilities for classification)

• Intuition:
• Large decision trees are good nonlinear models, but high variance
• Random forests average over many decision trees to reduce variance without 

increasing bias



Recap: Random Forests

• Tweak 1: Randomize features in learning algorithm instead of bagging
• At DT node splitting step, subsample ≈ 𝑑 features
• Allows each tree to use all features, but not at every node
• Aside: If a few features are highly predictive, then they will be selected in 

many trees, causing the base models to be highly correlated

• Tweak 2: Train unpruned decision trees
• Ensures base models have higher capacity
• Intuition: Skipping pruning increases variance



Recap: AdaBoost

• Input
• Training dataset 𝑍
• Learning algorithm Train 𝑍,𝑤  that can handle weights 𝑤
• Hyperparameter 𝑇 indicaIng number of models to train

• Output
• Ensemble of models 𝐹 𝑥 = ∑$%!& 𝛽$ ⋅ 𝑓$ 𝑥



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))

size represents weight 𝑤'



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))

+  –

focus on linear classifiers 𝑓$ 

𝑡 = 1



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))

+  –

𝑡 = 1
𝛽$ becomes larger as 
𝜖$ becomes smaller



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))

+  –

𝑡 = 1
Use convention 𝑦' ∈ −1,+1
If correct (𝑦' = 𝑓$ 𝑥' ) then multiply by 𝑒()!
If incorrect (𝑦' ≠ 𝑓$ 𝑥' ) then multiply by 𝑒)!



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))

+  –

𝑡 = 1



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))

+  –
+   –

𝑡 = 2



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))

+  –
+   –

𝑡 = 2



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))

+  –
+   –

𝑡 = 2



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))

+  –

+  –

+   –

𝑡 = 3



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))

+  –

+  –

+   –

𝑡 = 3



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))

+  –

+  –

+   –

𝑡 = 3



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))

+  

+ 

+ 
+  

+ 

+  

+  + 
+ 

+ + 

𝑡 = 𝑇



AdaBoost

1.  𝑤! ←
!
"
, … , !

"
 (𝑤!,$  weight for 𝑥$ , 𝑦$ )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓% ← Train 𝑍, 𝑤%
4. 𝜖% ← Error 𝑓% , 𝑍, 𝑤%
5.      𝛽% ←

!
&
ln !'(!

(!
6.      𝑤%)!,$ ∝ 𝑤%,$ ⋅ 𝑒'*!⋅,"⋅-! ."  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑%/!0 𝛽% ⋅ 𝑓%(𝑥))

+  

+ 

+ 
+  

+ 

+  

+  + 
+ 

+ + 



AdaBoost Summary

• Strengths:
• Fast and simple to implement
• No hyperparameters (except for 𝑇)
• Very few assumptions on base models

• Weaknesses:
• Can be susceptible to noise/outliers when there is insufficient data
• No way to parallelize
• Small gains over complex base models
• Specific to classification!



BoosLng as Gradient Descent

• Both algorithms: new	model = old	model + update

• Gradient Descent:

𝜃%)! = 𝜃% − 𝛼 ⋅ ∇1𝐿 𝜃%; 𝑍

• BoosOng:

𝐹%)! 𝑥 = 𝐹% 𝑥 + 𝛽%)! ⋅ 𝑓%)! 𝑥

• Here, 𝐹% 𝑥 = ∑$/!% 𝛽$ ⋅ 𝑓$ 𝑥



BoosLng as Gradient Descent

• Assuming 𝛽% = 1 for all 𝑡, then:

𝐹% 𝑥$ + 𝑓%)! 𝑥$ = 𝐹%)! 𝑥$ ≈ 𝑦$



Boosting as Gradient Descent

• Assuming 𝛽% = 1 for all 𝑡, then:

𝐹% 𝑥$ + 𝑓%)! 𝑥$ = 𝐹%)! 𝑥$ ≈ 𝑦$

• Rewriting this equation, we have

𝑓%)! 𝑥$ = 𝐹%)! 𝑥$ − 𝐹% 𝑥$ ≈ 𝑦$ − 𝐹% 𝑥$

“residuals”, i.e., error of the current model



Boosting as Gradient Descent

• In other words, at each step, boosXng is training the next model 𝑓%)! 
to approximate the residual:

𝑓%)! 𝑥$ ≈ 𝑦$ − 𝐹% 𝑥$

• Idea: Train 𝑓%)! directly to predict residuals 𝑦$ − 𝐹% 𝑥$

• This strategy works for regression as well!

“residuals”, i.e., error of the current model



BoosLng as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1,… , 𝑇 :
• Step 1: Train 𝑓$*! using dataset

𝑍%)! = 𝑥$ , 𝑦$ − 𝐹% 𝑥$ $/!
"

• Step 2: Take

𝐹%)! 𝑥 = 𝐹% 𝑥 + 𝑓%)! 𝑥

• Return the final model 𝐹0



Boosting as Gradient Descent

• Consider losses of the form

𝐿 𝐹; 𝑍 =
1
𝑛
T
$/!

"

U𝐿 𝐹 𝑥$ ; 𝑦$

• In other words, sum of individual label-level losses U𝐿 V𝑦; 𝑦  of a 
predicXon V𝑦 = 𝐹 𝑥  if the ground truth label is 𝑦

• For example, U𝐿 V𝑦; 𝑦 = !
&
𝑦	̂ − 𝑦 & yields the MSE loss



Boosting as Gradient Descent

• Residuals are the gradient of the squared error U𝐿 𝑦, V𝑦 = !
&
𝑦 − V𝑦 &:

−
𝜕U𝐿
𝜕 V𝑦

𝐹% 𝑥$ ; 𝑦$ = 𝑦$ − 𝐹% 𝑥$ = residual2

• For general U𝐿, instead of 𝑥$ , 𝑦$ − 𝐹% 𝑥$ $/!
"

 we can train 𝑓%)! on

𝑍%)! = 𝑥$ , −
𝜕U𝐿
𝜕 V𝑦

𝐹% 𝑥$ ; 𝑦$
$/!

"



BoosLng as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1,… , 𝑇 :
• Step 1: Train 𝑓$*! using dataset

𝑍%)! = 𝑥$ , 𝑦$ − 𝐹% 𝑥$ $/!
"

• Step 2: Take

𝐹%)! 𝑥 = 𝐹% 𝑥 + 𝑓%)! 𝑥

• Return the final model 𝐹0



BoosLng as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1,… , 𝑇 :
• Step 1: Train 𝑓$*! using dataset

𝑍%)! = 𝑥$ , −
𝜕U𝐿
𝜕 V𝑦

𝐹% 𝑥$ ; 𝑦$
$/!

"

• Step 2: Take

𝐹%)! 𝑥 = 𝐹% 𝑥 + 𝑓%)! 𝑥

• Return the final model 𝐹0



Boosting as Gradient Descent

• Casts ensemble learning in the loss minimizaOon framework
• Model family: Sum of base models 𝐹& 𝑥 = ∑$%!& 𝑓$ 𝑥
• Loss: Any differenIable loss expressed as

𝐿 𝐹; 𝑍 =T
$/!

"

U𝐿 𝐹 𝑥$ , 𝑦$

• Gradient boosXng is a general paradigm for training ensembles with 
specialized losses (e.g., most NLL losses)



Gradient Boosting in Practice

• Gradient boosting with depth-limited decision trees (e.g., depth 3) is 
one of the most powerful off-the-shelf classifiers available
• Caveat: Inherits decision tree hyperparameters

• XGBoost is a very efficient implementation suitable for production use
• A popular library for gradient boosted decision trees
• Optimized for computational efficiency of training and testing
• Used in many competition winning entries, across many domains
• https://xgboost.readthedocs.io

https://xgboost.readthedocs.io/

