Announcements

- Homework 3 due in one week
- Quiz 3 due tomorrow

Project

- Everyone should be on a project team now!
 - Email me ASAP if not!
- Project Milestone 1 due in 2 weeks (10/18) at 8pm
 - 1 page plan (details shortly)
 - Should be easy, but please don't procrastinate!

Project

- Project Instructions
 - <u>https://docs.google.com/document/d/1q_iR-EH28eqwq2oCi9uSpBnWRKP8XFrN/</u>
- Project Milestone 1
 - <u>https://docs.google.com/document/d/1R8SL6gcI0GlqmeB_p8fv_jVX7b62mIZ5/</u>

Goal

- Build experience experimenting with machine learning algorithms on real-world datasets
 - Lots of insights that you don't get from lectures, or even homework!
 - Build intuition for relative importance of different design decisions
 - Learn to start simple and increment from there

Datasets

• Computer vision

- CIFAR-10 dataset
- 10-class classification dataset (cat, dog, deer, car, truck, etc.)
- <u>https://www.cs.toronto.edu/~kriz/cifar.html</u>

• Natural language processing (NLP)

- IMDB reviews dataset
- Sentiment prediction dataset (binary classification)
- <u>https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews</u>

Datasets

- Strongly encourage subsetting data while prototyping algorithms
 - Typically, a thousand examples is plenty to train on for prototyping
- You should scale up the dataset when performing final training/evaluation runs
 - However, if you have limited compute, you are free to subset the dataset even for final training/evaluation runs to a reasonable extent
 - E.g., you should probably have at least a few thousand training examples)

Compute

- You are strongly encouraged to use (relatively) small architectures
- Thus, you should be able to use Google Colab for all evaluations
- You may also consider signing up for Amazon SageMaker Studio Lab
 - <u>https://studiolab.sagemaker.aws</u>

Implementation

• For each dataset, you must implement:

- One traditional pipeline (e.g., logistic/softmax regression, etc.)
- One deep learning pipeline (e.g., CNNs, RNNs, transformers, etc.)
- Four pipelines total

Traditional Pipeline

• For NLP:

- You should use feature engineering in the traditional pipeline
- You are allowed (but not required) to use pretrained word embeddings
- You may want to try using PCA or LASSO regularization for feature selection
- You should experiment with different sets of features

• For computer vision:

- You should try softmax regression
- You should make sure to standardize your features as described in class

Deep Learning Pipeline

- For at least one of the two datasets, you should build your own architecture from scratching in PyTorch
 - MLPs do not count!
- If using a preexisting architecture, you should compare training from scratch vs. finetuning a pretrained model
- For architectures that you build yourself, you should compare varying hyperparameters including the dimension of intermediate layers and the number of intermediate layers

Keep It Simple!

- For the architecture(s) you implement yourself, keep it simple!
- Even very simple architectures such as a single convolutional or LSTM layer can already be very effective

Evaluation

- You are expected to perform two evaluations:
 - **Standard evaluation:** Evaluate performance on test set, including different hyperparameter choices
 - Robustness evaluation: Evaluate performance on dataset shifts

Test Set Performance

- Report the test set performance of your approach
- Hyperparameter variations
 - Traditional pipeline: At least one hyperparameter of your learning algorithm
 - Deep learning pipeline: Hyperparameters described on a previous slide

Dataset Shifts

- For each dataset, you should try some kind of shift to the inputs, ideally finding one that breaks your model
 - **Computer vision:** Change contrast or brightness of images, rotate images, etc.
 - NLP: Train on short reviews and test on long reviews, swap out words with their synonyms, etc.

Grading

- Most of your grade is on completing all the tasks described above
- A part is on comprehensive exploration of design choices
 - Milestone 2: 2/10 points
 - Milestone 3: 3/15 points
 - Tentative breakdown
- Examples:
 - Trying interesting features or feature selection techniques
 - Comparing interesting variations of neural network architectures
 - Devise interesting choices of dataset shift

Project Milestone 1 (1 Page)

• Part 1: Implementation

- Provide plans for feature engineering
- Brainstorm neural network architectures (optional)

• Part 2: Evaluation

- Describe hyperparameters you intend to vary
- Brainstorm dataset shifts
- Describe how you are going to split work among your group
 - Everyone should contribute to each part!

Lecture 10: Learning Ensembles

CIS 4190/5190 Fall 2023

Recap: Ensemble Design Decisions

- How to learn the base models?
 - Bagging (randomize dataset)
 - Boosting (weighted dataset)
- How to combine the learned base models?
 - Averaging (regression) or majority vote (classification)

Recap: Bagging

- Step 1: Create bootstrap replicates of the original training dataset
- Step 2: Train a classifier for each replicate
- Step 3 (Optional): Use held-out validation set to weight models
 - Can just use average predictions

Recap: Bagging

Recap: Random Forests

- Ensemble of decision trees using bagging
 - Typically use simple average (over probabilities for classification)

• Intuition:

- Large decision trees are good nonlinear models, but high variance
- Random forests average over many decision trees to reduce variance without increasing bias

Recap: Random Forests

- **Tweak 1:** Randomize features in learning algorithm instead of bagging
 - At DT node splitting step, subsample $\approx \sqrt{d}$ features
 - Allows each tree to use all features, but not at every node
 - Aside: If a few features are highly predictive, then they will be selected in many trees, causing the base models to be highly correlated
- Tweak 2: Train unpruned decision trees
 - Ensures base models have higher capacity
 - Intuition: Skipping pruning increases variance

Recap: AdaBoost

• Input

- Training dataset Z
- Learning algorithm Train(Z, w) that can handle weights w
- Hyperparameter T indicating number of models to train

• Output

• Ensemble of models $F(x) = \sum_{t=1}^{T} \beta_t \cdot f_t(x)$

AdaBoost

$$i. w_{1} \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_{i}, y_{i}))$$

$$i. for t \in \{1, \dots, T\}$$

$$f_{t} \leftarrow \text{Train}(Z, w_{t})$$

$$f_{t} \leftarrow \text{Error}(f_{t}, Z, w_{t})$$

$$f_{t} \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_{t}}{\epsilon_{t}}$$

$$g_{t} \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_{t}}{\epsilon_{t}}$$

$$g_{t} \leftarrow w_{t,i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}(x_{i})} \text{ (for all } i)$$

$$f_{t} \text{ return } F(x) = \text{sign}(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x))$$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

AdaBoost
focus on linear classifiers
$$f_t$$

1. $w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$
2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

$$t = 1$$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. **for** $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. **return** $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$
Use convention $y_i \in \{-1, +1\}$
If correct $(y_i = f_t(x_i))$ then multiply by $e^{-\beta_t}$
If incorrect $(y_i \neq f_t(x_i))$ then multiply by e^{β_t}

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

$$t = 2$$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

$$t = 2$$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. **for** $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. **return** $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

$$t = 2$$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

$$t = 3$$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

$$t = 3$$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

$$t = 3$$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

t = T

AdaBoost

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. **for** $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. **return** $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

AdaBoost Summary

• Strengths:

- Fast and simple to implement
- No hyperparameters (except for *T*)
- Very few assumptions on base models

• Weaknesses:

- Can be susceptible to noise/outliers when there is insufficient data
- No way to parallelize
- Small gains over complex base models
- Specific to classification!

- Both algorithms: new model = old model + update
- Gradient Descent:

$$\theta_{t+1} = \theta_t - \alpha \cdot \nabla_{\theta} L(\theta_t; Z)$$

• Boosting:

$$F_{t+1}(x) = F_t(x) + \beta_{t+1} \cdot f_{t+1}(x)$$

• Here, $F_t(x) = \sum_{i=1}^t \beta_i \cdot f_i(x)$

• Assuming $\beta_t = 1$ for all t, then:

 $F_t(x_i) + f_{t+1}(x_i) = F_{t+1}(x_i)$

• Assuming $\beta_t = 1$ for all t, then:

$$F_t(x_i) + f_{t+1}(x_i) = F_{t+1}(x_i) \approx y_i$$

• Rewriting this equation, we have

$$f_{t+1}(x_i) = F_{t+1}(x_i) - F_t(x_i) \approx y_i - F_t(x_i)$$

"residuals", i.e., error of the current model

• In other words, at each step, boosting is training the next model f_{t+1} to approximate the residual:

$$f_{t+1}(x_i) \approx \underbrace{y_i - F_t(x_i)}_{}$$

"residuals", i.e., error of the current model

- Idea: Train f_{t+1} directly to predict residuals $y_i F_t(x_i)$
- This strategy works for regression as well!

- Algorithm: For each $t \in \{1, ..., T\}$:
 - Step 1: Train f_{t+1} using dataset

$$Z_{t+1} = \{ (x_i, y_i - F_t(x_i)) \}_{i=1}^n$$

• Step 2: Take

$$F_{t+1}(x) = F_t(x) + f_{t+1}(x)$$

• Return the final model F_T

Consider losses of the form

$$L(F;Z) = \frac{1}{n} \sum_{i=1}^{n} \tilde{L}(F(x_i); y_i)$$

- In other words, sum of individual label-level losses $\tilde{L}(\hat{y}; y)$ of a prediction $\hat{y} = F(x)$ if the ground truth label is y
- For example, $\tilde{L}(\hat{y}; y) = \frac{1}{2}(y y)^2$ yields the MSE loss

• Residuals are the gradient of the squared error $\tilde{L}(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2$:

$$-\frac{\partial \tilde{L}}{\partial \hat{y}}(F_t(x_i); y_i) = y_i - F_t(x_i) = \text{residual}_i$$

• For general \tilde{L} , instead of $\{(x_i, y_i - F_t(x_i))\}_{i=1}^n$ we can train f_{t+1} on

$$Z_{t+1} = \left\{ \left(x_i, -\frac{\partial \tilde{L}}{\partial \hat{y}} \left(F_t(x_i); y_i \right) \right) \right\}_{i=1}^n$$

• Algorithm: For each $t \in \{1, ..., T\}$:

• Step 1: Train f_{t+1} using dataset

$$Z_{t+1} = \{ (x_i, y_i - F_t(x_i)) \}_{i=1}^n$$

• Step 2: Take

$$F_{t+1}(x) = F_t(x) + f_{t+1}(x)$$

• Return the final model F_T

- Algorithm: For each $t \in \{1, ..., T\}$:
 - Step 1: Train f_{t+1} using dataset

$$Z_{t+1} = \left\{ \left(x_i, -\frac{\partial \tilde{L}}{\partial \hat{y}} \left(F_t(x_i); y_i \right) \right) \right\}_{i=1}^n$$

• Step 2: Take

$$F_{t+1}(x) = F_t(x) + f_{t+1}(x)$$

• Return the final model F_T

- Casts ensemble learning in the loss minimization framework
 - Model family: Sum of base models $F_T(x) = \sum_{t=1}^T f_t(x)$
 - Loss: Any differentiable loss expressed as

$$L(F; \mathbf{Z}) = \sum_{i=1}^{n} \tilde{\mathbf{L}}(F(\mathbf{x}_i), \mathbf{y}_i)$$

• Gradient boosting is a general paradigm for training ensembles with specialized losses (e.g., most NLL losses)

Gradient Boosting in Practice

- Gradient boosting with depth-limited decision trees (e.g., depth 3) is one of the most powerful off-the-shelf classifiers available
 - Caveat: Inherits decision tree hyperparameters
- XGBoost is a very efficient implementation suitable for production use
 - A popular library for gradient boosted decision trees
 - Optimized for computational efficiency of training and testing
 - Used in many competition winning entries, across many domains
 - <u>https://xgboost.readthedocs.io</u>