Announcements

- Homework 3 due in Wednesday, October 11 at 8pm
- Quiz 4 due Wednesday, October 11 at 8pm
 - We'll leave it open for a bit longer

Note that

Note that

$$F_t(x_i) + f_{t+1}(x_i) = F_{t+1}(x_i) \approx y_i$$

• Rewriting this equation, we have

$$f_{t+1}(x_i) = F_{t+1}(x_i) - F_t(x_i)$$

Note that

$$F_t(x_i) + f_{t+1}(x_i) = F_{t+1}(x_i) \approx y_i$$

• Rewriting this equation, we have

$$f_{t+1}(x_i) = F_{t+1}(x_i) - F_t(x_i) \approx y_i - F_t(x_i)$$

"residuals", i.e., error of the current model

• In other words, at each step, boosting is training the next model f_{t+1} to approximate the residual:

$$f_{t+1}(x_i) \approx \underbrace{y_i - F_t(x_i)}_{}$$

"residuals", i.e., error of the current model

- Algorithm: For each $t \in \{1, ..., T\}$:
 - Step 1: Train f_{t+1} using dataset

$$Z_{t+1} = \{ (x_i, y_i - F_t(x_i)) \}_{i=1}^n$$

• Step 2: Take

$$F_{t+1}(x) = F_t(x) + f_{t+1}(x)$$

• Return the final model F_T

• Residuals are the gradient of the squared error $\tilde{L}(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2$:

 $-\frac{\partial \tilde{L}}{\partial \hat{y}}(F_t(x_i);y_i)$

• Residuals are the gradient of the squared error $\tilde{L}(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2$:

$$-\frac{\partial \tilde{L}}{\partial \hat{y}}(F_t(x_i); y_i) = y_i - F_t(x_i)$$

• Residuals are the gradient of the squared error $\tilde{L}(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2$:

$$-\frac{\partial \tilde{L}}{\partial \hat{y}}(F_t(x_i); y_i) = y_i - F_t(x_i) = \text{residual}_i$$

• For general \tilde{L} , instead of $\{(x_i, y_i - F_t(x_i))\}_{i=1}^n$ we can train f_{t+1} on

$$Z_{t+1} = \left\{ \left(x_i, -\frac{\partial \tilde{L}}{\partial \hat{y}} \left(F_t(x_i); y_i \right) \right) \right\}_{i=1}^n$$

• Algorithm: For each $t \in \{1, ..., T\}$:

• Step 1: Train f_{t+1} using dataset

$$Z_{t+1} = \{ (x_i, y_i - F_t(x_i)) \}_{i=1}^n$$

• Step 2: Take

$$F_{t+1}(x) = F_t(x) + f_{t+1}(x)$$

• Return the final model F_T

- Algorithm: For each $t \in \{1, ..., T\}$:
 - Step 1: Train f_{t+1} using dataset

$$Z_{t+1} = \left\{ \left(x_i, -\frac{\partial \tilde{L}}{\partial \hat{y}} \left(F_t(x_i); y_i \right) \right) \right\}_{i=1}^n$$

• Step 2: Take

$$F_{t+1}(x) = F_t(x) + f_{t+1}(x)$$

• Return the final model F_T

- Casts ensemble learning in the loss minimization framework
 - Model family: Sum of base models $F_T(x) = \sum_{t=1}^T f_t(x)$
 - Loss: Any differentiable loss expressed as

$$L(F; \mathbf{Z}) = \sum_{i=1}^{n} \tilde{\mathbf{L}}(F(\mathbf{x}_i), \mathbf{y}_i)$$

• Gradient boosting is a general paradigm for training ensembles with specialized losses (e.g., most NLL losses)

Gradient Boosting in Practice

- Gradient boosting with depth-limited decision trees (e.g., depth 3) is one of the most powerful off-the-shelf classifiers available
 - Caveat: Inherits decision tree hyperparameters
- XGBoost is a very efficient implementation suitable for production use
 - A popular library for gradient boosted decision trees
 - Optimized for computational efficiency of training and testing
 - Used in many competition winning entries, across many domains
 - <u>https://xgboost.readthedocs.io</u>

Data Engineering

- We have been assuming that the dataset Z is given
- For many problems, building Z is >80% of the work!
 - What is the prediction task we want to solve?
 - Data integration: Integrate data across many data sources
- Focus of CIS 5450, but we give a summary

Typical Data Engineering Pipeline

Data Collection Challenges

- Even gathering the relevant data can be a huge challenge
 - Proprietary/private data
 - Data must be labeled
 - Web scraping
 - Unclear what data is even needed
- Data must be converted into tables
 - CSV, JSON, XML, etc.
 - Images, Excel files, MATLAB, etc.
 - Text data in documents and webpages

Data Integration

tracks

• • Hon	· · · · ·	• ਼ੁਰ = e Layout Formulas	a Data Review	Track 🗹 View				Q- Search Sheet	C L+ Share
7	$ X \lor f_x $,	Data Review	VIEW					
	А	В	С	DE		F	G	Н	
1	id	name	album_id	media_type_id genre_id	c	composer	milliseconds	bytes	unit_price
2	1	For Those Ab	1	1	14	Angus Young	343719	11170334	0.99
3	2	Balls to the V	2	2	1		342562	5510424	0.99
4	3	Fast As a Sha	3	2	1 F	Baltes, S. K	230619	3990994	0.99
5	4	Restless and	3	2	1 F	. Baltes, R.A	252051	4331779	0.99
6	5	Princess of th	3	2	1[Deaffy & R.A	375418	6290521	0.99
7	6	Put The Finge	1	1	14	Angus Young	205662	6713451	0.99
8	7	Let's Get It U	1	1	14	Angus Young	233926	7636561	0.99
9	8	Inject The Ve	1	1	14	Angus Young	210834	6852860	0.99
10	9	Snowballed	1	1	14	Angus Young	203102	6599424	0.99
11	10	Evil Walks	1	1	14	Angus Young	263497	8611245	0.99
12	11	C.O.D.	1	1	14	Angus Young	199836	6566314	0.99
13	12	Breaking The	1	1	14	Angus Young	263288	8596840	0.99
14	13	Night Of The	1	1	14	Angus Young	205688	6706347	0.99
15	14	Spellbound	1	1	14	Angus Young	270863	8817038	0.99
Rea	Track +							a	+ 200%

albums

● ● ●										
C2 $\stackrel{\wedge}{\mathbf{v}}$ \times \checkmark f_x 1 \mathbf{v}										
	А	В	С	D						
1	id	title	artist_id							
2	1	For Those About To Ro	1							
3	2	Balls to the Wall	2							
4	3	Restless and Wild	2							
5	4	Let There Be Rock	1							
6	5	Big Ones	3							
7	6	Jagged Little Pill	4							
8	7	Facelift	5							
9	9	Plays Metallica By Four	7							
10	10	Audioslave	8							
11	11	Out Of Exile	8							
12	12	BackBeat Soundtrack	9							
13	13	The Best Of Billy Cobha	10							
14	14	Alcohol Fueled Brewta	11							
4 -	Album +	Alashal Fueled Drouts	11							
Read	Ready III III + 200%									

artists

••	•	ľ	₽ ×		Q~ Search	Sheet			
Hom		Insert		je Layout	Formulas	Data	»	🛓 Shar	e 🗸
G5	× v	×	√ f>	c					*
		A			В	(С		D
-1-	id			name					
2			1	AC/D	С				
3			2	Accep	ot				
4			3	Aeros	mith				
5			2	Alanis	6 Moriss	ette			
6			5	Alice	In Chain	S			
7			7	Ароса	alyptica				
8			8	Audic	slave				
9			9	BackE	Beat				
10			10) Billy C	Cobham				
11			11	Black	Label So	ociety			
12			12	Black	Sabbatl	า			
13			13	Body	Count				
4.		Artist	+	D	Diskins				
Rea	dy						_	+ 20	00%

Data Integration Challenges

Merged table may be too large for memory

- Incrementally load and join data, using SGD or mini-batches
- Use online learning techniques

• Encoding issues

- Inconsistent data formats or terminology
- Key aspects mentioned in cell comments or auxiliary files

• Record linking problem

• Inconsistent column values

Record Linking Strategies

- String similarity above a threshold
 - Edit distance ("J Smith" → "Jon Smithee" with 4 edits)
 - String overlap (n-grams)
- Can tokenize and compare tokens, not just strings
- Can consider multiple fields (e.g., name, address)

Ins ID	Name
203342	J Smith
123452	Mao Y

Student ID	Name
3432432	Jon Smithee
9734783	Jane Smyth
8273737	Ying Mao

Encoding Features

Column types

- Categorical: Unordered finite set
- Ordinal: Finite set with order
- Numerical: Number (warning: numbers are not always numerical, e.g., ID)

Categorical		al Num	erical								Ordinal ↓		
MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	•••	MoSold	YrSold	SaleType	SaleCondition	SalePrice	
20	RL	80.0	10400	Pave	NaN	Reg	•••	5	2008	WD	Normal	174000	
180	RM	35.0	3675	Pave	NaN	Reg	•••	5	2006	WD	Normal	145000	
60	FV	72.0	8640	Pave	NaN	Reg	•••	6	2010	Con	Normal	215200	
20	RL	84.0	11670	Pave	NaN	IR1	•••	3	2007	WD	Normal	320000	
60	RL	43.0	10667	Pave	NaN	IR2	•••	4	2009	ConLw	Normal	212000	
80	RL	82.0	9020	Pave	NaN	Reg	•••	6	2008	WD	Normal	168500	

Encoding Features

- Encoding categorical features
 - Encode as one-hot vector
 - **Example:** Expand $X_j \in \{1,2,3\}$ into [1,0,0] or [0,1,0] or [0,0,1]
- Encoding ordinal features
 - Convert to a number, preserving the order
 - **Example:** [low, medium, high] \rightarrow [1, 2, 3]
 - Encoding as categorical sometimes works better (try both!)

Missing Values

Basic solutions

- Delete features with mostly missing values
- Delete instances with missing features

Imputation

- Fill missing features with mean (for numeric) or mode (for categorical)
- Alternatively, predict missing values using supervised learning
- Good practice to add binary feature indicating missingness for each feature that has missing values
- Example: Medical history might be missing from a new patient

Outliers

Causes

- Human error in data collection or data entry
- Measurement/instrumentation errors
- Experimental errors
- Data merge errors (e.g., merging datasets with different scales)
- Data preprocessing errors
- Naturally from data generating process

Outliers

- Assume feature values are Gaussian
- Removing outliers
 - Discard points more than k standard deviations from mean
 - E.g., $k \in \{2.5,3,3.5\}$
- Alternative: Use loss that is robust to outliers (e.g., *L*₁ error)

Other Data Quality Issues

Incorrect feature values

- Typos (e.g., color = "bleu", "gren", "redd")
- Inconsistent spelling (e.g., "color", "colour")
- Inconsistent abbreviations (e.g., "Oak St.", "Oak Street")
- Garbage (e.g., color = "w_lr-śij")
- Potential solution: Compare against a dictionary

Missing instance labels

- Delete instances with missing labels
- Can use semi-supervised learning techniques that leverage unlabeled data

Script Your Data Preprocessing!

• Don't manually edit

- No history of changes
- Very easy to introduce mistakes
- Hard to change earlier decisions

• Write a script to load and preprocess data

- Documents all steps
- Incremental debugging
- Easy to make changes to earlier steps
- Repeatable

Typical Data Engineering Pipeline

Understand Your Data!

• Basic statistics

- Feature distribution
- Feature-label correlations
- Feature-feature correlations
- "describe" function in pandas
- Data dictionary
- Can we do more?
 - Unsupervised learning!

Lecture 11: K-Means Clustering

CIS 4190/5190 Fall 2023

Types of Learning

Supervised learning

- Input: Examples of inputs and desired outputs
- **Output:** Model that predicts output given a new input

Unsupervised learning

- Input: Examples of some data (no "outputs")
- **Output:** Representation of structure in the data

• Reinforcement learning

- Input: Sequence of interactions with an environment
- **Output:** Policy that performs a desired task

Unsupervised Learning

Structure μ of x

Applications of Unsupervised Learning

Visualization

• Exploring a dataset, or a machine learning model's outputs

• Feature Learning

- Automatically construct lower-dimensional features
- Especially useful with a lot of unlabeled data and just a few labeled examples

Compression (for storage)

- E.g., JPEG is adopting unsupervised machine learning approaches
- https://jpeg.org/items/20190327_press.html

Applications of Unsupervised Learning

- "Based on our polling data, there are three main voting blocs, based on age, race, education level, income, political beliefs, and homeownership. Features like marital status and # children are irrelevant."
- "Our model says our company's profits actually vary systematically based on the weather, is this actually the case?"

Applications of Unsupervised Learning

Loss Minimization Framework

- To design an unsupervised learning algorithm:
 - Model family: Choose a model family $F = \{f_\beta\}_\beta$, where $\mu = f_\beta(x)$ encodes the structure of x
 - Loss function: Choose a loss function $L(\beta; \mathbb{Z})$
- Resulting algorithm:

$$\hat{\beta}(Z) = \arg\min_{\beta} L(\beta; Z)$$

Types of Unsupervised Learning

• Clustering

- Map samples $x \in \mathbb{R}^d$ to $f(x) \in \mathbb{N}$
- Each $k \in \mathbb{N}$ is associated with a representative example $x_k \in \mathbb{R}^d$
- Examples: K-means clustering, greedy hierarchical clustering

Dimensionality reduction

- Map samples $x \in \mathbb{R}^d$ to $f(x) \in \mathbb{R}^{d'}$, where $d' \ll d$
- Example: Principal components analysis (PCA)
- Modern deep learning is based on this idea

- Input: Dataset $Z = \{x_i\}_{i=1}^n$
- **Output:** Model $f(x) \in \{1, ..., K\}$
 - Intuition: Predictions should encode "natural" clusters in the data
 - Here, $K \in \mathbb{N}$ is a hyperparameter

- Input: Dataset $Z = \{x_i\}_{i=1}^n$
- **Output:** Model $f(x) \in \{1, ..., K\}$
 - Intuition: Predictions should encode "natural" clusters in the data
 - Here, $K \in \mathbb{N}$ is a hyperparameter
- How to formalize "naturalness"?
 - Using a loss function!

Clustering Loss

• Loss depends on the structure of the data we are trying to capture

• K-Means clustering aims to minimize specific loss over a specific model family

K-Means Clustering Model Family

- **Parameters:** Set of **centroids** μ_i (for $j \in \{1, ..., K\}$)
 - One for each cluster (*K* is a hyperparameter)
 - Intuition: μ_j is the "center" of cluster j
- Given a new example x, assign it to the nearest cluster:

$$f_{\mu}(x) = \arg\min_{j} \left\| x - \mu_{j} \right\|_{2}^{2}$$

Can use other distance functions

• Compute MSE of each point in the training data to its centroid

• Compute MSE of each point in the training data to its centroid

- K-means clustering chooses centroids that minimize loss of training examples Z
- Compute MSE of each point in the training data to its centroid:

$$L(\mu; Z) = \sum_{i=1}^{n} \left\| x_{i} - \mu_{f_{\mu}(x_{i})} \right\|_{2}^{2}$$

K-Means Clustering Optimization

- Minimizing the loss exactly is hard due to local minima
- Use an "alternating minimization" heuristic
 - Works better than gradient descent in practice
 - Provably converges to local minimum

Kmeans(Z): for $j \in \{1, ..., k\}$: $\mu_{1,j} \leftarrow \text{Random}(Z)$ for $t \in \{1, 2, ...\}$: for $i \in \{1, ..., n\}$: $j_{t,i} \leftarrow f_{\mu_t}(x_i)$ for $j \in \{1, ..., k\}$: $\mu_{t,i} \leftarrow \operatorname{mean}(\{x_i \mid j_{t,i} = j\})$ **if** $\mu_t = \mu_{t-1}$: **return** μ_t

Kmeans(Z): **for** $j \in \{1, ..., k\}$: $\mu_{1,j} \leftarrow \text{Random}(Z)$ for $t \in \{1, 2, ...\}$: for $i \in \{1, ..., n\}$: $j_{t,i} \leftarrow f_{\mu_t}(x_i)$ for $j \in \{1, ..., k\}$: $\mu_{t,j} \leftarrow \operatorname{mean}(\{x_i \mid j_{t,i} = j\})$ **if** $\mu_t = \mu_{t-1}$: **return** μ_t

https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

Random Initialization

- Sensitive to initialization
- One strategy is to run multiple times with different random centroids and choose the model with lowest MSE

• Alternative: K-means++

- Randomly initialize first centroid to some $x \in Z$
- Subsequently, choose centroid randomly according to $p(x) \propto d_x^2$, where d_x is the distance to the nearest centroid so far
- Upweights points that are farther from existing centroids

Number of Clusters

- As *K* becomes large
 - MSE becomes small
 - Many clusters \rightarrow might be less useful
- Choice of *K* is subjective

Number of Clusters

https://blog.cambridgespark.com/how-to-determine-the-optimal-number-of-clusters-for-k-means-clustering-14f27070048f

Hierarchical Clustering

• Alternative approach to clustering that makes local changes

Agglomerative clustering

- Initialize each example to its own cluster
- Iteratively agglomerate "closest" clusters

• Divisive clustering

- Initialize all examples in a single cluster
- Iteratively divide "most distant" sub-clusters
- Incremental nature results in hierarchical clusters

Selecting Clusters

Single linkage

- Compute distances between most similar members of pair of clusters
- Merge pair of clusters with smallest minimum distance

Complete linkage

- Compute distances between most distant members of pair of clusters
- Merge pair of clusters with smallest maximum distance

Optimization Algorithm

- Computing pairwise distances is $O(n^2)$, which can be expensive
- Solution
 - Precompute pairwise distances d_{ij} between clusters i and j
 - Update d_{ij} with every merge/divide

Example: Phylogenetic Trees

https://towardsdatascience.com/hierarchical-clustering-and-its-applications-41c1ad4441a6

Example: Phylogenetic Trees

- Features: Gene sequences
- Distance: Edit distance
- Use agglomerative clustering to compute hierarchical clusters, which form phylogenetic trees

https://towardsdatascience.com/hierarchical-clustering-and-its-applications-41c1ad4441a6

Many Clustering Algorithms

https://scikit-learn.org/stable/modules/clustering.html#clustering