
Announcements

• Homework 3 due in Wednesday, October 11 at 8pm

• Quiz 4 due Wednesday, October 11 at 8pm
• We’ll leave it open for a bit longer

Boosting as Gradient Descent

• Note that

𝐹! 𝑥" + 𝑓!#$ 𝑥" = 𝐹!#$ 𝑥" ≈ 𝑦"

Boosting as Gradient Descent

• Note that

𝐹! 𝑥" + 𝑓!#$ 𝑥" = 𝐹!#$ 𝑥" ≈ 𝑦"

• Rewriting this equation, we have

𝑓!#$ 𝑥" = 𝐹!#$ 𝑥" − 𝐹! 𝑥" ≈ 𝑦" − 𝐹! 𝑥"

Boosting as Gradient Descent

• Note that

𝐹! 𝑥" + 𝑓!#$ 𝑥" = 𝐹!#$ 𝑥" ≈ 𝑦"

• Rewriting this equation, we have

𝑓!#$ 𝑥" = 𝐹!#$ 𝑥" − 𝐹! 𝑥" ≈ 𝑦" − 𝐹! 𝑥"

“residuals”, i.e., error of the current model

Boos3ng as Gradient Descent

• In other words, at each step, boosting is training the next model 𝑓!#$
to approximate the residual:

𝑓!#$ 𝑥" ≈ 𝑦" − 𝐹! 𝑥"

“residuals”, i.e., error of the current model

Boosting as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1,… , 𝑇 :
• Step 1: Train 𝑓!"# using dataset

𝑍!#$ = 𝑥" , 𝑦" − 𝐹! 𝑥" "%$
&

• Step 2: Take

𝐹!#$ 𝑥 = 𝐹! 𝑥 + 𝑓!#$ 𝑥

• Return the final model 𝐹'

Boosting as Gradient Descent

• Residuals are the gradient of the squared error 1𝐿 𝑦, 3𝑦 = $
(
𝑦 − 3𝑦 (:

−
𝜕1𝐿
𝜕 3𝑦

𝐹! 𝑥" ; 𝑦" = 𝑦" − 𝐹! 𝑥" = residual)

Boosting as Gradient Descent

• Residuals are the gradient of the squared error 1𝐿 𝑦, 3𝑦 = $
(
𝑦 − 3𝑦 (:

−
𝜕1𝐿
𝜕 3𝑦

𝐹! 𝑥" ; 𝑦" = 𝑦" − 𝐹! 𝑥" = residual)

Boosting as Gradient Descent

• Residuals are the gradient of the squared error 1𝐿 𝑦, 3𝑦 = $
(
𝑦 − 3𝑦 (:

−
𝜕1𝐿
𝜕 3𝑦

𝐹! 𝑥" ; 𝑦" = 𝑦" − 𝐹! 𝑥" = residual)

• For general 1𝐿, instead of 𝑥" , 𝑦" − 𝐹! 𝑥" "%$
&

 we can train 𝑓!#$ on

𝑍!#$ = 𝑥" , −
𝜕1𝐿
𝜕 3𝑦

𝐹! 𝑥" ; 𝑦"
"%$

&

Boosting as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1,… , 𝑇 :
• Step 1: Train 𝑓!"# using dataset

𝑍!#$ = 𝑥" , 𝑦" − 𝐹! 𝑥" "%$
&

• Step 2: Take

𝐹!#$ 𝑥 = 𝐹! 𝑥 + 𝑓!#$ 𝑥

• Return the final model 𝐹'

Boosting as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1,… , 𝑇 :
• Step 1: Train 𝑓!"# using dataset

𝑍!#$ = 𝑥" , −
𝜕1𝐿
𝜕 3𝑦

𝐹! 𝑥" ; 𝑦"
"%$

&

• Step 2: Take

𝐹!#$ 𝑥 = 𝐹! 𝑥 + 𝑓!#$ 𝑥

• Return the final model 𝐹'

Boosting as Gradient Descent

• Casts ensemble learning in the loss minimiza;on framework
• Model family: Sum of base models 𝐹$ 𝑥 = ∑!%#$ 𝑓! 𝑥
• Loss: Any differenAable loss expressed as

𝐿 𝐹; 𝑍 =>
"%$

&

1𝐿 𝐹 𝑥" , 𝑦"

• Gradient boosFng is a general paradigm for training ensembles with
specialized losses (e.g., most NLL losses)

Gradient Boosting in Practice

• Gradient boosting with depth-limited decision trees (e.g., depth 3) is
one of the most powerful off-the-shelf classifiers available
• Caveat: Inherits decision tree hyperparameters

• XGBoost is a very efficient implementation suitable for production use
• A popular library for gradient boosted decision trees
• Optimized for computational efficiency of training and testing
• Used in many competition winning entries, across many domains
• https://xgboost.readthedocs.io

https://xgboost.readthedocs.io/

Data Engineering

• We have been assuming that the dataset 𝑍 is given

• For many problems, building 𝑍 is >80% of the work!
• What is the prediction task we want to solve?
• Data integration: Integrate data across many data sources

• Focus of CIS 5450, but we give a summary

Typical Data Engineering Pipeline

Documents
Databases
Websites

Pandas Tables

extrac'on
wrangling

integra'on

featurization
encoding

imputation

Dataset 𝑍

Data Collection Challenges

• Even gathering the relevant data can be a huge challenge
• Proprietary/private data
• Data must be labeled
• Web scraping
• Unclear what data is even needed

• Data must be converted into tables
• CSV, JSON, XML, etc.
• Images, Excel files, MATLAB, etc.
• Text data in documents and webpages

Data Integration

Image: https://dataschool.com/learn-sql/joins/

https://dataschool.com/learn-sql/joins/

Data Integration Challenges

• Merged table may be too large for memory
• Incrementally load and join data, using SGD or mini-batches
• Use online learning techniques

• Encoding issues
• Inconsistent data formats or terminology
• Key aspects menAoned in cell comments or auxiliary files

• Record linking problem
• Inconsistent column values

Record Linking Strategies

• String similarity above a threshold
• Edit distance (“J Smith” à “Jon Smithee” with 4 edits)
• String overlap (n-grams)

• Can tokenize and compare tokens, not just strings

• Can consider multiple fields (e.g., name, address)

Ins ID Name

203342 J Smith

123452 Mao Y

Student ID Name

3432432 Jon Smithee

9734783 Jane Smyth

8273737 Ying Mao

Encoding Features

• Column types
• Categorical: Unordered finite set
• Ordinal: Finite set with order
• Numerical: Number (warning: numbers are not always numerical, e.g., ID)

Data from: De Cock. Journal of Statistics Education 19(3), 2011

...

...

...

...

...

...

...

Categorical Numerical Ordinal

Encoding Features

• Encoding categorical features
• Encode as one-hot vector
• Example: Expand 𝑋& ∈ {1,2,3} into [1, 0, 0] or [0, 1, 0] or [0, 0, 1]

• Encoding ordinal features
• Convert to a number, preserving the order
• Example: [low, medium, high] à [1, 2, 3]
• Encoding as categorical sometimes works better (try both!)

Missing Values

• Basic solutions
• Delete features with mostly missing values
• Delete instances with missing features

• Imputation
• Fill missing features with mean (for numeric) or mode (for categorical)
• Alternatively, predict missing values using supervised learning
• Good practice to add binary feature indicating missingness for each feature

that has missing values
• Example: Medical history might be missing from a new patient

Outliers

• Causes
• Human error in data collection or data entry
• Measurement/instrumentation errors
• Experimental errors
• Data merge errors (e.g., merging datasets with different scales)
• Data preprocessing errors
• Naturally from data generating process

Outliers

• Assume feature values are
Gaussian

• Removing outliers
• Discard points more than 𝑘

standard deviations from mean
• E.g., 𝑘 ∈ 2.5,3,3.5

• Alternative: Use loss that is
robust to outliers (e.g., 𝐿$ error) hHps://mathbitsnotebook.com/Algebra2/StaKsKcs/STzScores.html

https://mathbitsnotebook.com/Algebra2/Statistics/STzScores.html

Other Data Quality Issues

• Incorrect feature values
• Typos (e.g., color = “bleu”, “gren”, “redd”)
• Inconsistent spelling (e.g., “color”, “colour”)
• Inconsistent abbreviations (e.g., “Oak St.”, “Oak Street”)
• Garbage (e.g., color = “w┒r╍śïį”)
• Potential solution: Compare against a dictionary

• Missing instance labels
• Delete instances with missing labels
• Can use semi-supervised learning techniques that leverage unlabeled data

Script Your Data Preprocessing!

• Don’t manually edit
• No history of changes
• Very easy to introduce mistakes
• Hard to change earlier decisions

• Write a script to load and preprocess data
• Documents all steps
• Incremental debugging
• Easy to make changes to earlier steps
• Repeatable

Typical Data Engineering Pipeline

Documents
Databases
Websites

Pandas Tables

extrac'on
wrangling

integra'on

featurization
encoding

imputation

Dataset 𝑍

Understand Your Data!

• Basic statistics
• Feature distribution
• Feature-label correlations
• Feature-feature correlations
• “describe” function in pandas

• Data dictionary

• Can we do more?
• Unsupervised learning!

Lecture 11: K-Means Clustering

CIS 4190/5190
Fall 2023

Types of Learning

• Supervised learning
• Input: Examples of inputs and desired outputs
• Output: Model that predicts output given a new input

• Unsupervised learning
• Input: Examples of some data (no “outputs”)
• Output: RepresentaAon of structure in the data

• Reinforcement learning
• Input: Sequence of interacAons with an environment
• Output: Policy that performs a desired task

Unsupervised Learning

Data 𝑍 = 𝑥' Machine learning
algorithm

Model 𝑓

New input 𝑥

Structure 𝜇 of 𝑥

Applications of Unsupervised Learning

• Visualiza;on
• Exploring a dataset, or a machine learning model’s outputs

• Feature Learning
• AutomaAcally construct lower-dimensional features
• Especially useful with a lot of unlabeled data and just a few labeled examples

• Compression (for storage)
• E.g., JPEG is adopAng unsupervised machine learning approaches
• hops://jpeg.org/items/20190327_press.html

Applications of Unsupervised Learning

• “Based on our polling data, there are three main voting blocs, based
on age, race, education level, income, political beliefs, and home-
ownership. Features like marital status and # children are irrelevant.”

• “Our model says our company’s profits actually vary systematically
based on the weather, is this actually the case?”

Applications of Unsupervised Learning
Framing an ML problem (Mitchell’s P, T, E)

Data curation (sourcing, scraping, collection, labeling)

Data analysis / visualization

ML Design (hypothesis class, loss function, optimizer, hyperparameters, features)

Train model

Validate / Evaluate

Deploy (and generate new data)

Monitor performance on new data

Loss Minimization Framework

• To design an unsupervised learning algorithm:
• Model family: Choose a model family 𝐹 = 𝑓* *

, where 𝜇 = 𝑓* 𝑥 encodes
the structure of 𝑥
• Loss function: Choose a loss function 𝐿 𝛽; 𝑍

• Resulting algorithm:

?𝛽 𝑍 = arg	min
*

𝐿 𝛽; 𝑍

Types of Unsupervised Learning

• Clustering
• Map samples 𝑥 ∈ ℝ+ to 𝑓 𝑥 ∈ ℕ
• Each 𝑘 ∈ ℕ is associated with a representative example 𝑥, ∈ ℝ+
• Examples: K-means clustering, greedy hierarchical clustering

• Dimensionality reduction
• Map samples 𝑥 ∈ ℝ+ to 𝑓 𝑥 ∈ ℝ+! , where 𝑑- ≪ 𝑑
• Example: Principal components analysis (PCA)
• Modern deep learning is based on this idea

The Clustering Problem

• Input: Dataset 𝑍 = 𝑥" "%$
&

• Output: Model 𝑓 𝑥 ∈ 1,… , 𝐾
• Intuition: Predictions should encode “natural” clusters in the data
• Here, 𝐾 ∈ ℕ is a hyperparameter

The Clustering Problem

The Clustering Problem

The Clustering Problem

The Clustering Problem

The Clustering Problem

• Input: Dataset 𝑍 = 𝑥" "%$
&

• Output: Model 𝑓 𝑥 ∈ 1,… , 𝐾
• Intuition: Predictions should encode “natural” clusters in the data
• Here, 𝐾 ∈ ℕ is a hyperparameter

• How to formalize “naturalness”?
• Using a loss function!

Clustering Loss

• Loss depends on the structure of the data we are trying to capture

• K-Means clustering aims to minimize specific loss over a specific
model family

K-Means Clustering Model Family

• Parameters: Set of centroids 𝜇+ (for 𝑗 ∈ 1,… , 𝐾)
• One for each cluster (𝐾 is a hyperparameter)
• Intuition: 𝜇& is the “center” of cluster 𝑗

• Given a new example 𝑥, assign it to the nearest cluster:

𝑓, 𝑥 = arg	min
+

𝑥 − 𝜇+ (
(

• Can use other distance functions

K-Means Clustering Loss

• Compute MSE of each point in the training data to its centroid

K-Means Clustering Loss

• Compute MSE of each point in the training data to its centroid

K-Means Clustering Loss

• K-means clustering chooses centroids that minimize loss of training
examples 𝑍

• Compute MSE of each point in the training data to its centroid:

𝐿 𝜇; 𝑍 =>
"%$

&

𝑥" − 𝜇-! ." (

(

K-Means Clustering Loss

K-Means Clustering Loss

K-Means Clustering Optimization

• Minimizing the loss exactly is hard due to local minima

• Use an “alternating minimization” heuristic
• Works better than gradient descent in practice
• Provably converges to local minimum

K-Means Clustering Algorithm

Kmeans 𝑍 :
 𝐟𝐨𝐫	𝑗 ∈ 1, … , 𝑘 :
 𝜇!,# ← Random 𝑍
 𝐟𝐨𝐫	𝑡 ∈ 1,2, … :
 𝐟𝐨𝐫	𝑖 ∈ 1, … , 𝑛 :
 𝑗$,% ← 𝑓&! 𝑥%
 𝐟𝐨𝐫	𝑗 ∈ 1, … , 𝑘 :

 𝜇$,# ← mean 𝑥% 𝑗$,% = 𝑗
 𝐢𝐟	𝜇$ = 𝜇$'!:

 𝐫𝐞𝐭𝐮𝐫𝐧	𝜇$

K-Means Clustering Algorithm

Kmeans 𝑍 :
 𝐟𝐨𝐫	𝑗 ∈ 1, … , 𝑘 :
 𝜇!,# ← Random 𝑍
 𝐟𝐨𝐫	𝑡 ∈ 1,2, … :
 𝐟𝐨𝐫	𝑖 ∈ 1, … , 𝑛 :
 𝑗$,% ← 𝑓&! 𝑥%
 𝐟𝐨𝐫	𝑗 ∈ 1, … , 𝑘 :

 𝜇$,# ← mean 𝑥% 𝑗$,% = 𝑗
 𝐢𝐟	𝜇$ = 𝜇$'!:

 𝐫𝐞𝐭𝐮𝐫𝐧	𝜇$

K-Means Clustering Algorithm

Kmeans 𝑍 :
 𝐟𝐨𝐫	𝑗 ∈ 1, … , 𝑘 :
 𝜇!,# ← Random 𝑍
 𝐟𝐨𝐫	𝑡 ∈ 1,2, … :
 𝐟𝐨𝐫	𝑖 ∈ 1, … , 𝑛 :
 𝑗$,% ← 𝑓&! 𝑥%
 𝐟𝐨𝐫	𝑗 ∈ 1, … , 𝑘 :

 𝜇$,# ← mean 𝑥% 𝑗$,% = 𝑗
 𝐢𝐟	𝜇$ = 𝜇$'!:

 𝐫𝐞𝐭𝐮𝐫𝐧	𝜇$

K-Means Clustering Algorithm

Kmeans 𝑍 :
 𝐟𝐨𝐫	𝑗 ∈ 1, … , 𝑘 :
 𝜇!,# ← Random 𝑍
 𝐟𝐨𝐫	𝑡 ∈ 1,2, … :
 𝐟𝐨𝐫	𝑖 ∈ 1, … , 𝑛 :
 𝑗$,% ← 𝑓&! 𝑥%
 𝐟𝐨𝐫	𝑗 ∈ 1, … , 𝑘 :

 𝜇$,# ← mean 𝑥% 𝑗$,% = 𝑗
 𝐢𝐟	𝜇$ = 𝜇$'!:

 𝐫𝐞𝐭𝐮𝐫𝐧	𝜇$

K-Means Clustering Algorithm

https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

Random Ini3aliza3on

• Sensitive to initialization

• One strategy is to run multiple times with different random centroids
and choose the model with lowest MSE

• Alternative: K-means++
• Randomly initialize first centroid to some 𝑥 ∈ 𝑍
• Subsequently, choose centroid randomly according to 𝑝 𝑥 ∝ 𝑑./, where 𝑑. is

the distance to the nearest centroid so far
• Upweights points that are farther from existing centroids

Number of Clusters

• As 𝐾 becomes large
• MSE becomes small
• Many clusters à might be less useful

• Choice of 𝐾	is subjective

Number of Clusters

https://blog.cambridgespark.com/how-to-determine-the-optimal-number-of-clusters-for-k-means-clustering-14f27070048f

https://blog.cambridgespark.com/how-to-determine-the-optimal-number-of-clusters-for-k-means-clustering-14f27070048f

Hierarchical Clustering

• Alternative approach to clustering that makes local changes

• Agglomerative clustering
• Initialize each example to its own cluster
• Iteratively agglomerate “closest” clusters

• Divisive clustering
• Initialize all examples in a single cluster
• Iteratively divide “most distant” sub-clusters

• Incremental nature results in hierarchical clusters

Selec3ng Clusters

• Single linkage
• Compute distances between most

similar members of pair of clusters
• Merge pair of clusters with

smallest minimum distance

• Complete linkage
• Compute distances between most

distant members of pair of clusters
• Merge pair of clusters with

smallest maximum distance

single linkage

complete linkage

Optimization Algorithm

• Computing pairwise distances is 𝑂 𝑛(, which can be expensive

• Solution
• Precompute pairwise distances 𝑑'& between clusters 𝑖 and 𝑗
• Update 𝑑'& with every merge/divide

Example: Phylogenetic Trees

https://towardsdatascience.com/hierarchical-clustering-and-its-applications-41c1ad4441a6

Example: Phylogene3c Trees

• Features: Gene sequences

• Distance: Edit distance

• Use agglomerative clustering to
compute hierarchical clusters,
which form phylogenetic trees

https://towardsdatascience.com/hierarchical-clustering-and-its-applications-41c1ad4441a6

Many Clustering Algorithms

https://scikit-learn.org/stable/modules/clustering.html#clustering

https://scikit-learn.org/stable/modules/clustering.html

