
Announcements

• Homework 3 due in tonight at 8pm

• Quiz 4 due tonight at 8pm
• We’ll leave it open for a bit longer

• Project Milestone 1 due next Wednesday at 8pm



Unsupervised Learning

Data 𝑍 = 𝑥! Machine learning 
algorithm

Model 𝑓

New input 𝑥

Structure 𝜇 of 𝑥



Types of Unsupervised Learning

• Clustering
• Map samples 𝑥 ∈ ℝ$ to 𝑓 𝑥 ∈ ℕ
• Each 𝑘 ∈ ℕ is associated with a representative example 𝑥% ∈ ℝ$
• Examples: K-means clustering, greedy hierarchical clustering

• Dimensionality reduction
• Map samples 𝑥 ∈ ℝ$ to 𝑓 𝑥 ∈ ℝ$! , where 𝑑& ≪ 𝑑
• Example: Principal components analysis (PCA)
• Modern deep learning is based on this idea



K-Means Clustering Summary

• Model family: 𝑓! 𝑥 = arg	min
"

𝑥 − 𝜇" #
#

• Loss: 𝐿 𝜇; 𝑍 = ∑$%&' 𝑥$ − 𝜇(! )" #

#

• Optimizer: Alternating minimization



K-Means Clustering Algorithm

Kmeans 𝑍 : 
      𝐟𝐨𝐫	𝑗 ∈ 1, … , 𝑘 :
            𝜇!,# ← Random 𝑍
      𝐟𝐨𝐫	𝑡 ∈ 1,2, … :
            𝐟𝐨𝐫	𝑖 ∈ 1, … , 𝑛 : 
                  𝑗$,% ← 𝑓&! 𝑥%
            𝐟𝐨𝐫	𝑗 ∈ 1, … , 𝑘 :

                  𝜇$,# ← mean 𝑥% 𝑗$,% = 𝑗
            𝐢𝐟	𝜇$ = 𝜇$'!:

                  𝐫𝐞𝐭𝐮𝐫𝐧	𝜇$



K-Means++



K-Means++

∝ 𝑑#



K-Means++

∝ 𝑑#



K-Means++

Then, run alternating minimization



Number of Clusters

https://blog.cambridgespark.com/how-to-determine-the-optimal-number-of-clusters-for-k-means-clustering-14f27070048f

https://blog.cambridgespark.com/how-to-determine-the-optimal-number-of-clusters-for-k-means-clustering-14f27070048f
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Dimensionality Reduction

• Goal: Learn a mapping from 𝑥 ∈ ℝM  to 𝑥 ∈ ℝM#, with 𝑑N ≪ 𝑑

• We may want to reduce the number of features for several reasons:
• Reduce the complexity of our learning problem
• Remove colinear/correlated features
• Visualize the features



Learning Good Features

Data from: De Cock. Journal of Statistics Education 19(3), 2011

227 features



Data Visualization

Image: https://arxiv.org/pdf/1703.08893.pdf

https://arxiv.org/pdf/1703.08893.pdf


Dimensionality Reduction

• We can write each input 𝑥 as

𝑥 =
𝑥&
⋮
𝑥M

= 𝑥&

1
0
⋮
0

+ 𝑥#

0
1
⋮
0

+⋯+ 𝑥M

0
0
⋮
1

• We aim to approximate 𝑥 using a new basis 𝑣$ $  (of unit norm):

𝑥 ≈ =𝑓 𝑥 = 𝑓 𝑥 &𝑣& + 𝑓 𝑥 #𝑣# +⋯+ 𝑓 𝑥 M#𝑣M#

original axesprojections



Representation vs. Approximation

• We approximate 𝑥 as follows:

𝑥 ≈ =𝑓 𝑥 = 𝑓 𝑥 &𝑣& + 𝑓 𝑥 #𝑣# +⋯+ 𝑓 𝑥 M#𝑣M# ∈ ℝM

• The corresponding representation is

𝑓 𝑥 = 𝑓 𝑥 & 𝑓 𝑥 # ⋯ 𝑓 𝑥 M# ∈ ℝM#



Dimensionality Reduction

• Loss function: Minimize MSE of projected vectors

𝐿 𝑓; 𝑍 =
1
𝑛
?
$%&

'

𝑥$ − =𝑓 𝑥$ #
#



1D Case

• Simplest case: If 𝑑N = 1, then we want 𝑥 ≈ 𝑓 𝑥 &𝑣&

• Given 𝑣&, we can take 𝑓 𝑥 & = 𝑥O𝑣&
• Minimizes MSE of 𝑥 − 𝑓 𝑥 '𝑣'
• Then, we have -𝑓 𝑥 = 𝑥(𝑣' 𝑣'
• I.e., orthogonal projection
• Assuming 𝑣' ) = 1

𝑣&



1D Case

• Simplest case: If 𝑑N = 1, then we want 𝑥 ≈ 𝑓 𝑥 &𝑣&

• Given 𝑣&, we can take 𝑓 𝑥 & = 𝑥O𝑣&
• Minimizes MSE of 𝑥 − 𝑓 𝑥 '𝑣'
• Then, we have -𝑓 𝑥 = 𝑥(𝑣' 𝑣'
• I.e., orthogonal projection
• Assuming 𝑣' ) = 1

(fig: stats.stackexchange)



1D Case

• In this case, the loss is

𝐿 𝑣&; 𝑍 =
1
𝑛
?
$%&

'

𝑥$ − 𝑥$O𝑣& 𝑣& #
#

• Can be shown to be equivalent to maximizing variance:

𝐿 𝑣&; 𝑍 = −Var 𝑥$O𝑣& $

• If variance of projection on 𝑣& is low, 𝑣& is not informative about 𝑥$



1D Case

• Replace with expectation:

𝐿 𝑣&; 𝑍 = 𝔼 𝑥 − 𝑥O𝑣& 𝑣& #
#

• Can be shown to be equivalent to maximizing variance:

𝐿 𝑣&; 𝑍 = −Var 𝑥$O𝑣& $

• If variance of projection on 𝑣& is low, 𝑣& is not informative about 𝑥$



1D Case

• Replace with expectation:

𝐿 𝑣&; 𝑍 = 𝔼 𝑥 − 𝑥O𝑣& 𝑣& #
#

• Can be shown to be equivalent to maximizing variance:

𝐿 𝑣&; 𝑍 = −Var 𝑥O𝑣&

• If variance of projection on 𝑣& is low, 𝑣& is not informative about 𝑥



1D Case

• Need a way to minimize 𝐿 𝑣&; 𝑍

• The covariance matrix is

𝐶 = 𝔼 𝑥𝑥O = 𝔼
𝑥&𝑥& ⋯ 𝑥&𝑥M
⋮ ⋱ ⋮

𝑥M𝑥M ⋯ 𝑥M𝑥M

• Given 𝑣&, we have Var 𝑥O𝑣& = 𝑣&O𝐶𝑣&

• Thus, 𝐿 𝑣&; 𝑍 = −Var 𝑥O𝑣& = −𝑣&O𝐶𝑣&



1D Case

• The principal components analysis (PCA) algorithm computes

𝑣&∗ = min
Q$

𝐿 𝑣&; 𝑍 = max
Q$

𝑣&O𝐶𝑣&

• Theorem: Solution is 𝑣&∗ = TopEigenvector 𝐶
• That is, eigenvector corresponding to the largest eigenvalue
• Recall: If 𝐶𝑣 = 𝜆𝑣, then 𝑣 is an eigenvector corresponding to eigenvalue 𝜆



1D Case

• We have been using the expected loss; everything works as above if 
we instead use the empirical covariance matrix

M𝐶 =
1
𝑛
?
$%&

'

𝑥$𝑥$O =
1
𝑛
?
$%&

' 𝑥$,&𝑥$,& ⋯ 𝑥$,&𝑥$,M
⋮ ⋱ ⋮

𝑥$,M𝑥$,M ⋯ 𝑥$,M𝑥$,M

• Algorithm: Compute eigenvectors + eigenvalues of M𝐶 and return the 
(unit) eigenvector corresponding to the largest eigenvalue
• Sign of eigenvector doesn’t matter



Aside: Empirical Covariance Matrix

• Easy to see that

M𝐶 =
1
𝑛
?
$%&

'

𝑥$𝑥$O = 𝑋O𝑋

• Matrix appears in linear regression!

M𝛽 = 𝑋O𝑋 R&𝑋O𝑌 = M𝐶R&𝑋O𝑌

• Small eigenvalues of M𝐶 correspond to directions of small variation



General Case

• Best approximation is using top 𝑑N eigenvectors

• Additional tweak: Subtract mean first to center your data



General Case

PCA 𝑍 : 
 𝑍 ← 𝑥 −Mean 𝑍 𝑥 ∈ 𝑍

 𝐶 ← &
'
∑$%&' 𝑥$𝑥$O

 𝐟𝐨𝐫	𝑗 ∈ 1,… , 𝑑N : 
  𝑣" ← Eigenvector 𝐶, 𝑗
 𝐫𝐞𝐭𝐮𝐫𝐧	𝑓: 𝑥 ↦ 𝑥O𝑣& ⋯ 𝑥O𝑣M# O



General Case

• Resulting function is

𝑓 𝑥 =
𝑥O𝑣&
⋮

𝑥O𝑣M#
=

𝑣&O
⋮
𝑣M#
O

𝑥 = 𝑉𝑥



1st principal
component

2nd principal
component

PCA on a 2D Gaussian Dataset

• The vectors 𝑣"  are called 
principal components
• Mutually orthogonal
• Largest directions of variation

• Subtract mean to ensure vectors 
originate from the mean

By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=46871195



Dimensionality Reduction

• Taking 𝑑N = 𝑑 is just a change of basis
• Linear regression does not change, but other algorithms may be affected

• Taking 𝑑N ≪ 𝑑 reduce dimensionality of data while removing the 
smallest possible amount of information
• In a linear sense



Dimensionality Reduction
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Based on slide by Barnabás Póczos, UAlberta



Applications

• Can use 𝑓 𝑥  as the feature map
• First example of “learned features”
• Form of regularization
• Forms the basis for important 

modern deep learning algorithms

• Can be used to visualize high-
dimensional data

Novembre et al., Genes mirror geography within Europe. Nature 2009.



Eigenfaces

(1000 64×64 images)
https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184


Eigenfaces

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184


Eigenface Projections

𝑑& = 1000



Eigenface Projections

𝑑& = 250



Eigenface Projections

𝑑& = 100



Eigenface Projections

𝑑& = 50



MNIST Digit Dataset

Fig: Laurens van der Maaten



Nonlinear Dimensionality Reduction

Fig: Laurens van der Maaten



Nonlinear Dimensionality Reduction

• PCA benefits
• Projected representation of data can be approximate data in original space
• Easy to optimize
• No hyperparameters (except 𝑑&)

• Deep learning based approaches
• Nonlinear PCA is the basis of the autoencoder
• Fundamental algorithm for feature learning that is still widely used


