Announcements

- HW 4 due today at 8pm
- Quiz 6 due tomorrow at 8pm

Project Milestone 2

- Goal: Make progress on traditional pipelines for each dataset
- Computer vision: Complete the traditional pipeline
 - Implement softmax regression
 - Analyze performance of some hyperparameter
- NLP: Make significant progress on the traditional pipeline
 - Implement feature map and train at least one ML model
 - Analyze performance with respect to some subsets of features
- Project Milestone 2 template will be released by the end of this week

Agenda

Neural networks

- Hyperparameter tuning
- Implementation

Computer vision

- Prior to deep learning
- Convolutional layers
- Convolutional neural networks
- Feature visualization

Neural Network Tips & Tricks

Dropout

Managing Training

Neural Network Tips & Tricks

Neural networks

- Design the model family
- Backpropagation to compute gradient

Optimization

- Gradient descent
- Momentum
- Adaptive step sizes
- Learning rate schedules
- Initialize weights properly

Neural Network Tips & Tricks

• Layers

- Use ReLU activations to avoid vanishing gradients
- Use batch normalization at all layers to avoid "covariate shift"
- Use dropout at last few layers for regularization

Regularization

- Use early stopping (or choose best model on validation set)
- Use data augmentation if possible
- Lots of hyperparameters! How to tune?

Hyperparameteter Choices

- Architecture: Stick close to tried-and-tested architectures (esp. for images)
- **SGD variant:** Adam, second choice SGD + 0.9 momentum
- Learning rate: 3e-4 (Adam), 1e-4 (for SGD + momentum)
- Learning rate schedule: Divide by 10 every time training loss stagnates
- Weight initialization: "Kaiming" initialization (scaled Gaussian)
- Activation functions: ReLU
- Regularization: BatchNorm (& cousins), L2 regularization + Dropout on some or all fully connected layers
- Hyperparameter Optimization: Random sampling (often uniform on log scale), coarse to fine

- **Recall:** Use cross-validation to tune hyperparameters!
 - Typically use one held-out validation set for computational tractability
 - E.g., 60/20/20 split
 - Can use smaller validation/test sets if you have a very large dataset

- Keep the number of hyperparameters as small as possible
 - Most important: Learning rate
- **Strategy:** Automatically search over grid of hyperparameters and choose the best one on the validation set
 - Easy to parallelize across many machines
 - Record hyperparameters of all runs carefully!
 - Use the same random seeds for all runs

• What about multiple hyperparameters?

• For 2 or 3 hyperparameters, do a systematic "grid search"

[Bergstra & Bengio, JMLR 2012]

• What about multiple hyperparameters?

• For >3 hyperparameters, do random search

Important parameter

[Bergstra & Bengio, JMLR 2012]

Coarse-to-find search

- Iteratively search over a window of hyperparameters
- If the best results are near the boundary, center it on best hyperparameters
- Otherwise, set a smaller window centered on the best hyperparameters
- Bayesian optimization: ML-guided search across hyperparameter trials to find good choices

More Practical Tips

- Andrej Karpathy's blog post:
 - http://karpathy.github.io/2019/04/25/recipe
 - Fix random seed during debugging
 - Overfit a tiny dataset first
 - With everything (architecture, learning algorithm, data etc.), start simple and build complexity slowly over iterations
 - Plot weight and gradient magnitudes to detect vanishing/exploding gradients

Additional reading:

- Chapter 11 of the Deep Learning textbook: "Practical Methodology"
- <u>https://www.deeplearningbook.org/contents/guidelines.html</u>

Agenda

Neural networks

- Hyperparameter tuning
- Implementation

Computer vision

- Prior to deep learning
- Convolutional layers
- Convolutional neural networks
- Feature visualization

Pytorch

• Open source packages have helped democratize deep learning

Pytorch

- 1 import torch
- 2 import torch.nn as nn
- 3 import torch.nn.functional as F
- 4 import torch.optim as optim
- 5 from torchvision import <u>datasets</u>, transforms

Common parent class: nn.Module

```
Constructor: Defining layers of the network
 8 class Net(nn.Module):
       def __init__(self, in_features=10, num_classes=2, hidden_features=20):
 9
           super(Net, self).__init__()
10
           self.fc1 = nn.Linear(in_features, hidden_features)
11
           self.fc2 = nn.Linear(hidden_features, num_classes)
12
13
      def forward(self, x): Forward propagation
14
15
           x1 = self.fc1(x)
16
           x^2 = F.relu(x^1)
                             What about backward propagation?
17
           x3 = self.fc2(x2)
18
           log_prob = F.log_softmax(x3, dim=1)
19
20
           return log_prob
```

Pytorch

- Open source packages have helped democratize deep learning
- Backpropagation implemented for all neural network architectures
 - Most modern libraries, including Tensorflow, Mxnet, Caffe, Pytorch, and Jax
 - Only need gradients of new layers
- Basic Idea: Provide model family as sequence of functions $[f_1, ..., f_m]$
 - What about more general compositions?
 - **Solution:** Composition of functions can be represented as graphs!

Computation Graphs

- The tensor datatype represents a computation graph
 - Not just a numpy array!
 - Instead, performing the computation produces a numpy array
- Example:
 - Suppose x is tensor that evaluates to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - Suppose y is a tensor evaluates to $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$
 - Then, x + y is a tensor that evaluates to $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$

Toy Implementation of Computation Graphs

class Constant (tensor) :

def __init__(self, val):
 self.val = val
def backpropagate(self):

. . .

. . .

x = Constant(np.array([[1, 0], [0, 1]]))

y = Constant(np.array([[1, 1], [1, 0]]))

```
z = x + y \# z has type Add
```

```
class Add(tensor):
    def __init__(self, t1, t2):
        self.t1 = t1
        self.t2 = t2
        self.val = self.t1.val + self.t2.val
        def backpropagate(self):
```


Toy Implementation of Computation Graphs

class Constant (tensor) :

def __init__(self, val):
 self.val = val
def backpropagate(self):

. . .

. . .

x = Constant(np.array([[1, 0], [0, 1]]))

y = Constant(np.array([[1, 1], [1, 0]]))

z = x + x + y # Z has type Add

class Add(tensor): def __init__(self, t1, t2): self.t1 = t1 self.t2 = t2 self.val = self.t1.val + self.t2.val def backpropagate(self):

Computation Graphs

- Layers are implemented as tensors
 - **Examples:** addition, multiplication, ReLU, sigmoid, softmax, matrix multiplication/linear layers, MSE, logistic NLL, concatenation, etc.
 - You can also implement your own by providing forward pass and derivatives
- Tensors can be composed together to form neural networks

Computation Graphs

- Forward propagation: Values are evaluated as they are constructed
- Backpropagation: Automatically compute derivative of scalar with respect to all parameters based on derivatives of layers
 - x.backwards()
 - Does not perform any gradient updates!

Pytorch Training Loop

22	<pre>def train(args, model, device, train_loader, optimizerenoch):</pre>
23	<pre>model.train()</pre> Looping over mini-batches
24	for batch_idx, (data, target) in enumerate(train_loader):
25	<pre>data, target = data.te(device) target te(device)</pre>
26	optimizer.zero_grad() Zero out all old gradients
27	<pre>output = model(data) Runs forward pass model.forward(data)</pre>
28	$loss = F.nll_loss(output target)$ Loss computation
29	loss.backward() Backpropagation
30	optimizer.step() Gradient step
31	if batch_idx % args.log_interval == 0:
32	print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
33	epoch, batch_idx * len(data), len(train_loader.dataset),
34	<pre>100. * batch_idx / len(train_loader), loss.item()))</pre>

Pytorch Training Loop

Pytorch Model

• To use your model (once it has been trained):

label = model(input)

Agenda

Neural networks

- Hyperparameter tuning
- Implementation

Computer vision

- Prior to deep learning
- Convolutional layers
- Convolutional neural networks
- Feature visualization

Lecture 16: Computer Vision (Part 1)

CIS 4190/5190 Fall 2023

Images as 2D Arrays

- Grayscale image is a 2D array of pixel values
- Color images are 3D array
 - 3rd dimension is color (e.g., RGB)
 - Called "channels"

Structure in Images

Structure in Images

Structure in Images

Outdoor scene City European

History of Computer Vision

Deceptively challenging task

- In the 1960s, Marvin Minsky assigned some undergrads to program a computer to use a camera to identify objects in a scene
- Half a century later, we are still working on it

Moravec's paradox

- Motor and perception skills require enormous computational resources
- Largely unconscious, biasing our intuition
- Likely innate to some degree

History of Computer Vision

Very old: 60's – Mid 90's

Solution Image \rightarrow hand-def. features \rightarrow hand-def. classifier

Old: Mid 90's – 2012

Image \rightarrow hand-def. features \rightarrow learned classifier

Current: 2012 – Present

Image \rightarrow jointly learned features + classifier

Prior to Deep Learning

- Step 1: Find "pixels of interest"
 - E.g., corner points or "difference of gaussians"
- Step 2: Compute features at these points
 E.g., "SIFT", "HOG", "SURF", etc.
- Step 3: Convert to feature vector via statistics of features such as histograms
 - E.g., "Bag of Words", "Spatial Pyramids", etc.
- Step 4: Use standard ML algorithm

Bag-of-Words histogram

Prior to Deep Learning

https://github.com/alexdemartos/ViolaAndJones

Viola-Jones face detector (with AdaBoost!) ~2000

Deformable Parts Model object detection (with linear classifiers!) ~2010

GIST Scene retrieval (with nearest neighbors!) ~2006

See libraries such as VLFeat and OpenCV

Impact of Deep Learning

ImageNet top-5 object recognition error (%)

ImageNet 1000-object category recognition challenge

Deep learning breakthrough

Agenda

Neural networks

- Hyperparameter tuning
- Implementation

Computer vision

- Prior to deep learning
- Convolutional & pooling layers
- Convolutional neural networks

Representation Learning

Representing Images as Inputs

Naïve strategy

• Feed image to neural network as a vector of pixels

Representing Images as Inputs

• Shortcomings

• Very high dimensional! $32 \times 32 \times 3 = 3072$ dimensions

Representing Images as Inputs

• Shortcomings

• Ignores spatial structure!

• 2D image structure

- Location associations and spatial neighborhoods are meaningful
- So far, we can shuffle the features without changing the problem (e.g., $\beta^{\top}x$)
- Not true for images!

Translation invariance

- Consider image classification (e.g., labels are cat, dog, etc.)
- Invariance: If we translate an image, it does not change the category label

Source: Ott et al., Learning in the machine: To share or not to share?

Translation equivariance

- Consider object detection (e.g., find the position of the cat in an image)
- Equivariance: If we translate an image, the the object is translated similarly

• Use layers that capture structure

Convolution layers (Capture equivariance)

Pooling layers (Capture invariance)

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d https://peltarion.com/static/2d_max_pooling_pa1.png

graphic credit: S. Lazebnik

 $\overline{\tau=0} \ \overline{\gamma=0}$

graphic credit: S. Lazebnik

graphic credit: S. Lazebnik

output[*i*, *j*] =
$$\sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \text{filter}[\tau, \gamma] \cdot \text{image}[i + \tau, j + \gamma]$$

output[*i*, *j*] = $\sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \text{filter}[\tau, \gamma] \cdot \text{image}[i + \tau, j + \gamma]$

• Given:

- 1D sequence *x* is 1D
- 1D kernel k
- Convolution is the following:

$$y[t] = \sum_{\tau=0}^{|k|-1} k[\tau] \cdot x[t+\tau]$$

• Technically cross-correlation

- Example:
 - x = [25000, 28000, 30000, 21000, 18000, ...]
 - k = [-1, 1, -1]
- Convolution:

$$y[t] = \sum_{\tau=0}^{|k|-1} k[\tau] \cdot x[t+\tau]$$

y[0] = k[0]x[0] + k[1]x[1] + k[2]x[2] = -25000 + 28000 - 30000 y[1] = k[0]x[1] + k[1]x[2] + k[2]x[3] = -28000 + 30000 - 21000y[2] = k[0]x[2] + k[1]x[3] + k[2]x[4] = -30000 + 21000 - 18000

• Given:

- A 2D input *x*
- A 2D $h \times w$ kernel k
- The 2D convolution is:

$$y[s,t] = \sum_{\tau=0}^{h-1} \sum_{\gamma=0}^{w-1} k[\tau,\gamma] \cdot x[s+\tau,t+\gamma]$$

30	3_1	2_{2}	1	0
0_2	0_2	1_0	3	1
3	1_1	2_{2}	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

- Historically (until late 1980s), kernel parameters were handcrafted
 - E.g., "edge detectors"

-1

2

-1

2

-1

-1

-1

-1

2

45 degree lines

135 degree lines

Example Edge Detection Kernels

Result of Convolution with Horizontal Kernel

- Historically (until late 1980s), kernel parameters were handcrafted
 - E.g., "edge detectors"
- In convolutional neural networks, they are learned
 - Essentially a linear layer with fewer "connections"
 - Backpropagate as usual!

Learnable parameters —

3	31	2_2	1	0
0_2	0_2	1_0	3	1
3	1_1	2_{2}	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Fully connected (3 input × 7 output = 21 parameters)

Locally connected (3 input × 3 output = 9 parameters)

Without weight sharing (3 input × 3 output = 9 parameters) With weight sharing (3 parameters)

Slide credit: Jia-Bin Huang

Slide credit: Jia-Bin Huang

Single output map

Multiple output maps

• Summary

- Local connectivity
- Weight sharing
- Handling multiple input/output channels
- Retains location associations

Convolution Layer Parameters

- Stride: How many pixels to skip (if any)
 - Default: Stride of 1 (no skipping)

Convolution Layer Parameters

- Padding: Add zeros to edges of image to capture ends
 - Default: No padding

Image

stride = 1, zero-padding = 1

stride = 2, zero-padding = 1

Convolution Layer Parameters

- Summary: Hyperparameters
 - Kernel size
 - Stride
 - Amount of zero-padding
 - Output channels
- Together, these determine the relationship between the input tensor shape and the output tensor shape
- Typically, also use a single bias term for each convolution filter

Image credit: A. Karpathy Slide credit: Jia-Bin Huang

Example

- Kernel size 3, stride 2, padding 1
- 3 input channels
 - Hence kernel size 3×3×3
- 2 output channels
 - Hence 2 kernels
- Total # of parameters:
 - $(3 \times 3 \times 3 + 1) \times 2 = 56$

