Announcements

* HW 4 due today at 8pm

* Quiz 6 due tomorrow at 8pm



Project Milestone 2

* Goal: Make progress on traditional pipelines for each dataset

* Computer vision: Complete the traditional pipeline

* Implement softmax regression
* Analyze performance of some hyperparameter

* NLP: Make significant progress on the traditional pipeline
* Implement feature map and train at least one ML model
* Analyze performance with respect to some subsets of features

* Project Milestone 2 template will be released by the end of this week



Agenda

* Neural networks
* Hyperparameter tuning
* Implementation

* Computer vision
* Prior to deep learning
* Convolutional layers
e Convolutional neural networks
* Feature visualization



Neural Network Tips & Tricks
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Neural Network Tips & Tricks

* Neural networks
* Design the model family
* Backpropagation to compute gradient

* Optimization
* Gradient descent
* Momentum
* Adaptive step sizes
* Learning rate schedules
* Initialize weights properly



Neural Network Tips & Tricks

* Layers
* Use RelLU activations to avoid vanishing gradients
* Use batch normalization at all layers to avoid “covariate shift
* Use dropout at last few layers for regularization

1

* Regularization
» Use early stopping (or choose best model on validation set)
* Use data augmentation if possible

* Lots of hyperparameters! How to tune?



Hyperparameteter Choices

* Architecture: Stick close to tried-and-tested architectures (esp. for images)
e SGD variant: Adam, second choice SGD + 0.9 momentum

* Learning rate: 3e-4 (Adam), 1le-4 (for SGD + momentum)

* Learning rate schedule: Divide by 10 every time training loss stagnates

* Weight initialization: “Kaiming” initialization (scaled Gaussian)
 Activation functions: RelLU

* Regularization: BatchNorm (& cousins), L2 regularization + Dropout on
some or all fully connected layers

 Hyperparameter Optimization: Random sampling (often uniform on log
scale), coarse to fine



Hyperparameter Optimization

* Recall: Use cross-validation to tune hyperparameters!
* Typically use one held-out validation set for computational tractability

e E.g., 60/20/20 split

* Can use smaller validation/test sets if you have a very large dataset

Given data Z

>

Training data Ziy,in

Val data Z,,,;

Test data Ziagt




Hyperparameter Optimization Tips

* Keep the number of hyperparameters as small as possible
* Most important: Learning rate

 Strategy: Automatically search over grid of hyperparameters and
choose the best one on the validation set
e Easy to parallelize across many machines
* Record hyperparameters of all runs carefully!
* Use the same random seeds for all runs



Hyperparameter Optimization Tips

 What about multiple hyperparameters?
* For 2 or 3 hyperparameters, do a systematic “grid search”

Grid Layout

[Bergstra & Bengio, JMLR 2012]



Hyperparameter Optimization Tips

 What about multiple hyperparameters?
* For >3 hyperparameters, do random search

Random Layout

Unimportant parameter

Important parameter

[Bergstra & Bengio, JMLR 2012]



Hyperparameter Optimization Tips

. coarse to fine
* Coarse-to-find search

epsilon
* Iteratively search over a window of Hyperparameter 2
hyperparameters
* If the best results are near the boundary, = @ O %)
center it on best hyperparameters E @ ®
e Otherwise, set a smaller window QE) @ o o
centered on the best hyperparameters T & ®
o ™
T 3 ©
. L. . & @ 0o ®
* Bayesian optimization: ML-guided O @ g
. S ‘0
search across hyperparameter trials to f ° ®° ° @
find good choices

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/



https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/

More Practical Tips

* Andrej Karpathy’s blog post:
e http://karpathy.github.io/2019/04/25/recipe
* Fix random seed during debugging
e Overfit a tiny dataset first

* With everything (architecture, learning algorithm, data etc.), start simple and
build complexity slowly over iterations

* Plot weight and gradient magnitudes to detect vanishing/exploding gradients

* Additional reading:

* Chapter 11 of the Deep Learning textbook: “Practical Methodology”
e https://www.deeplearningbook.org/contents/guidelines.html



http://karpathy.github.io/2019/04/25/recipe/
https://www.deeplearningbook.org/contents/guidelines.html

Agenda

* Neural networks
* Hyperparameter tuning
* Implementation

* Computer vision
* Prior to deep learning
* Convolutional layers
e Convolutional neural networks
* Feature visualization



Pytorch

* Open source packages have helped democratize deep learning



Pytorch

import torch
import torch.nn as nn

import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

Common parent class: nn.Module | —
class Net(nn.Module): Constructor: Defining layers of the network

def init__ (self, in_features=10, num _classes=2, hidden_features=20):
super (Net, self). 1init_ ()
self.fcl = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, num _classes)

forward(self, x): Q=cYaVVE1se propagation
x1 self.fcl(x)

LTI \\/hat about backward propagation?
X3 self.fc2(x2)

log prob = F.log softmax(x3, dim=1)

return log_prob



Pytorch

* Open source packages have helped democratize deep learning

* Backpropagation implemented for all neural network architectures
 Most modern libraries, including Tensorflow, Mxnet, Caffe, Pytorch, and Jax

* Only need gradients of new layers

* Basic Idea: Provide model family as sequence of functions [f1, ..., fin]

 What about more general compositions?
* Solution: Composition of functions can be represented as graphs!



Computation Graphs

* The tensor datatype represents a computation graph
* Not just a numpy array!
* Instead, performing the computation produces a numpy array

* Example:
| 1 0
* Suppose x is tensor that evaluates to [O 1]
* Suppose y is a tensor evaluates to [1 0
* Then, x + y is a tensor that evaluates to i ﬂ Q 0



Toy Implementation of Computation Graphs

class Constant (tensor) :

X

Constant (np.array ([ [1, 0], [0, 111)
Constant (np.array ([ [1, 1],
x + vy # z has type Add

N

def init (self, wval):

N
|

self.val = val

def backpropagate (self):

class Add (tensor) :

def init (self, tl, t2):

self.tl = t1l
self.t?2 = t2

self.val = self.tl.val + self.t2.val Q 0

def backpropagate (self):



Toy Implementation of Computation Graphs

class Constant (tensor) :

X

Constant (np.array ([ [1, 0], [0, 111)
Constant (np.array ([ [1, 1], [1, O0]1])
z = X + x + vy # Z has type Add

N

def init (self, val):

self.val = val

def backpropagate (self):

class Add (tensor) :

def init (self, tl, t2):

self.tl = t1l
self.t?2 = t2

self.val = self.tl.val + self.t2.val G 0

def backpropagate (self):



Computation Graphs

* Layers are implemented as tensors

* Examples: addition, multiplication, RelLU, sigmoid, softmax, matrix
multiplication/linear layers, MSE, logistic NLL, concatenation, etc.

* You can also implement your own by providing forward pass and derivatives

e Tensors can be composed together to form neural networks



Computation Graphs

* Forward propagation: Values are evaluated as they are constructed

* Backpropagation: Automatically compute derivative of scalar with
respect to all parameters based on derivatives of layers
* x.backwards ()
* Does not perform any gradient updates!



Computation Graphs

fcl (nn.Linear) fc2 (nn.Linear)< >
O @ =

def forward(self, x):
X1 self.fcl(x)
X2 F.relu(xl)

& self.fc2(x2)
log prob = F.log _softmax(x3, dim=1)

return log_prob



Pytorch Training Loop

def train(args, model, device, train_loader, optimigg i ——
model.train() Looping over mini-batches

for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.tg i iiintais
AL AP A @1 Zero out all old gradients
IR W ANGERED] Runs forward pass model.forward(data
loss = F.nll_logalautn T59) Loss computation

IR EIA IR 8] Backpropagation

AR LFAIIRRLTIO) Gradient step
if batch_idx % args.log interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch _1idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))

jce)




Pytorch Training Loop

def main():
torch.manual_seed(1l)
device = torch.device("cuda")
train_loader = torch.utils.data.DatalLoader ( [JXeEleReEICH
datasets.MNIST('../data', train=True, download=True,

transform=transforms.Compose ([
transforms.ToTensor (),

transforms.Normalize((0.1307,), (0.3081,))
1)),
batch size=64, shuffle=True)

model Net() to(dev1ce)

- etors (), lr=le-4)
3« Loop over epochs (fuII passes over data) =1, gamma=0.9)

for epoch 1n range(l, 15): Minibatch SGD for one epoch
train(model, device, tr :

~-epoch)
scheduler.step() Update base learning rate




Pytorch Model

* To use your model (once it has been trained):

label = model (1input)



Agenda

* Neural networks
* Hyperparameter tuning
* Implementation

* Computer vision
* Prior to deep learning
* Convolutional layers
e Convolutional neural networks
* Feature visualization



Lecture 16: Computer Vision (Part 1)

CIS 4190/5190
Fall 2023



lmages as 2D Arrays

e Grayscale image is a 2D array of
pixel values

* Color images are 3D array
3 dimension is color (e.g., RGB)
* Called “channels”

Source: S. Narasimhan, S. Lazebnik
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Structure in Images
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History of Computer Vision

* Deceptively challenging task

* In the 1960s, Marvin Minsky assigned some undergrads to program a
computer to use a camera to identify objects in a scene

* Half a century later, we are still working on it

* Moravec’s paradox
* Motor and perception skills require enormous computational resources
e Largely unconscious, biasing our intuition
* Likely innate to some degree



History of Computer Vision

HHHHH

w

,,,,,,,

g z

AuEu Lk
7T & 4
‘."\
o e
anE

N - -1, ]

NS B EA
yradients

Keypoint descriplor

Very old: 60’s — Mid 90’s

Image - hand-def. features - hand-def. classifier

Old: Mid 90’s — 2012

Image - hand-def. features - learned classifier

Current: 2012 - Present

" Image - jointly learned features + classifier



Prior to Deep Learning

 Step 1: Find “pixels of interest”
* E.g., corner points or “difference of gaussians’

)

e Step 2: Compute features at these points
e E.g., “SIFT” “HOG”, “SURF”, etc.

 Step 3: Convert to feature vector via
statistics of features such as histograms

* E.g., “Bag of Words”, “Spatial Pyramids”, etc.

 Step 4: Use standard ML algorithm

~~~~~

2a it ceolet

Bag-of-Words histogram

1:1.
B & o ..




Prior to Deep Learning

https://github.com/alexdemartos/ViolaAndJones

Viola-Jones face detector
(with AdaBoost!)
~2000

Deformable Parts Model
object detection
(with linear classifiers!)
~2010

See libraries such as VLFeat and OpenCV

GIST
Scene retrieval
(with nearest neighbors!)
~2006


https://github.com/alexdemartos/ViolaAndJones

Impact of Deep Learning

ImageNet top-5 object recognition
error (%)
30
25
20
15

: II
) ll-

2011 2013 2014 2015 2016

(9]

ImageNet 1000-object category recognition challenge

Deep learning breakthrough



Agenda

* Neural networks
* Hyperparameter tuning
* Implementation

* Computer vision
* Prior to deep learning
* Convolutional & pooling layers
e Convolutional neural networks



Representation Learning

§:>‘ “dog”
d-length

“feature vector” x



Representing Images as Inputs

* Naive strategy
* Feed image to neural network as a vector of pixels

FTTTTTIN

vd

d-length
feature x



Representing Images as Inputs

e Shortcomings
e Very high dimensional! 32X32X3 = 3072 dimensions




Representing Images as Inputs

e Shortcomings
* Ignores spatial structure!

cat
running
H tongue

lawn




Structure in Images

* 2D image structure
* Location associations and spatial neighborhoods are meaningful
* So far, we can shuffle the features without changing the problem (e.g., " x)
* Not true for images!



Structure in Images

* Translation invariance
* Consider image classification (e.g., labels are cat, dog, etc.)
* Invariance: If we translate an image, it does not change the category label

(b) 10.0 % (¢) 20.0 % (d) 30.0 % (e) 40.0 % (f) 50.0 %

HaAAR

() 60.0% (h) 70.0 % (i) 80.0 % (1) 90.0 % (k) 99.0 %

Source: Ott et al., Learning in the machine: To share or not to share?

(a) 0.0 %




Structure in Images

* Translation equivariance
* Consider object detection (e.g., find the position of the cat in an image)
* Equivariance: If we translate an image, the the object is translated similarly




Structure in Images

» Use layers that capture structure
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Convolution layers Pooling layers
(Capture equivariance) (Capture invariance)

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d _max_pooling pal.png



https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

Convolution Filters

graphic credit: S. Lazebnik



Convolution Filters

E
k—1k-1
output[0,0] z z filter[z,y] - image[0 + 7,0 + ¥]
7=0 y=0

graphic credit: S. Lazebnik



Convolution Filters

w
k—1k-1

output[0,1] = z z filter|t,y] - image[0 + 7,1 + Y]
7=0y=0

graphic credit: S. Lazebnik



Convolution Filters

o
k—1k-1

output[0,2] = z z filter|t,y] - image[0 + 7,2 + ]
7=0y=0

graphic credit: S. Lazebnik



Convolution Filters

k-1k-1

output|i, j] = 2 z filter|t,y] - imageli + 7,j + ¥]
=0 y=0

graphic credit: S. Lazebnik



Convolution Filters

k-1k-1

output|i, j] = 2 z filter|t,y] - imageli + 7,j + ¥]
=0 y=0

graphic credit: S. Lazebnik



Convolution Filters

k—1k-1
output|i, j] 2 z filter|t,y] - imageli + 7,j + V]
7=0 y=0

graphic credit: S. Lazebnik



Convolution Filters

graphic credit: S. Lazebnik



Convolution Filters

[
k—1k-1
output|i, j] 2 z filter|t,y] - imageli + 7,j + V]
7=0 y=0

graphic credit: S. Lazebnik



Convolution Filters
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1D Convolution Filters

* Given:
* 1D sequence xis 1D
e 1D kernel k

* Convolution is the following:

* Technically cross-correlation



1D Convolution Filters

* Example:
« x =[25000,28000,30000,21000,18000, ... |

« k=[-1,1,—1]

e Convolution:
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1D Convolution Filters
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https://gitlab.com/brohrer/



https://gitlab.com/brohrer/

1D Convolution Filters
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https://gitlab.com/brohrer/

1D Convolution Filters

sult

https://gitlab.com/brohrer/



https://gitlab.com/brohrer/

2D Convolution Filters

* Given:
* A2D input x
e A2D hXw kernel k

e The 2D convolution is:




2D Convolution Filters




2D Convolution Filters

* Historically (until late 1980s), kernel parameters were handcrafted
* E.g., “edge detectors”



2D Convolution Filters

-1|-1] -1
2 | & | 2
-1 -11]-1

Horizontal lines

-1]| 2 | -1
-1 2 | -1
-1 2 |-1
Vertical ines
2| -1]-1
-1]| 2 | -1
-1 | -1 2

-1 | -2 | 2
-1 | 2 | -1
2 | -1]-1
45 degree lnes

Example Edge Detection Kernels

135 degree lines

Result of Convolution with Horizontal Kernel

https://aishack.in/tutorials/image-convolution-examples/



https://aishack.in/tutorials/image-convolution-examples/

2D Convolution Filters

* Historically (until late 1980s), kernel parameters were handcrafted
* E.g., “edge detectors”

* In convolutional neural networks, they are learned
e Essentially a linear layer with fewer “connections”
* Backpropagate as usual!



Convolution Layers

Learnable
parameters




Convolution Layers

Fully connected
(3 input X 7 output = 21 parameters)

Hidden layer

Input layer .

Locally connected
(3 input X 3 output = 9 parameters)

Slide credit: Jia-Bin Huang



Convolution Layers

, O O Hidden layer ’ , ,

W, 4 6 w

8

2
Input layer ‘ ‘ . ‘

Without weight sharing With weight sharing
(3 input X 3 output = 9 parameters) (3 parameters)

Slide credit: Jia-Bin Huang



Convolution Layers
® o o

lodes AL

Channel 2

Filter weights Filter weights

Single input channel Multiple input channels

Slide credit: Jia-Bin Huang



Convolution Layers
® o o

A

Filter weights

Single output map

Channel 1 ‘ ‘ ‘
4 4 4

Channel 2

Filter 1 Weights Filter 2 Weights

Multiple output maps

Slide credit: Jia-Bin Huang



Convolution Layers

* Summary
* Local connectivity
* Weight sharing
e Handling multiple input/output channels
* Retains location associations



Convolution Layer Parameters

* Stride: How many pixels to skip (if any)
e Default: Stride of 1 (no skipping)

Filter
1 0
Stride X —_—
0 |05 Output
0| 0 0 0 0 0
0.5 0 0.25 | 0.25
0 1 0 |[05|05] 0
0 125| 0.5 | 0.5
=0 f[ofo5|1 0|0 " —
2 = 0 05 |075] 1.5
=1 0 0 1105)] 1 0 g
< 05 |0.25]1.25 1
0 1 (05|05 1 0
InputDimension
ojo(0f0)|0]|0O I OutDimension =

StrideDimension

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7



https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Convolution Layer Parameters

* Padding: Add zeros to edges of image to capture ends

* Default: No padding

106

ojJjoj,o0ojojo | 0 0

0]0 '21 00 . 0 | 0

O18 71100 0 O | 0 | 0 |
0 (2501231127 63 | 3 O 01
0 250‘252‘2504209-56- 0 | 1 | 0
0 250:252?250:250: 83: 0 kemel
o/0/ 0|0 0|0 O

Image

) | 174235
1163215

RIWINI=]I= O

3x3

Feature map

stride = 1, zero-padding =1

QOO )l&I=IN|O
OUNiN]I&_ NN I= |0
oOjwlniN W= |O
OlRrjOjnn O~ ]O
OIO =} =R ie) fo) =)

o l

5x5 Image
stride = 2, zero-padding =1

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7



https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Convolution Layer Parameters

* Summary: Hyperparameters
* Kernel size
* Stride
 Amount of zero-padding
* Output channels

* Together, these determine the relationship between the input tensor
shape and the output tensor shape

 Typically, also use a single bias term for each convolution filter



Convolution Layers

Local conw

filter size, _[
stride

§

1%

<>
# input channels

Weight sharing

L

pd

7

ﬁ
# filters = #output (activation) maps

Image credit: A. Karpathy

Slide credit: Jia-Bin Huang



E Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
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http://cs231n.github.io/convolutional-networks/



http://cs231n.github.io/convolutional-networks/

