
Announcements

• HW 5 due Wednesday, November 8at 8pm

• Project Milestone 2 due Wednesday, November 15 at 8pm

• Recitation Friday, November 10th at 2:30pm
• In Wu & Chen (Levine 101)

Recap: Pooling & Convolution

• Use layers that capture structure

Convolution layers
(Capture equivariance)

Pooling layers
(Capture invariance)
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

Recap: Convolution Layers

graphic credit: S. Lazebnik

output 𝑖, 𝑗 =)
!"#

$%&

)
'"#

$%&

*ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Recap: Pooling Layers

output 𝑖, 𝑗 = max
#(!)$

max
#(')$

image 𝑖 + 𝜏, 𝑗 + 𝛾

Recap: Convolution vs. Pooling

• Convolution layers: Translation equivariant
• If object is translated, convolution output is translated by same amount
• Produce “image-shaped” features that retain associations with input pixels

• Pooling layers: Translation invariant
• Binning to make outputs insensitive to translation
• Also reduces dimensionality

• Combined in modern architectures
• Convolution to construct equivariant features
• Pooling to enable invariance

Recap: AlexNet

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000Fully connected
(i.e., linear) layers

output

input

Convolution (kernel size 11, stride 4,
96 output channels, no padding)

ReLU Activation

Pooling (kernel size 3, stride 2,
no padding)

Local Response Normalization

Input

slide credit: S. Lazebnik

Recap: AlexNet

Recap: Residual Connections

• Challenges with deep networks
• Overfitting?
• No, 56 layer network underfits!

• Optimization/representation
• Difficulty representing the identity

function!

• Solution: “Skip” connections
• Facilitate direct feedback from loss
• Easy to represent identity function

Image credit: Fei-Fei Li, Justin Johnson, Serena Yeung

Recap: Residual Networks

• Stack lots of residual blocks!
• Kernel size 3, no padding, stride 1, no pooling
• Reduce feature dimensions by using stride 2 once every 𝐾 blocks
• Maintains feature size to build very deep nets

Image credit: He et al, Residual Nets, 2015

Conv stride 2 + 2x filters Avg pooling + a single
FC layer, no dropout

Larger conv kernel
before residual blocks

Recap: Transfer Learning/Finetuning

• Transfer learning: We can reuse trained concepts!
• Since CNNs trained on ImageNet appear to learn general features
• We can reuse these models in some way to perform new tasks

• Strategy 1: Feature extraction
• Remove final (softmax) layer and replace with a new one
• Train only the new layer

• Strategy 2: Finetuning
• Do the same thing but train end-to-end

Lecture 18: NLP (Part 1)

CIS 4190/5190
Fall 2023

Goals of NLP

• Recognize spam email, fake news articles, etc.
• Read a textbook and solve an exam question
• Translate from English to French
• Search for webpages relevant to a search query
• Read tweets and understand public sentiment on a topic

• Generally: We would like to be able to understand text and extract all
the same kinds of information in the same ways as humans might

Language Understanding is Hard!

• Did Abraham Lincoln have an iPhone?
• No! (requires common sense)

• Mary fought with Kate because she was a bad person. Who was a bad
person? Mary or Kate?
• Ambiguous (requires long-term context)

• The guitar didn’t fit into the box because it was too small. What was
too small? The guitar or the box?
• The box (requires common sense)

IBM Watson Jeopardy! Challenge

https://www.youtube.com/watch?v=Sp4q60BsHoY

https://www.youtube.com/watch?v=Sp4q60BsHoY

Smart Assistant Advancements

Machine Translation

Question Answering

Text Completion

Text Generation

Basic NLP Pipeline

• Classical approach
• Step 1: Manually construct feature mapping from text to ℝ!
• Step 2: Run supervised learning algorithm in conjunction with feature map

• Deep learning approach
• Step 1: Design neural network architecture that can take text as input
• Step 2: Train neural network end-to-end

Bag of Words Feature Map

• Idea: Treat each document as an unordered set of words
• Simple but can be effective choice in practice

• Lexicon: Set of “all possible words”
• Union of words from all documents in the dataset
• Use a dictionary
• Include “unknown” word

• Then, represent document as a vector 𝑥 ∈ ℝ7 , where 𝑑 is number of
words in the lexicon
• 𝑥" is the number of occurrences of word 𝑗 in the document

Bag of Words Feature Map

aa
rd

va
rk

ab
ac

us
ab

an
do

n
ab

as
e

ab
at

e
ab

er
ra

tio
n

ab
be

y
ab

bo
t ...

zo
o

0 0 1 0 0 0 4 0 ... 0

𝜙 𝑥

number of times
“abbey” occurs

document 𝑥

Shortcomings of Bag of Words

• Cannot distinguish word senses (which come from context)
• “Took money out of the bank”
• “Got stuck on the river bank”
• “The pilot tried to bank the plane”

• Significance of some words vs. others
• Articles (“a”, “an”, “the”) vs. unusual terms (“hagiography”)

Shortcomings of Bag of Words

• Ignores the fact that some words are more similar than others
• “I have a dog”
• “I have a cat”
• “I have a tomato”

• Ignores ordering of words
• “Mary runs faster than Jack”
• “Jack runs faster than Mary”

Improvements to Bag of Words

• 𝒏-grams: Each feature counts the number of times a sequence of 𝑛
words occurs in the document
• “I have a cat” à [“I have”: 1, “have a”: 1, “a cat”: 1]
• Shortcoming: Quickly becomes high dimensional!

• TF-IDF: Downweight words that occur across many documents
• “a” counts for a lot less than “hagiography”
• Can be used for feature selection

Practical Pipeline

• Basic preprocessing (filter stop words, lemmatize, etc.)
• Stop words: “and”, “the”, etc. (lists are available)
• Lemmatize: Remove conjugation (e.g., implemented in NLTK)

• Construct bigrams (i.e., 2-grams)

• Use TF-IDF to rank bigrams, and select top 𝐾 (e.g., 𝐾 = 500)
• Also, manually process list

• Train machine learning model

Alternatives?

• Can we automatically learn representations of words?

• We can use deep learning to do so, but classical unsupervised
learning approaches can also work well
• Specialized to NLP

Word Embeddings

• Embed words as vectors
• Automatically learn feature map 𝜙 𝑥 ∈ ℝ!

• Bag-of-words: 𝜙 𝑥 = ∑89:;	=	∈	;9?@ABCD	E OneHot(𝑖)
• OneHot 𝑖 is the vector with all zeros except it equals one at position

corresponding to word 𝑖
• OneHot “dog” = [0, 0, 0, 1, 0, 0, 0]
• OneHot “cat” = 1, 0, 0, 0, 0, 0, 0

• We want to learn embeddings where the structure captures
semantics, e.g., nearby vectors correspond to similar words

Document-Term Matrix

• Counts the number of times each word occurs in each document

Wikipedia
 Article
Words

Cat Dog Apple Inc. Apple (fruit) Microsoft Inc. …

a 377 370 842 231 286 …

the 929 787 1690 503 872 …

apple 0 0 1091 166 14 …

computer 0 0 88 0 36 …

fur 15 2 0 0 0 …

hair 6 6 0 0 0 …

… … … … … … …

Document-Term Matrix

• Key observation: Similar words tend to co-occur

Wikipedia
 Article
Words

Cat Dog Apple Inc. Apple (fruit) Microsoft Inc. …

a 377 370 842 231 286 …

the 929 787 1690 503 872 …

apple 0 0 1091 166 14 …

computer 0 0 88 0 36 …

fur 15 2 0 0 0 …

hair 6 6 0 0 0 …

… … … … … … …

Document-Term Matrix

• Key observation: Similar words tend to co-occur

Wikipedia
 Article
Words

Cat Dog Apple Inc. Apple (fruit) Microsoft Inc. …

a 377 370 842 231 286 …

the 929 787 1690 503 872 …

apple 0 0 1091 166 14 …

computer 0 0 88 0 36 …

fur 15 2 0 0 0 …

hair 6 6 0 0 0 …

… … … … … … …

Document-Term Matrix

• Key observation: Similar words tend to co-occur

Wikipedia
 Article
Words

Cat Dog Apple Inc. Apple (fruit) Microsoft Inc. …

a 377 370 842 231 286 …

the 929 787 1690 503 872 …

apple 0 0 1091 166 14 …

computer 0 0 88 0 36 …

fur 15 2 0 0 0 …

hair 6 6 0 0 0 …

… … … … … … …

Document-Term Matrix

• Key observation: Similar words tend to co-occur
• Potential idea: Represent word by its row!

Wikipedia
 Article
Words

Cat Dog Apple Inc. Apple (fruit) Microsoft Inc. …

a 377 370 842 231 286 …

the 929 787 1690 503 872 …

apple 0 0 1091 166 14 …

computer 0 0 88 0 36 …

fur 15 2 0 0 0 …

hair 6 6 0 0 0 …

… … … … … … …

Term-Term Matrix

• Shortcoming: Document-term matrix depends heavily on structure of
documents in the training data

• Alternative: Term-term matrix counts co-occurrences of pairs of
words across all documents

Term-Term Matrix

• Count how many times a word appears within the neighborhood
“context” of another word (e.g., 4 words to the left/right)

Words
Words pet play tire engine run …

dog 872 649 1 7 378 …

cat 789 831 5 0 285 …

tomato 12 4 290 927 562 …

… … … … … … …

Term-Term Matrix

• Count how many times a word appears within the neighborhood
“context” of another word (e.g., 4 words to the left/right)
• Idea: Represent each word by its row

Words
Words pet play tire engine run …

dog 872 649 1 7 378 …

cat 789 831 5 0 285 …

tomato 12 4 290 927 562 …

… … … … … … …

Term-Term Matrix

• Intuition: Each words is represented by words in its neighborhood

• “The distributional hypothesis in linguistics is derived from the
semantic theory of language usage, i.e. words that are used and occur
in the same contexts tend to purport similar meanings.”
• “A word is characterized by the company it keeps” – John Firth

Term-Term Matrix

• For example, the words that frequently co-occur with “dog” in a
sentence might be words like “play”, “pet”, “sleep”, “fur”, “feed”, etc.
• Would these words tend to co-occur with “cat”?
• How about with “tomato”?
• “I have a pet cat”
• “I have a pet dog”
• “I have a pet tomato”

• Similar words have similar embeddings

Shortcomings of Classical Approaches

• Word embedding vector dimensions:
• Document-term = # of documents
• Term-Term = # of words

• These are huge vectors!
• Can we get a more compact representation?

• Idea: Train a neural network classifier to predict whether one word
will co-occur in the context of another word
• The classifier weights can be interpreted as word embeddings!

Word2Vec

• Idea: Train a neural network classifier to predict whether one word
will co-occur in the context of another word

• Then, the classifier weights can be interpreted as word embeddings!

Word2Vec Training Data

• “The quick brown fox jumped over the lazy dog.”

Word Context
the [quick]

quick [the, brown]
brown [quick, fox]

… …

Word2Vec Training Data

• “The quick brown fox jumped over the lazy dog.”

Word Context
the quick

quick the
quick brown

brown quick
brown fox

… …

Source: https://lilianweng.github.io/lil-log/2017/10/15/learning-word-embedding.html

One-Hot Encoding for
the Input Word

One-Hot Encoding for
the Output Word

Word2Vec Model

𝑁 hidden units, for 𝑁 ≪ 𝑉

• 𝑁 columns, 𝑉 (vocabulary size) rows
• Each row corresponds to a word
• Row 𝑖 = embedding for word 𝑖, called “target embedding”

Word2Vec Model

One-Hot Encoding for
the Input Word

One-Hot Encoding for
the Output Word

• 𝑉 (vocabulary size) columns, 𝑁 rows
• Each column corresponds to a word
• Column 𝑖 = embedding for word 𝑖, called “context embedding”

Word2Vec Model

One-Hot Encoding for
the Input Word

One-Hot Encoding for
the Output Word

We can concatenate the target and context embeddings to form our final word embedding

Word2Vec Model

Word2Vec Training

• Standard softmax loss, then train the neural network

• Computing this denominator will be expensive.
• Remember that the vocabulary size V is of the

order of millions of words!

𝑝 𝑤H 𝑤=I =
exp(𝑣J!

K . 𝑣J"#)
∑LMNO exp(𝑣J$K . 𝑣J"#)

Word2Vec Training

• Standard softmax loss, then train the neural network

𝑝 𝑤H 𝑤=I =
exp(𝑣J!

K . 𝑣J"#)
∑LMNP exp(𝑣J$K . 𝑣J"#)

• Simple Trick: Sample some random 𝐾 − 1 ≪ 𝑉	negative
example words for each sample. e.g. 𝐾 = 2, 5, 20 etc.

• Also means we need to update many fewer weights
during each iteration of gradient descent.

Properties of Word2Vec

• Words that co-occur have vector representations that are close
together (in Euclidean distance)
• “sofa” and “couch” (synonyms) will be close together
• But also things like “hot” and “cold” (antonyms)
• People say “It’s ____ outside today” for both

Properties of Word2Vec

• Vector operations (vector addition and vector subtraction) on word
vectors often capture the semantic relationships of their words.

man : king :: woman: ?

Source: https://www.ed.ac.uk/informatics/news-events/stories/2019/king-man-woman-queen-the-hidden-algebraic-struct

Use in Practice

• GLoVe is an alternative word vector embedding similar to word2vec

• Available freely, and often used off-the-shelf:
• English word2vec weights trained on Google News data
• GloVe vectors trained on the Common Crawl dataset and a Twitter dataset

• If you have a lot of training data or a different/niche domain (e.g.,
medical), you may want to train your own word vectors!

Other Variations

Predict word from bag-of-words context Predict context from word

From Words to Documents

• Sentence2Vec, Paragraph2Vec scale these Word2Vec ideas to learn
direct embeddings for sentences / paragraphs

• However, much more common to treat as a sequence of words, and
represent each word by its word2vec-style representation

• Sequence models have produced huge advances in NLP

Words in Context

• While word2vec is trained based on context, after training, it is
applied independently to each word
• E.g., train linear regression of sum of word vectors, or n-grams

• Why is this problematic?
• “He ate a tasty apple”
• “He wrote his essay on his Apple computer”

• Both use the same embedding!

