
Announcements

• Homework 1: Due in one week (next Wednesday at 8pm)!
• Should only take you a few hours

• Waitlist
• Admitted to capacity
• Only considering additional applications if students drop or do not enroll
• If you have been accepted off the waitlist, please enroll by Thursday
• We may make second round of decisions on Friday

TA Team

Vincent Cai Chandler Cheung Yiming Huang

Aalok Patwa Kunli Zhang

Bowen Jiang

Wenwen Si Crescent Xiong

Project: Goals

• Apply algorithms you learn in this class to realistic datasets

• Understand strengths and weaknesses of different machine learning
approaches in different domains

Project: Details

• Dataset: We provide two datasets, one NLP and one computer vision

• Algorithms: Evaluate two algorithms on each dataset

• Analysis: Implement and evaluate one perturbation on each dataset

Project: Algorithms

• NLP dataset
• Feature engineering + traditional model vs. RNN or transformer

• Computer vision
• Traditional model vs. CNN or transformer

• You must evaluate some nontrivial architecture variation for each one
• Example: Kinds of layers used, kind of data augmentation used, etc.
• Non-examples: Number of hidden units or layers, nonlinearity

Project: Analysis

• NLP dataset
• Short vs. long text, omit sentences with certain words from training, etc.

• Computer vision
• Rotations/translations/scaling, color/brightness shifts, etc.

• More details on this step in the future

Project: Logistics (Tentative)

• Teams of 3 students
• Find teammates on your own

• Project milestones
• Team Selection (due 9/20)
• Milestone 1 (1 page, due 10/18): Project proposal
• Milestone 2 (2 pages, due 11/15): Preliminary results (half of algorithms)
• Milestone 3 (4 pages, due 12/6): Final report

Lecture 2: Linear Regression

CIS 4190/5190
Fall 2023

Recap: Types of Learning

• Supervised learning
• Input: Examples of inputs and outputs
• Output: Model that predicts unknown output given a new input

• Unsupervised learning
• Input: Examples of some data (no “outputs”)
• Output: Representation of structure in the data

• Reinforcement learning
• Input: Sequence of interactions with an environment
• Output: Policy that performs a desired task

Today

• Deep dive into linear regression
• Basic example of a supervised learning algorithm

• Captures many fundamental machine learning concepts
• Function approximation view of machine learning
• Bias-variance tradeoff
• Regularization
• Training/validation/test split
• Optimization and gradient descent

Agenda

• Function approximation view of machine learning
• Modern strategy for designing machine learning algorithms
• By example: Linear regression, a simple machine learning algorithm

• Bias-variance tradeoff
• Fundamental challenge in machine learning
• By example: Linear regression with feature maps

Supervised Learning

Data 𝑍 = 𝑥!, 𝑦! Machine learning
algorithm

Model 𝑓

New input 𝑥

Predicted output 𝑦

Question: What model family (a.k.a. hypothesis class) to consider?

Linear Functions

• Consider the space of linear functions 𝑓! 𝑥 defined by

𝑓! 𝑥 = 𝛽"𝑥 = 𝛽# ⋯ 𝛽$
𝑥#
⋮
𝑥$

= 𝛽#𝑥# +⋯+ 𝛽$𝑥$

Linear Functions

• Consider the space of linear functions 𝑓! 𝑥 defined by

𝑓! 𝑥 = 𝛽"𝑥 = 𝛽# ⋯ 𝛽$
𝑥#
⋮
𝑥$

= 𝛽#𝑥# +⋯+ 𝛽$𝑥$

• 𝑥 ∈ ℝ$ is called an input (a.k.a. features or covariates)
• 𝛽 ∈ ℝ$ is called the parameters (a.k.a. parameter vector)
• 𝑦 = 𝑓! 𝑥 is called the label (a.k.a. output or response)

Linear Regression Problem

• Input: Dataset 𝑍 = 𝑥#, 𝑦# , … , 𝑥% , 𝑦% , where 𝑥& ∈ ℝ$ and 𝑦& ∈ ℝ
• Output: A linear function 𝑓! 𝑥 = 𝛽"𝑥 such that 𝑦& ≈ 𝛽"𝑥&

• Typical notation
• Use 𝑖 to index examples 𝑥!, 𝑦! in data 𝑍
• Use 𝑗 to index components 𝑥$ of 𝑥 ∈ ℝ%

• 𝑥!$ is component 𝑗 of input example 𝑖

• Goal: Estimate 𝛽 ∈ ℝ$

Linear Regression Problem

• Input: Dataset 𝑍 = 𝑥#, 𝑦# , … , 𝑥% , 𝑦% , where 𝑥& ∈ ℝ$ and 𝑦& ∈ ℝ
• Output: A linear function 𝑓! 𝑥 = 𝛽"𝑥 such that 𝑦& ≈ 𝛽"𝑥&

16Image: https://www.flickr.com/photos/gsfc/5937599688/
Data from https://nsidc.org/arcticseaicenews/sea-ice-tools/

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1975 1985 1995 2005 2015 2025
A

rc
ti

c
Se

a
Ic

e
E

xt
en

t
(m

ill
io

n
s

o
f s

q
 k

m
)

Year

NSIDC Index of Arctic Sea Ice in September

Photo by NASA Goddard

𝑥& ∈ ℝ# is the year

𝑦& is the sea ice extent

𝑓! 𝑥

https://www.flickr.com/photos/gsfc/5937599688/
https://nsidc.org/arcticseaicenews/sea-ice-tools/

Linear Regression Problem

• Input: Dataset 𝑍 = 𝑥#, 𝑦# , … , 𝑥% , 𝑦% , where 𝑥& ∈ ℝ$ and 𝑦& ∈ ℝ
• Output: A linear function 𝑓! 𝑥 = 𝛽"𝑥 such that 𝑦& ≈ 𝛽"𝑥&

17Image: https://www.flickr.com/photos/gsfc/5937599688/
Data from https://nsidc.org/arcticseaicenews/sea-ice-tools/

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1975 1985 1995 2005 2015 2025
A

rc
ti

c
Se

a
Ic

e
E

xt
en

t
(m

ill
io

n
s

o
f s

q
 k

m
)

Year

NSIDC Index of Arctic Sea Ice in September

Photo by NASA Goddard

𝑦& is the sea ice extent

𝑓! 𝑥

What does this mean?

𝑥& ∈ ℝ# is the year

https://www.flickr.com/photos/gsfc/5937599688/
https://nsidc.org/arcticseaicenews/sea-ice-tools/

Choice of Loss Function

• 𝑦& ≈ 𝛽"𝑥& if 𝑦& − 𝛽"𝑥& ' small
• Mean squared error (MSE):

𝐿 𝛽; 𝑍 =
1
𝑛
4
&(#

%

𝑦& − 𝛽"𝑥& '

• Computationally convenient and
works well in practice

𝐿 𝛽; 𝑍 =
𝜖& + 𝜖& + 𝜖& + 𝜖& + 𝜖&

𝑛

𝑥

𝑦 𝑓! 𝑥 = 𝛽"𝑥

Linear Regression Problem

• Input: Data 𝑍 = 𝑥#, 𝑦# , … , 𝑥% , 𝑦% , where 𝑥& ∈ ℝ$ and 𝑦& ∈ ℝ
• Output: A linear function 𝑓! 𝑥 = 𝛽"𝑥 such that 𝑦& ≈ 𝛽"𝑥&

Linear Regression Problem

• Input: Data 𝑍 = 𝑥#, 𝑦# , … , 𝑥% , 𝑦% , where 𝑥& ∈ ℝ$ and 𝑦& ∈ ℝ
• Output: A linear function 𝑓! 𝑥 = 𝛽"𝑥 that minimizes the MSE:

𝐿 𝛽; 𝑍 =
1
𝑛
4
&(#

%

𝑦& − 𝛽"𝑥& '

Linear Regression Algorithm

• Input: Dataset 𝑍 = 𝑥#, 𝑦# , … , 𝑥% , 𝑦%
• Compute

5𝛽 𝑍 = arg min
!∈ℝ!

𝐿 𝛽; 𝑍

5𝛽 𝑍 = arg min
!∈ℝ!

#
%
∑&(#% 𝑦& − 𝛽"𝑥& '

• Output: 𝑓+! , 𝑥 = 5𝛽 𝑍 "𝑥
• Discuss algorithm for computing the minimal 𝛽 later

Intuition on Minimizing MSE Loss

• Consider 𝑥 ∈ ℝ and 𝛽 ∈ ℝ

0

1

2

3

0 1 2 3
𝑥𝛽 = 1

𝑦

0
1
2
3
4
5

0 0.5 1 1.5 2
𝛽

𝐿(𝛽; 𝑍)

Intuition on Minimizing MSE Loss

• Consider 𝑥 ∈ ℝ and 𝛽 ∈ ℝ

0

1

2

3

0 1 2 3
𝑥𝛽 = 0.5

0
1
2
3
4
5

0 0.5 1 1.5 2
𝛽

𝐿(𝛽; 𝑍)𝑦

Intuition on Minimizing MSE Loss

• Consider 𝑥 ∈ ℝ and 𝛽 ∈ ℝ

0

1

2

3

0 1 2 3
𝑥𝛽 = 0.25

0
1
2
3
4
5

0 0.5 1 1.5 2
𝛽

𝐿(𝛽; 𝑍)𝑦

Intuition on Minimizing MSE Loss

• Consider 𝑥 ∈ ℝ and 𝛽 ∈ ℝ

0

1

2

3

0 1 2 3
𝑥

0
1
2
3
4
5

0 0.5 1 1.5 2
𝛽

𝐿(𝛽; 𝑍)𝑦

• Convex (“bowl shaped”) in general

Intuition on Minimizing MSE Loss

Slide by Andrew Ng

𝐿 𝛽; 𝑍

𝛽'

𝛽#

“Good” Mean Squared Error?

• Need to compare to baseline!
• Constant prediction
• Handcrafted model
• …

• Later: Training vs. test MSE

Alternative Loss Functions

• Mean absolute error: #
%
∑&(#% | @𝑦& − 𝑦&|

• Mean relative error: #
%
∑&(#% -."/."

|."|

• 𝑹𝟐 score: 1 − 234
567869:;

• “Coefficient of determination”
• Higher is better, 𝑅& = 1 is perfect

Alternative Loss Functions

• Pearson correlation: #
%
∑&(#% (=."/>?)(."/?)

>AA
• Usually estimated from some sampled measurements of those variables, and

denoted as 𝑅 (related to 𝑅& on the last slide!)

• Rank-order correlation:
• First rank the measurements of 3𝑦𝒊 and 𝑦 separately, then replace each value

in 𝑦 by its rank, and ditto for 3𝑦
• Then measure the linear correlation between those ranks

Taking a Step Up…

Function Approximation View of ML

Data 𝑍 Machine learning
algorithm

Model 𝑓

ML algorithm outputs a model 𝑓 that best “approximates” the given data 𝑍

Function Approximation View of ML

• Framework for designing machine learning algorithms

• Two design decisions
• What is the family of candidate models 𝑓? (E.g., linear functions)
• How to define “approximating”? (E.g., MSE loss)

• Why is called “function approximation”?

Aside: “True Function”

• Input: Dataset 𝑍
• Presume there is an unknown function 𝑓∗ that generates 𝑍

• Goal: Find an approximation 𝑓! ≈ 𝑓∗ in our model family 𝑓! ∈ 𝐹
• Often, 𝑓∗ not in our model family 𝐹

𝐹𝑓!𝑓∗

Function Approximation View of ML

• Framework for designing machine learning algorithms

• Two design decisions
• What is the family 𝐹 of candidate models 𝑓? (E.g., linear functions)
• How to define “approximating” (i.e., the loss 𝐿 𝑓; 𝑍)? (E.g., MSE loss)

• How do we specialize to linear regression?

Function Approximation View of ML

Data 𝑍 Machine learning
algorithm

Model 𝑓

Loss Minimization

Data 𝑍 Machine learning
algorithm

Model 𝑓

Loss Minimization

Data 𝑍 Machine learning
algorithm

Model 𝑓)

Parametric model family (i.e., 𝐹 = 𝑓) 𝛽 ∈ ℝ%)

Loss Minimization

Data 𝑍 5𝛽 𝑍 = arg min) 𝐿(𝛽; 𝑍) Model 𝑓*) +

ML algorithm minimizes loss of parameters 𝛽 over data 𝑍

Loss Minimization for Supervised Learning

Data 𝑍 5𝛽 𝑍 = arg min) 𝐿(𝛽; 𝑍) Model 𝑓*) +

Loss Minimization for Supervised Learning

Data 𝑍 = 𝑥!, 𝑦! !,-
. 5𝛽 𝑍 = arg min) 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦! ≈ 𝑓) 𝑥!
Model 𝑓*) +

Goal is for function to approximate label 𝑦 given input 𝑥

Loss Minimization for Regression

Data 𝑍 = 𝑥!, 𝑦! !,-
. 5𝛽 𝑍 = arg min) 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦! ≈ 𝑓) 𝑥!
Model 𝑓*) +

Label is a real number 𝑦! ∈ ℝ

Linear Regression

Data 𝑍 = 𝑥!, 𝑦! !,-
. 5𝛽 𝑍 = arg min) 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦! ≈ 𝑓) 𝑥!
Model 𝑓*) +

MSE loss Model is a linear function 𝑓) 𝑥 = 𝛽/𝑥

Linear Regression

General strategy
• Model family 𝐹 = 𝑓! !

• Loss function 𝐿 𝛽; 𝑍

Linear regression strategy
• Linear functions 𝐹 = 𝑓! 𝑥 = 𝛽"𝑥

• MSE 𝐿 𝛽; 𝑍 = #
%
∑&(#% 𝑦& − 𝛽"𝑥& '

Linear regression algorithm

5𝛽 𝑍 = arg min
!

𝐿 𝛽; 𝑍

Agenda

• Function approximation view of machine learning
• Modern strategy for designing machine learning algorithms
• By example: Linear regression, a simple machine learning algorithm

• Bias-variance tradeoff
• Fundamental challenge in machine learning
• By example: Linear regression with feature maps

Example: Quadratic Function

𝑥

𝑦

𝑓! 𝑥 = 𝑥/2

Example: Quadratic Function

𝑥

𝑦
𝑓! 𝑥 = 𝑥

Can we get a better fit?

Feature Maps

General strategy
• Model family 𝐹 = 𝑓! !

• Loss function 𝐿 𝛽; 𝑍

Linear regression with feature map
• Linear functions over a given feature

map 𝜙:𝑋 → ℝ$

𝐹 = 𝑓! 𝑥 = 𝛽"𝜙 𝑥

• MSE 𝐿 𝛽; 𝑍 = #
%
∑&(#% 𝑦& − 𝛽"𝜙 𝑥&

'

Quadratic Feature Map

• Consider the feature map 𝜙:ℝ → ℝ' given by

𝜙 𝑥 = 𝑥
𝑥'

• Then, the model family is

𝑓! 𝑥 = 𝛽#𝑥 + 𝛽'𝑥'

Quadratic Feature Map

𝑥

𝑦
𝑓! 𝑥 = 0𝑥 + 1𝑥'

In our family for 𝛽 = 0
1 !

Feature Maps

• Powerful strategy for encoding prior knowledge

• Terminology
• 𝑥 is the input and 𝜙 𝑥 are the features
• Often used interchangeably

Examples of Feature Maps

• Polynomial features
• 𝜙 𝑥 = 𝛽- + 𝛽&𝑥- + 𝛽0𝑥& + 𝛽1𝑥-& + 𝛽2𝑥-𝑥& + 𝛽3𝑥&& +⋯
• Quadratic features are very common; capture “feature interactions”
• Can use other nonlinearities (exponential, logarithm, square root, etc.)

• Intercept term
• 𝜙 𝑥 = 1 𝑥- … 𝑥% /

• Almost always used; captures constant effect

• Encoding non-real inputs
• E.g., 𝑥 = “the food was good” and 𝑦 = 4 stars
• 𝜙 𝑥 = 1 “good” ∈ 𝑥 1 “bad” ∈ 𝑥 … /

Algorithm

• Reduces to linear regression

• Step 1: Compute 𝜙& = 𝜙 𝑥& for each 𝑥& in 𝑍

• Step 2: Run linear regression with 𝑍C = 𝜙#, 𝑦# , … , 𝜙% , 𝑦%

Question

• Why not throw in lots of features?
• 𝜙 𝑥 = 𝛽- + 𝛽&𝑥- + 𝛽0𝑥& + 𝛽1𝑥-& + 𝛽2𝑥-𝑥& + 𝛽3𝑥&& +⋯
• Can fit any 𝑛 points using a polynomial of degree 𝑛

𝑥

𝑦

𝑓! 𝑥

Prediction

• Issue: The goal in machine learning is prediction
• Given a new input 𝑥, predict the label 3𝑦 = 𝑓) 𝑥

𝑥

𝑦

𝑓! 𝑥

The errors on new inputs is very large!

Prediction

• Issue: The goal in machine learning is prediction
• Given a new input 𝑥, predict the label 3𝑦 = 𝑓) 𝑥

𝑥

𝑦

𝑓! 𝑥

Vanilla linear regression actually works better!

Training vs. Test Data

• Training data: Examples 𝑍 = 𝑥, 𝑦 used to fit our model

• Test data: New inputs 𝑥 whose labels 𝑦 we want to predict

Overfitting vs. Underfitting

• Overfitting
• Fit the training data 𝑍 well
• Fit new test data 𝑥, 𝑦 poorly

• Underfitting
• Fit the training data 𝑍 poorly
• (Necessarily fit new test data
𝑥, 𝑦 poorly)

𝑥

𝑦

𝑓! 𝑥

𝑥

𝑦

𝑓! 𝑥

Aside: Why Does Overfitting Happen?

• Overfitting typically due to fitting noise in the data

• Noise in labels 𝒚&
• True data generating process is more complex than we can capture
• May depend on unobserved features

• Noise in features 𝒙&
• Measurement error in the feature values
• Errors due to preprocessing
• Some features might be irrelevant to the decision function

Training/Test Split

• Issue: How to detect overfitting vs. underfitting?
• Solution: Use held-out test data to estimate loss on new data
• Typically, randomly shuffle data first

Given data 𝑍

Training data 𝑍#$%&' Test data 𝑍#()#

Training/Test Split Algorithm

• Step 1: Split 𝑍 into 𝑍D7689 and 𝑍D;ED

• Step 2: Run linear regression with 𝑍D7689 to obtain 5𝛽 𝑍D7689

• Step 3: Evaluate
• Training loss: 𝐿45678 = 𝐿 5𝛽 𝑍45678 ; 𝑍45678
• Test (or generalization) loss: 𝐿49:4 = 𝐿 5𝛽 𝑍45678 ; 𝑍49:4

Training data 𝑍#$%&' Test data 𝑍#()#

Training/Test Split Algorithm

• Overfitting
• Fit the training data 𝑍 well
• Fit new test data 𝑥, 𝑦 poorly

• Underfitting
• Fit the training data 𝑍 poorly
• (Necessarily fit new test data
𝑥, 𝑦 poorly)

𝑥

𝑦

𝑓! 𝑥

𝑥

𝑦

𝑓! 𝑥

Training/Test Split Algorithm

• Overfitting
• 𝐿45678 is small
• 𝐿49:4 is large

• Underfitting
• Fit the training data 𝑍 poorly
• (Necessarily fit new test data
𝑥, 𝑦 poorly)

𝑥

𝑦

𝑓! 𝑥

𝑥

𝑦

𝑓! 𝑥

Training/Test Split Algorithm

• Overfitting
• 𝐿45678 is small
• 𝐿49:4 is large

• Underfitting
• 𝐿45678 is large
• 𝐿49:4 is large

𝑥

𝑦

𝑓! 𝑥

𝑥

𝑦

𝑓! 𝑥

Aside: IID Assumption

• Underlying IID assumption
• Future data are drawn IID from same data distribution 𝑃 𝑥, 𝑦 as 𝑍49:4
• IID = independent and identically distributed
• This is a strong (but common) assumption!

• Time series data
• Particularly important failure case since data distribution may shift over time
• Solution: Split along time (e.g., data before 9/1/20 vs. data after 9/1/20)

How to Fix Underfitting/Overfitting?

• Choose the right model family!

Role of Capacity

• Capacity of a model family captures “complexity” of data it can fit
• Higher capacity à more likely to overfit (model family has high variance)
• Lower capacity à more likely to underfit (model family has high bias)

• For linear regression, capacity roughly corresponds to feature
dimension 𝑑
• I.e., number of features in 𝜙 𝑥

Bias-Variance Tradeoff

• Overfitting (high variance)
• High capacity model capable of

fitting complex data
• Insufficient data to constrain it

• Underfitting (high bias)
• Low capacity model that can only

fit simple data
• Sufficient data but poor fit

𝑥

𝑦

𝑓! 𝑥

𝑥

𝑦

𝑓! 𝑥

Bias-Variance Tradeoff

Lo
ss

Capacity

Training loss

Test loss

Ideal OverfittingUnderfitting

Slide by Padhraic Smyth, UCIrvine
Warning: Very stylized plot!

Bias-Variance Tradeoff

• For linear regression, increasing feature dimension 𝑑…
• Tends to increase capacity
• Tends to decrease bias but increase variance

• Need to construct 𝜙 to balance tradeoff between bias and variance
• Rule of thumb: 𝑛 ≈ 𝑑 log 𝑑
• Large fraction of data science work is data cleaning + feature engineering

Bias-Variance Tradeoff

• Increasing number of examples 𝑛 in the data…
• Tends to keep bias fixed and decrease variance

• General strategy
• High bias: Increase model capacity 𝑑
• High variance: Increase data size 𝑛 (i.e., gather more labeled data)

Housing Dataset

• Sales of residential property in Ames, Iowa from 2006 to 2010
• Examples: 1,022
• Features: 79 total (real-valued + categorical), some are missing!
• Label: Sales price

...

...

...

...

...

...

...

...

...

...

Data from: De Cock. Journal of Statistics Education 19(3), 2011

Housing Dataset

• dataframe.describe()

...

Feature Correlation Matrix

Features Most Correlated with Label

Missing Values
Feature % Missing Values
PoolQC 99.5108
MiscFeature 96.0861
Alley 93.5421
Fence 80.2348
FireplaceQu 47.6517
LotFrontage 18.5910
GarageCond 05.2838
GarageType 05.2838
GarageYrBlt 05.2838
GarageFinish 05.2838
GarageQual 05.2838
BsmtFinType1 02.5440
...

• Possible ways to handle missing values
• Numerical: Impute with mean
• Categorical: Impute with mode

Other Preprocessing

• Categorical: Featurize using one-hot encoding
• Ordinal
• Convert to integer (e.g., low, medium, high à 1, 2, 3)
• Does not fully capture relationships (try different featurizations!)

Evaluation

• 438 test examples, preprocessed same as training data
• Sorted by prediction error

