Announcements

* Homework 1: Due in one week (next Wednesday at 8pm)!
* Should only take you a few hours

* Waitlist
* Admitted to capacity
* Only considering additional applications if students drop or do not enroll
* |f you have been accepted off the waitlist, please enroll by Thursday
* We may make second round of decisions on Friday



TA Team

Chandler Cheung Yiming Huang Bowen Jiang

3

Aalok Patwa Wenwen Si Crescent Xiong Kunli Zhang



Project: Goals

* Apply algorithms you learn in this class to realistic datasets

e Understand strengths and weaknesses of different machine learning
approaches in different domains



Project: Details

* Dataset: We provide two datasets, one NLP and one computer vision
 Algorithms: Evaluate two algorithms on each dataset

* Analysis: Implement and evaluate one perturbation on each dataset



Project: Algorithms

* NLP dataset
e Feature engineering + traditional model vs. RNN or transformer

* Computer vision
e Traditional model vs. CNN or transformer

* You must evaluate some nontrivial architecture variation for each one
 Example: Kinds of layers used, kind of data augmentation used, etc.
* Non-examples: Number of hidden units or layers, nonlinearity



Project: Analysis

* NLP dataset
e Short vs. long text, omit sentences with certain words from training, etc.

* Computer vision
* Rotations/translations/scaling, color/brightness shifts, etc.

* More details on this step in the future



Project: Logistics (Tentative)

* Teams of 3 students
* Find teammates on your own

* Project milestones
* Team Selection (due 9/20)
* Milestone 1 (1 page, due 10/18): Project proposal
* Milestone 2 (2 pages, due 11/15): Preliminary results (half of algorithms)
* Milestone 3 (4 pages, due 12/6): Final report



Lecture 2: Linear Regression

CIS 4190/5190
Fall 2023



Recap: Types of Learning

* Supervised learning
* Input: Examples of inputs and outputs
* Output: Model that predicts unknown output given a new input

* Unsupervised learning
* Input: Examples of some data (no “outputs”)
* Output: Representation of structure in the data

* Reinforcement learning
* Input: Sequence of interactions with an environment
e OQutput: Policy that performs a desired task



Today

* Deep dive into linear regression
* Basic example of a supervised learning algorithm

e Captures many fundamental machine learning concepts
* Function approximation view of machine learning
* Bias-variance tradeoff
* Regularization
* Training/validation/test split
* Optimization and gradient descent



Agenda

* Function approximation view of machine learning
* Modern strategy for designing machine learning algorithms
* By example: Linear regression, a simple machine learning algorithm

* Bias-variance tradeoff
* Fundamental challenge in machine learning
* By example: Linear regression with feature maps



Supervised Learning

w BY @ b/

Data Z = {(x;, v;)} Machine learning Model f

algorithm '

Predicted output y

New input x

¥

Question: What model family (a.k.a. hypothesis class) to consider?



Linear Functions

* Consider the space of linear functions f5 (x) defined by

fp(x) =p"x



Linear Functions

* Consider the space of linear functions f5 (x) defined by

X1

fex)=B"x=1[B1 - PBal| i |=Pixs+ -+ Baxy

| X4

» x € R% is called an input (a.k.a. features or covariates)
» 3 € R% is called the parameters (a.k.a. parameter vector)
* v = fp(x) is called the label (a.k.a. output or response)



Linear Regression Problem

* Input: Dataset Z = {(x{,v{), ..., (x,,, v,)}, where x;, € R% and y; € R
* Output: A linear function f;(x) = ' x such that y; = ' x;

* Typical notation
« Use i to index examples (x;, y;) in data Z
* Use j to index components x; of x € R%

* x;; iscomponent j of input example i

* Goal: Estimate f € R?



Linear Regression Problem

* Input: Dataset Z = {(x{, V1), ..., (x,,, v,,)}, where x; € R and y; € R
* Output: A linear function f;(x) = ' x such that y; = ' x;

NSIDC Index of Arctic Sea Ice in September
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Linear Regression Problem |
What does this mean?

* Input: Dataset Z = {(x{, V1), ..., (x,,, v,,)}, where x; € R* and y; € R
* Output: A linear function f;(x) = ' x such that y; = ' x;
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Choice of Loss Function

Vi~ Bl it (v = B x)® small
* Mean squared error (MSE):

1 n
L 7)== (i = T
=1

* Computationally convenient and
works well in practice




Linear Regression Problem

e Input: Data Z = {(x(,v¢), ..., (x,, v,)}, where x; € R* and y; € R
* Output: A linear function f;(x) = ' x such that y; = ' x;



Linear Regression Problem

e Input: Data Z = {(x(,v¢), ..., (x,, v,)}, where x; € R* and y; € R
* Output: A linear function f; (x) = ' x that minimizes the MSE:

1 n
L(;7) = Ez(Yi — BT x;)?
i=1



Linear Regression Algorithm

* Input: Dataset Z = { (x4, V1), ..., (%, Vo) }
* Compute

p(Z) = argmin L(B; Z)
LERY

.1
= arg gldm;Z?ﬂ(yi — B x)*
€

* Output: /5, (x) = B(Z2)Tx
* Discuss algorithm for computing the minimal [ later



Intuition on Minimizing MSE Loss

* Considerx e Rand f € R

3 & >
// :
2 T 3
y /7 L(5;7) 2
1+ &
/ 1
/7 . . . 0 O
O ] } | | |
/(I) 1 2 3 0 0.5 1 1.5
f=1 X p



Intuition on Minimizing MSE Loss

* Considerx e Rand f € R
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Intuition on Minimizing MSE Loss

* Considerx e Rand f € R
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Intuition on Minimizing MSE Loss

* Considerx e Rand f € R
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Intuition on Minimizing MSE Loss

* Convex (“bowl shaped”) in general
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Slide by Andrew Ng



“Good” Mean Squared Error?

* Need to compare to baseline!
e Constant prediction
* Handcrafted model

* Later: Training vs. test MSE



Alternative Loss Functions

1

* Mean absolute error: - i=1 1Y — il
] 1 |’\._ |
e Mean relative error: —2ui=1 Al
n Vil
e R? score: 1 ——
Variance

e “Coefficient of determination”
* Higher is better, R? = 1 is perfect



Alternative Loss Functions

. 1 \J - — 1] -
* Pearson correlation: ~ =1 O “;S‘y‘ K

* Usually estimated from some sampled measurements of those variables, and
denoted as R (related to R“ on the last slide!)

 Rank-order correlation:

* First rank the measurements of J; and y separately, then replace each value
in y by its rank, and ditto for y

* Then measure the linear correlation between those ranks



Taking a Step Up...



Function Approximation View of ML

3-0+0

Data Z Machine learning Model f

algorithm /

ML algorithm outputs a model f that best “approximates” the given data 7




Function Approximation View of ML

* Framework for designing machine learning algorithms

* Two design decisions
* What is the family of candidate models f? (E.g., linear functions)

* How to define “approximating”? (E.g., MISE loss)

* Why is called “function approximation”?



Aside: “True Function”

* Input: Dataset Z
* Presume there is an unknown function f* that generates 7

* Goal: Find an approximation fz = f in our model family f; € F
* Often, f™ not in our model family F




Function Approximation View of ML

* Framework for designing machine learning algorithms

* Two design decisions
* What is the family F of candidate models [ ? (E.g., linear functions)
* How to define “approximating” (i.e., the loss L(f; Z))? (E.g., MSE loss)

* How do we specialize to linear regression?



Function Approximation View of ML

300

Data Z Machine learning Model f
algorithm




Loss Minimization

3-0+0

Data Z Machine learning Model f
algorithm




Loss Minimization

£33

Data Z Machine learning Model /5

algorithm /

Parametric model family (i.e., F = {f[; | f € R4 })




Loss Minimization

£33

Data / [(Z) = arg ming L(f; Z) Model fB(Z)

N\

ML algorithm minimizes loss of parameters [ over data 7




Loss Minimization for Supervised Learning

300

Data / [(Z) = arg ming L(f; Z) Model fB(Z)




Loss Minimization for Supervised Learning

300

Data Z = {(x;, y)}i=y  f(Z) = argming L(B; 2) Model /7 )

\ L encodes y; =~ fz(x;)

Goal is for function to approximate label y given input x




Loss Minimization for Regression

300

Data Z = {(x;, y)}i~y  p(Z) = argming L(B; 2) Model /7 )

\ L encodes y; =~ fz(x;)

Label is a real number y; € R




Linear Regression

£33

Data Z = {(x;, y)}j=1  B(Z) = argming L(B;Z) Model /7
L encodes y; = fz(x;)

/ S

MSE loss Model is a linear function fz(x) = ' x




Linear Regression

General strategy Linear regression strategy
* Model family F = {fﬁ}[; * Linear functions F = {fﬁ(x) = ,BTx}
* Loss function L(; Z) * MSE L(B;72) = % (= BTx)?

Linear regression algorithm

f(Z) = arg min L(f; Z)
B



Agenda

* Function approximation view of machine learning
* Modern strategy for designing machine learning algorithms
* By example: Linear regression, a simple machine learning algorithm

* Bias-variance tradeoff
* Fundamental challenge in machine learning
* By example: Linear regression with feature maps



Example: Quadratic Function




Example: Quadratic Function

.//' f,B(x) = X

Can we get a better fit?



Feature Maps

General strategy Linear regression with feature map
* Model family F = {fﬁ} * Linear functions over a given feature
g map ¢: X > R?

* Loss function L(f; Z)
F={f(x)=3"Tpx)}

« MSE L(f3;7) =% ?:1(371' — IBTQI’(xi))Z



Quadratic Feature Map
e Consider the feature map ¢: R » R? given by
o) =[]

* Then, the model family is

fp(x) = Byx + Box*



Quadratic Feature Map

9 fg(x) = Ox + 1x°

In our family for [/ = [2]'



Feature Maps

* Powerful strategy for encoding prior knowledge

* Terminology
 x is the input and ¢ (x) are the features
e Often used interchangeably



Examples of Feature Maps

* Polynomial features

_ 2 2
* d(x) = P1 + Bax1 + B3xy + Paxi + PsX1xz + Pexs + -
* Quadratic features are very common; capture “feature interactions”
* Can use other nonlinearities (exponential, logarithm, square root, etc.)

* Intercept term

cp(x)=[1 % - Xxa]'
* Almost always used; captures constant effect

* Encoding non-real inputs

* E.g., x = “the food was good” and y = 4 stars
* ¢(x) = [1(“good” € x) 1(“bad” € x) ..]T



Algorithm
* Reduces to linear regression
* Step 1: Compute ¢p; = ¢ (x;) for each x; in Z

* Step 2: Run linear regression with Z' = {(¢$ 1, v1), ..., (b, v,,) }



Question

 Why not throw in lots of features?

° ¢(X) — ,81 + ,Ble + ﬁ3x2 + ﬁ4X12 + ﬁlexZ + ﬁ6x% + ...
* Can fit any n points using a polynomial of degree n

Y|




Prediction

* Issue: The goal in machine learning is prediction
* Given a new input x, predict the label y = fﬁ(x)

y

The errors on new inputs is very large!



Prediction

* Issue: The goal in machine learning is prediction
* Given a new input x, predict the label y = fﬁ(x)

Vanilla linear regression actually works better!



Training vs. Test Data

* Training data: Examples Z = {(x, v)} used to fit our model

* Test data: New inputs x whose labels y we want to predict



Overfitting vs. Underfitting

* Overfitting * Underfitting
* Fit the training data Z well * Fit the training data Z poorly
* Fit new test data (x, y) poorly  (Necessarily fit new test data

(x, y) poorly)
y




Aside: Why Does Overfitting Happen?

* OQverfitting typically due to fitting noise in the data

* Noise in labels y;

* True data generating process is more complex than we can capture
* May depend on unobserved features

* Noise in features x;
 Measurement error in the feature values
* Errors due to preprocessing
* Some features might be irrelevant to the decision function



Training/Test Split

* Issue: How to detect overfitting vs. underfitting?

e Solution: Use held-out test data to estimate loss on new data

* Typically, randomly shuffle data first

Given data Z

> 4

Training data Zirain

Test data Ziegt




Training/Test Split Algorithm

* Step 1: Split Z into Z,,;,, and Z;ast

Training data Zirain

Test data Ziegt

« Step 2: Run linear regression with 7., to obtain 5(Z,,.:,,)

* Step 3: Evaluate
* Training loss: Liy4in = L(,é(Ztrain); Ztrain)

* Test (or generalization) loss: Liest = L(,[? (Zirain); Ztest)




Training/Test Split Algorithm

* Overfitting * Underfitting
* Fit the training data Z well * Fit the training data Z poorly
* Fit new test data (x, y) poorly  (Necessarily fit new test data

(x, y) poorly)
y




Training/Test Split Algorithm

* Overfitting * Underfitting
* Lirain is small * Fit the training data Z poorly
* Liest IS large * (Necessarily fit new test data

(x, y) poorly)
y




Training/Test Split Algorithm

* Overfitting * Underfitting
* Lirain is small * Lirain is large
* Liest is large * Liest is large
y




Aside: [ID Assumption

* Underlying IID assumption
* Future data are drawn IID from same data distribution P(x,y) as Z et
* |ID = independent and identically distributed
* This is a strong (but common) assumption!

* Time series data
 Particularly important failure case since data distribution may shift over time
 Solution: Split along time (e.g., data before 9/1/20 vs. data after 9/1/20)



How to Fix Underfitting/Overfitting?

* Choose the right model family!



Role of Capacity

e Capacity of a model family captures “complexity” of data it can fit
* Higher capacity = more likely to overfit (model family has high variance)
* Lower capacity = more likely to underfit (model family has high bias)

* For linear regression, capacity roughly corresponds to feature
dimension d

* |.e., number of features in ¢(x)



Bias-Variance Tradeoff

* Overfitting (high variance) e Underfitting (high bias)
* High capacity model capable of * Low capacity model that can only
fitting complex data fit simple data
* |Insufficient data to constrain it  Sufficient data but poor fit
y y ?

|
| A \fﬁ(x) /,,/’/
‘\‘ /l\T/f/ \. I/ fp(x)

”




Bias-Variance Tradeoff

 Underfitting Ideal Overfitting

Loss

—_— » Training loss

Capacity

Warning: Very stylized plot!

Slide by Padhraic Smyth, UClrvine



Bias-Variance Tradeoff

* For linear regression, increasing feature dimension d...
* Tends to increase capacity
* Tends to decrease bias but increase variance

* Need to construct ¢ to balance tradeoff between bias and variance
* Rule of thumb: n = d logd
* Large fraction of data science work is data cleaning + feature engineering



Bias-Variance Tradeoff

* Increasing number of examples n in the data...
* Tends to keep bias fixed and decrease variance

* General strategy
* High bias: Increase model capacity d
* High variance: Increase data size n (i.e., gather more labeled data)



Housing Dataset

* Sales of residential property in Ames, lowa from 2006 to 2010
* Examples: 1,022
* Features: 79 total (real-valued + categorical), some are missing!
* Label: Sales price

MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape "’ MoSold YrSold SaleType SaleCondition SalePrice
20 RL 80.0 10400 Pave  NaN Reg ' 5 2008 WD Normal 174000

180 RM 35.0 3675 Pave NaN Reg 5 2006 WD Normal 145000

60 FV 72.0 8640 Pave NaN Reg 6 2010 Con Normal 215200

20 RL 84.0 11670 Pave NaN IR1 3 2007 WD Normal 320000

60 RL 43.0 10667 Pave NaN IR2 4 2009 ConLw Normal 212000

80 RL 82.0 9020 Pave NaN Reg 6 2008 WD Normal 168500

60 RL 70.0 11218 Pave NaN Reg 5 2010 WD Normal 189000

80 RL 85.0 13825 Pave NaN Reg ™~ 12 2008 WD Normal 140000

60 RL NaN 13031 Pave NaN IR2 7 7 2006 WD Normal 187500

Data from: De Cock. Journal of Statistics Education 19(3), 2011



count

mean
std
min
25%
50%
75%

max

Housing Dataset

» dataframe.describe()

Id MSSubClass LotFrontage

1022.000000
732.338552
425.860402

1.000000
367.500000
735.500000

1100.500000

1460.000000

1022.000000
57.059687
42.669715
20.000000
20.000000
50.000000
70.000000

190.000000

832.000000
70.375000
25.533607
21.000000
59.000000
70.000000
80.000000

313.000000

LotArea
1022.000000
10745.437378
11329.753423
1300.000000
7564.250000
9600.000000
11692.500000

215245.000000

1022.000000
6.128180
1.371391
1.000000
5.000000
6.000000
7.000000

10.000000

OverallQual OverallCond

1022.000000
5.564579
1.110557
1.000000
5.000000
5.000000
6.000000
9.000000

YearBuilt YearRemodAdd

1022.000000
1970.995108

30.748816
1872.000000
1953.000000
1972.000000
2001.000000
2010.000000

1022.000000
1984.757339

20.747109
1950.000000
1966.000000
1994.000000
2004.000000
2010.000000

MasVnrArea
1019.000000
105.261040
172.707705
0.000000
0.000000
0.000000
170.000000
1378.000000

SalePrice
1022.000000
181312.692759
77617.461005
34900.000000
130000.000000
165000.000000
215000.000000
745000.000000



eature Correlation Matrix

YearRemodAdd

BsmtUnfSF
TotalBsmtSF
LowQualFinSF
WoodDeckSF
OpenPorchSF

1.0

LotFrontage{ |
LotArea
OverallQual
OverallCond
YearBuilt
YearRemodAdd
MasVnrArea
BsmtFinSF1
BsmtFinSF2
BsmtUnfSF
TotalBsmtSF
1stFIrSF
2ndFIrSF
LowQualFinSF
GrLivArea
BsmtFullBath
BsmtHalfBath
FullBath
HalfBath
BedroomAbvGr
KitchenAbvGr
TotRmsAbvGrd
Fireplaces
GarageYrBlt
GarageCars
GarageArea
WoodDeckSF
OpenPorchSF
EnclosedPorch
3SsnPorch
ScreenPorch
PoolArea
MoSold

YrSold
SalePrice




Features Most Correlated with Label
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Missing Values

* Possible ways to handle missing values
* Numerical: Impute with mean
e Categorical: Impute with mode

Feature % Missing Values
PoolQC 99.5108
MiscFeature 96.0861
Alley 93.5421
Fence 80.2348
FireplaceQu 47.6517
LotFrontage 18.5910
GarageCond 05.2838
GarageType 05.2838
GarageYrBlt 05.2838
GarageFinish 05.2838
GarageQual 05.2838
BsmtFinTypel 02.5440



Other Preprocessing

e Categorical: Featurize using one-hot encoding

* Ordinal
* Convert to integer (e.g., low, medium, high =2 1, 2, 3)
* Does not fully capture relationships (try different featurizations!)

HouseStyle
l1Story
SLvl
2Story
1Story
2Story
SLvl
2Story
SLvl
2Story
2Story

FullBath RoofMatl
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Evaluation

* 438 test examples, preprocessed same as training data
* Sorted by prediction error
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