
Announcements

• Project Milestone 2 due Wednesday at 8pm

• Homework 6 due Wednesday, November 22 at 8pm



AdaBoost Variance

• Increases with number of models 𝑁

# base models 𝑁
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Lecture 21: Reinforcement Learning

CIS 4190/5190
Fall 2023



Three Kinds of Learning

• Supervised learning
• Given labeled examples 𝑥, 𝑦 , learn to predict 𝑦 given 𝑥

• Unsupervised learning
• Given unlabeled examples 𝑥, uncover structure in 𝑥

• Reinforcement learning
• Learning from sequence of interactions with the environment



Sequential Decision Making

• Make a sequence of decisions to maximize a real-valued reward

• Examples
• Driving a car
• Making movie recommendations
• Treating a patient over time
• Navigating a webpage



Sequential Decision Making

• Machine learning almost always aims to inform decision making
• Only show user an image if it contains a pet
• Help a doctor make a treatment decision

• Reinforcement learning is about sequences of decisions

• Naïve strategy: Predict future and optimize decisions accordingly
• But decisions affect forecasts
• If we show the user too many cats, they might get bored of cats!

• Solution: Jointly perform prediction and optimization



What makes RL hard?

start goal

Ross & Bagnell 2011



What makes RL hard?

start goal

Ross & Bagnell 2011



What makes RL hard?

start goal

not in training set

Ross & Bagnell 2011



What makes RL hard?

• Distribution shift is fundamental to the problem
• Repeat: Improve policy à distribution shifts à improve policy à …
• This is with a human expert in the loop! Without the expert, we must start off 

acting randomly

• Generally, using expert data where available is promising (called 
“imitation learning”)
• Caveat: Limited by human performance (e.g., AlphaGo Zero significantly 

outperforms AlphaGo, which was pretrained on expert games)



Reinforcement Learning Problem

• At each step 𝑡 ∈ 1,… , 𝑇 :
• Observe state 𝑠! ∈ 𝑆 and reward 𝑟! ∈ ℝ
• Take action 𝑎! = 𝜋 𝑠! ∈ 𝐴

• Goal: Learn a policy 𝜋: 𝑆 → 𝐴 that 
maximizes discounted reward sum:

𝑅! =/
"#$

!

𝛾" ⋅ 𝑟"
𝑟!"#

𝑠!"#

action 𝑎!

environment

state 𝑠!

reward 𝑟!

agent



Reinforcement Learning Problem

state: joint angles
actions: motor torques
dynamics: robot physics
reward: average speed

state: current stock
actions: how much to purchase
dynamics: demand at each store
reward: profit



Reinforcement Learning Successes

Image: Google via Getty Images

Playing board games and videogames



Reinforcement Learning Successes

Web navigation (e.g., book a flight)



Reinforcement Learning Successes

Robotics (e.g., Rubik’s cube manipulation)



Reinforcement Learning Successes

Steering microscope to separate molecules

https://www.science.org/doi/10.1126/sciadv.abb6987

Controlling magnetic fields to stabilize plasma (in simulation)
Degrave et al 2022, Magnetic control of tokamak plasmas through deep reinforcement learning

https://www.science.org/doi/10.1126/sciadv.abb6987


Reinforcement Learning Successes

• Power grids: Reinforcement learning for demand response
• A review of algorithms and modeling techniques, J. Vázquez-Canteli, Z. Nagy

• Recommender systems
• https://github.com/google-research/recsim

• Many potential applications
• https://arxiv.org/abs/1904.12901

https://arxiv.org/abs/1904.12901


Reinforcement Learning Problem

• At a high level, we need to specify the following:
• State space: What are the observations the agent may encounter?
• Action space: What are the actions the agent can take?
• Transitions/dynamics: How the state is updated when taking an action
• Rewards: What rewards the agent receives for taking an action in a state

• For most of today, assume state and action spaces are finite



Toy Example

• Grid map with solid/open cells

• State: An open grid cell

• Actions: Move North, East, 
South, West

Based on slide by Dan Klein



Toy Example

• Dynamics
• Move in chosen direction, but not 

deterministically!
• Succeeds 80% of the time
• 10% of the time, end up 90∘ off
• 10% of the time, end up −90∘ off
• The agent stays put if it tries to 

move into a solid cell or outside 
the world
• At terminal states, any action ends 

episode (or rollout)

Based on slide by Dan Klein



Toy Example

• Rewards
• At terminal state, agent receives 

the specified reward
• For each timestep outside terminal 

states , the agent pays a small cost, 
e.g., a “reward” of −0.03

Based on slide by Dan Klein



Example Episode (Random Policy)

Based on slide by Dan Klein



Example Episode (Random Policy)

Action= “N”

Based on slide by Dan Klein



Example Episode (Random Policy)

Action= “N”
Result = “N”

Reward = -0.03

Based on slide by Dan Klein



Example Episode (Random Policy)

Action= “N”

Based on slide by Dan Klein



Example Episode (Random Policy)

Action= “N”
Result=“E”

Reward = -0.03
(stays still because blocked)

Based on slide by Dan Klein



Example Episode (Random Policy)

Action= “N”
Result=“N”

Reward = -0.03

Based on slide by Dan Klein



Example Episode (Random Policy)
Action= “N”
Result=“E”

Reward = -0.03

Based on slide by Dan Klein



Example Episode (Random Policy)
Action= “E”
Result=“E”

Reward = -0.03

Based on slide by Dan Klein



Example Episode (Random Policy)
Action= “E”
Result=“E”

Reward = -0.03

Based on slide by Dan Klein



Example Episode (Random Policy)
Action= “N”

Result=“the end”
Reward = +1

Based on slide by Dan Klein



Example Episode (Random Policy)

• Our random trajectory happened 
to end in the right place!

• Optimal policy? No!
• Only succeeded by random chance

Based on slide by Dan Klein



Optimal Policy

• Optimal policy: Following 𝜋∗ 
maximizes total reward received
• Discounted: Future rewards are 

downweighted
• In expectation: On average across 

randomness of environment and 
actions

Based on slide by Dan Klein



Markov Decision Process (MDP)

• An MDP (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) is defined by:
• Set of states 𝑠 ∈ 𝑆
• Set of actions 𝑎 ∈ 	𝐴
• Transition function 𝑃 𝑠% 𝑠, 𝑎  (also 

called “dynamics” or the “model”)
• Reward function 𝑅 𝑠, 𝑎, 𝑠%
• Discount factor 𝛾 < 1

• Also assume an initial state 
distribution 𝐷 𝑠
• Often omitted since optimal policy 

does not depend on 𝐷
Image: https://towardsdatascience.com/reinforcement-learning-
demystified-markov-decision-processes-part-1-bf00dda41690

https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690


Markov Decision Process (MDP)

• Goal: Maximize cumulative expected discounted reward:

𝜋∗ = max
&
𝐽 𝜋 	 where	 𝐽 𝜋 = 𝔼' /

"#(

)

𝛾" ⋅ 𝑟"

• Expectation over episodes 𝜁 = 𝑠(, 𝑎(, 𝑟(, 𝑠$, … , where
• 𝑠& ∼ 𝐷
• 𝑎! = 𝜋 𝑠!
• 𝑠!"# ∼ 𝑃 ⋅ 𝑠!, 𝑎!
• 𝑟! = 𝑅 𝑠!, 𝑎!, 𝑠!"#



Markov Decision Process (MDP)

• Planning: Given 𝑃 and 𝑅, compute the optimal policy 𝜋∗
• Purely an optimization problem! No learning

• Reinforcement learning: Compute the optimal policy 𝜋∗ without 
prior knowledge of 𝑃 and 𝑅



Policy Value Function

• Policy Value Function: Expected reward if we start in 𝑠 and use 𝜋:

𝑉& 𝑠 = 𝔼 /
"#(

)

𝛾" ⋅ 𝑟" ∣ 𝑠( = 𝑠

• Bellman equation:

𝑉& 𝑠 = /
*!∈,

𝑃 𝑠- 𝑠, 𝜋 𝑠 ⋅ 𝑅 𝑠, 𝜋 𝑠 , 𝑠- + 𝛾 ⋅ 𝑉& 𝑠-

expectation 
over next state

current reward + 
discounted future reward

current value



Optimal Value Function

• Optimal value function: Expected reward if we start in 𝑠 and use 𝜋∗:

𝑉∗ 𝑠 = 𝔼 /
"#(

)

𝛾" ⋅ 𝑟" ∣ 𝑠( = 𝑠

• Bellman equation:

𝑉∗ 𝑠 = max
.∈/

/
*!∈,

𝑃 𝑠- 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠- + 𝛾 ⋅ 𝑉∗ 𝑠-

expectation 
over next state

current reward + 
discounted future reward

current value

Optimal policy selects action that maximizes 
future expected reward from state 𝑠



Optimal Value Function

• Bellman equation:

𝑉∗ 𝑠 = max
.∈/

/
*!∈,

𝑃 𝑠- 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠- + 𝛾 ⋅ 𝑉∗ 𝑠-

• Do not need to know the optimal policy 𝜋∗!

• Strategy: Compute 𝑉∗ and then use it to compute 𝜋∗
• Caveat: Latter step requires knowing 𝑃



Policy Action-Value Function

• Policy Action-Value Function (or Q function): Expected reward if we 
start in 𝑠, take action 𝑎, and then use 𝜋 thereafter:

𝑄& 𝑠, 𝑎 = 𝔼 /
"#(

)

𝛾" ⋅ 𝑟" ∣ 𝑠( = 𝑠, 𝑎( = 𝑎

• Bellman equation:

𝑄& 𝑠, 𝑎 = /
*!∈,

𝑃 𝑠- 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠- + 𝛾 ⋅ 𝑄& 𝑠-, 𝜋 𝑠-



Optimal Action-Value Function

• Optimal Action-Value Function (or Q function): Expected reward if 
we start in 𝑠, take action 𝑎, and then act optimally thereafter:

𝑄∗ 𝑠, 𝑎 = 𝔼 /
"#(

)

𝛾" ⋅ 𝑟" ∣ 𝑠( = 𝑠, 𝑎( = 𝑎

• Bellman equation:

𝑄∗ 𝑠, 𝑎 = /
*!∈,

𝑃 𝑠- 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠- + 𝛾 ⋅ max
.!∈/

𝑄∗ 𝑠-, 𝑎-	



Relationship

• We have

𝑉& 𝑠 = 𝑄& 𝑠, 𝜋 𝑠

• Similarly, we have

𝑉∗ 𝑠 = max
.
𝑄∗(𝑠, 𝑎)



Q Iteration

• We have

𝜋∗ 𝑠 = max
.∈/

𝑄∗ 𝑠, 𝑎

• Strategy: Compute 𝑄∗ and then use it to compute 𝜋∗



Q Iteration

• Initialize 𝑄$ 𝑠, 𝑎 ← 0 for all 𝑠, 𝑎
• For 𝑖 ∈ 1,2, …  until convergence:

𝑄01$ 𝑠, 𝑎 ← /
*!∈,

𝑃 𝑠- 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠- + 𝛾 ⋅ max
.!∈/

𝑄0 𝑠-, 𝑎-
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Q Iteration

• Information propagates outward from terminal states

• Eventually all state-action pairs converge to correct Q-value estimates



Aside: Value Iteration

• Analogous to Q-Policy iteration but for computing the value function

• Initialize 𝑉$ 𝑠 ← 0 for all 𝑠
• For 𝑖 ∈ 1,2, …  until convergence:

𝑉01$ 𝑠 ← max
.∈/

/
*!∈,

𝑃 𝑠- 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠- + 𝛾 ⋅ 𝑉0 𝑠-



Example MDP V0 V1
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-1

𝑉!"# 𝑠 ← max
$∈&

8
'!∈(

𝑃(𝑠)|𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠) + 𝛾𝑉!(𝑠′)

0 0.9



Example MDP V1
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Example MDP V2
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Reinforcement Learning

• Q iteration can be used to compute the optimal Q function when 𝑃 
and 𝑅 are known

• How can we adapt it to the setting where these are unknown?
• Observation: Every time you take action 𝑎 from state 𝑠, you obtain one 

sample 𝑠% ∼ 𝑃 ⋅ 𝑠, 𝑎  and observe 𝑅 𝑠, 𝑎, 𝑠%
• Use single sample instead of full 𝑃



Q Learning

• Can we learn 𝜋∗ without explicitly learning 𝑃 and 𝑅?

𝑄01$ 𝑠, 𝑎 ← /
*!∈,

𝑃 𝑠- 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠- + 𝛾 ⋅ max
.!∈/

𝑄0 𝑠-, 𝑎-



Q Learning

• Can we learn 𝜋∗ without explicitly learning 𝑃 and 𝑅?

𝑄01$ 𝑠, 𝑎 ← 𝔼*!∼D ⋅ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠- + 𝛾 ⋅ max
.!∈/

𝑄0 𝑠-, 𝑎-



Q Learning

• Q Learning update:

𝑄01$ 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎, 𝑠- + 𝛾 ⋅ max
.!∈/

𝑄0 𝑠-, 𝑎-

• Q Iteration: Update for all 𝑠, 𝑎, 𝑠-  at each step

• Q Learning: Update just for current 𝑠, 𝑎 , and approximate with the 
state 𝑠- we actually reached (i.e., a single sample 𝑠- ∼ 𝑃 ⋅ 𝑠, 𝑎 )



Q Learning

• Problem: Forget everything we learned before (i.e., 𝑄0 𝑠, 𝑎 )

• Solution: Incremental update:

𝑄01$ 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄0 𝑠, 𝑎 + 𝛼 ⋅ 𝑅 𝑠, 𝑎, 𝑠- + 𝛾 ⋅ max
.!∈/

𝑄0 𝑠-, 𝑎-
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After 100,000 actions: 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
!"

𝑄 𝑠", 𝑎" − 𝑄(𝑠, 𝑎)



Policy for Gathering Data

• Strategy 1: Randomly explore all 𝑠, 𝑎  pairs
• Not obvious how to do so!
• E.g., if we act randomly, it may take a very long 

time to explore states that are difficult to reach

• Strategy 2: Use current best policy
• Can get stuck in local minima
• E.g., we may never discover a shortcut if it 

sticks to a known route to the goal



Policy for Gathering Data

• 𝝐-greedy:
• Play current best with probability 1 − 𝜖 and randomly with probability 𝜖
• Can reduce 𝜖 over time
• Works okay, but exploration is undirected

• Visitation counts:
• Maintain a count 𝑁 𝑠, 𝑎  of number of times we tried action 𝑎 in state 𝑠
• Choose 𝑎∗ = arg	max9∈; 𝑄 𝑠, 𝑎 + #

< =,9 , i.e., inflate less visited states



Summary

• Q iteration: Compute optimal Q function when the transitions and 
rewards are known

• Q learning: Compute optimal Q function when the transitions and 
rewards are unknown

• Extensions 
• Various strategies for exploring the state space during learning
• Handling large or continuous state spaces



Curse of Dimensionality

• How large is the state space?
• Gridworld: One for each of the 𝑛 cells
• Pacman: State is player, ghost#, … , ghost> , 

so there are 𝑛> states!

• Problem: Learning in one state does not 
tell us anything about the other states!

• Many states à learn very slowly



State-Action Features

• Can we learn across state-action pairs?

• Yes, use features!
• 𝜙 𝑠, 𝑎 ∈ ℝ?

• Then, learn to predict 𝑄∗ 𝑠, 𝑎 ≈ 𝑄@ 𝑠, 𝑎 = 𝑓@ 𝜙 𝑠, 𝑎
• Enables generalization to similar states


