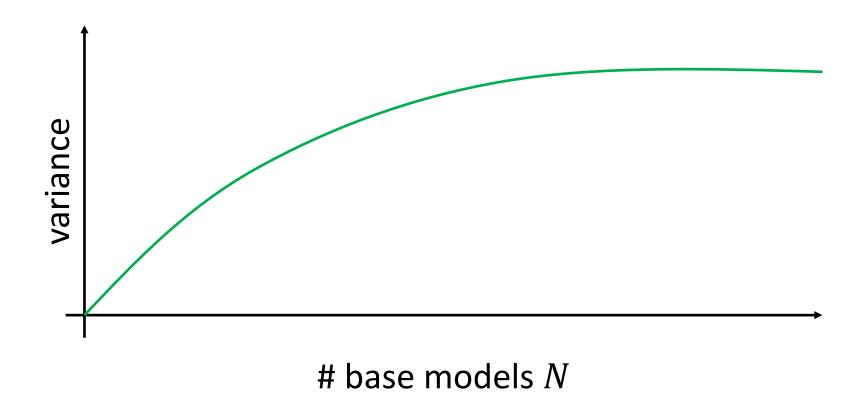
Announcements

Project Milestone 2 due Wednesday at 8pm

Homework 6 due Wednesday, November 22 at 8pm

AdaBoost Variance

Increases with number of models N



Lecture 21: Reinforcement Learning

CIS 4190/5190 Fall 2023

Three Kinds of Learning

Supervised learning

• Given labeled examples (x, y), learn to predict y given x

Unsupervised learning

• Given unlabeled examples x, uncover structure in x

Reinforcement learning

Learning from sequence of interactions with the environment

Sequential Decision Making

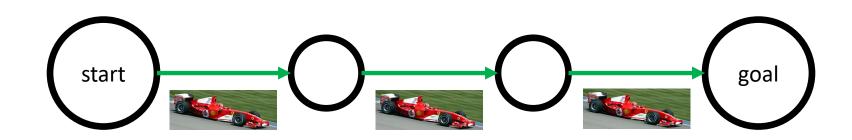
Make a sequence of decisions to maximize a real-valued reward

Examples

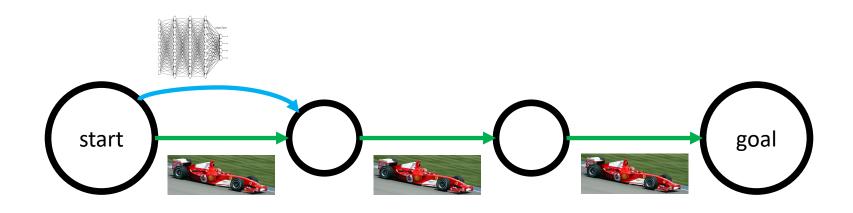
- Driving a car
- Making movie recommendations
- Treating a patient over time
- Navigating a webpage

Sequential Decision Making

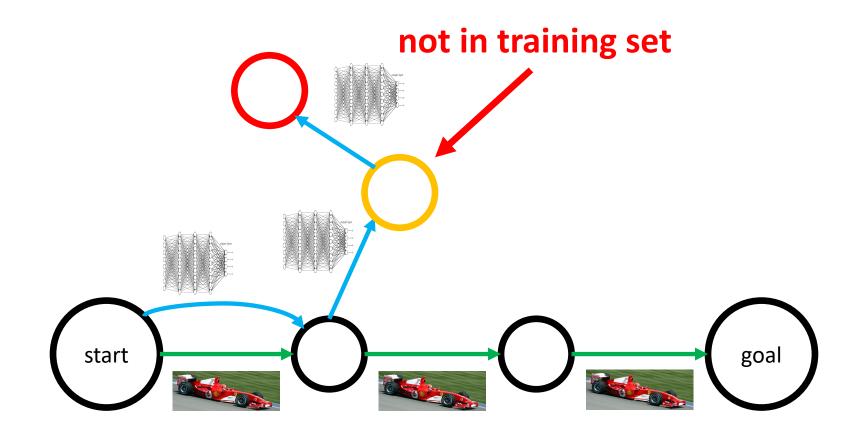
- Machine learning almost always aims to inform decision making
 - Only show user an image if it contains a pet
 - Help a doctor make a treatment decision
- Reinforcement learning is about sequences of decisions
- Naïve strategy: Predict future and optimize decisions accordingly
 - But decisions affect forecasts
 - If we show the user too many cats, they might get bored of cats!
- Solution: Jointly perform prediction and optimization



Ross & Bagnell 2011



Ross & Bagnell 2011



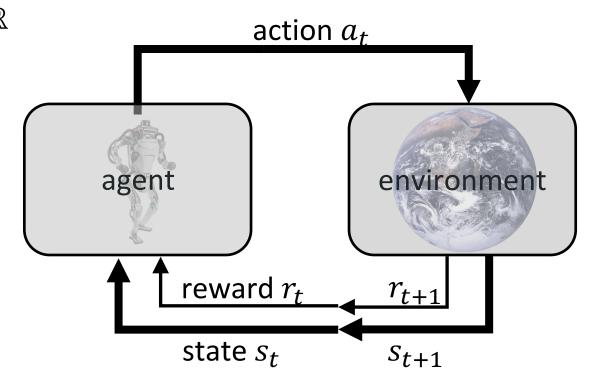
Ross & Bagnell 2011

- Distribution shift is **fundamental** to the problem
 - Repeat: Improve policy \rightarrow distribution shifts \rightarrow improve policy \rightarrow ...
 - This is with a human expert in the loop! Without the expert, we must start off acting randomly
- Generally, using expert data where available is promising (called "imitation learning")
 - Caveat: Limited by human performance (e.g., AlphaGo Zero significantly outperforms AlphaGo, which was pretrained on expert games)

Reinforcement Learning Problem

- At each step $t \in \{1, ..., T\}$:
 - Observe **state** $s_t \in S$ and **reward** $r_t \in \mathbb{R}$
 - Take action $a_t = \pi(s_t) \in A$
- Goal: Learn a policy $\pi: S \to A$ that maximizes discounted reward sum:

$$R_T = \sum_{t=1}^T \gamma^t \cdot r_t$$



Reinforcement Learning Problem

state: joint angles

actions: motor torques

dynamics: robot physics

reward: average speed

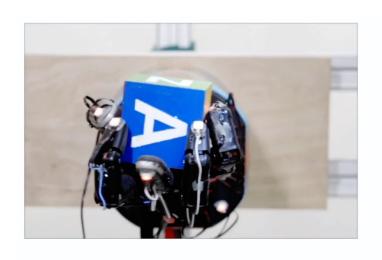
state: current stock

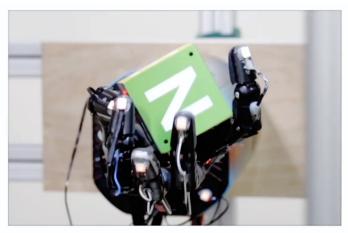
actions: how much to purchase

dynamics: demand at each store

reward: profit

Web navigation (e.g., book a flight)

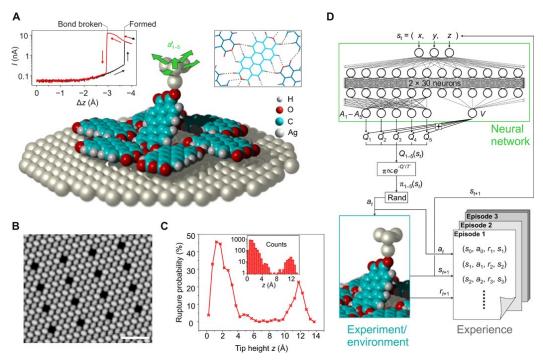




SLIDING

FINGER GAITING

Robotics (e.g., Rubik's cube manipulation)



Steering microscope to separate molecules

Actor Measurements

Control policy
parameters

Physical parameters
supply
parameters
supply
buffer

Replay
buffer

Gad-Shaftanov
solver (FGE)

Reward

Forward
Grad-Shaftanov
solver (FGE)

Reward

Forward
Fo

Controlling magnetic fields to stabilize plasma (in simulation)

Degrave et al 2022, Magnetic control of tokamak plasmas through deep reinforcement learning

https://www.science.org/doi/10.1126/sciadv.abb6987

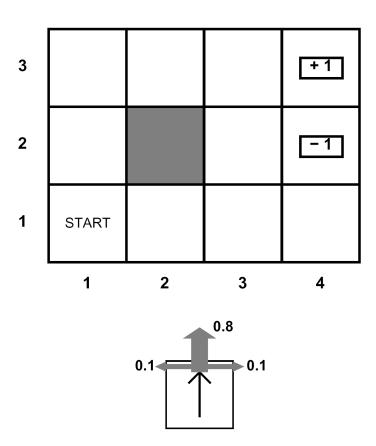
- Power grids: Reinforcement learning for demand response
 - A review of algorithms and modeling techniques, J. Vázquez-Canteli, Z. Nagy
- Recommender systems
 - https://github.com/google-research/recsim
- Many potential applications
 - https://arxiv.org/abs/1904.12901

Reinforcement Learning Problem

- At a high level, we need to specify the following:
 - State space: What are the observations the agent may encounter?
 - Action space: What are the actions the agent can take?
 - Transitions/dynamics: How the state is updated when taking an action
 - Rewards: What rewards the agent receives for taking an action in a state
- For most of today, assume state and action spaces are finite

Toy Example

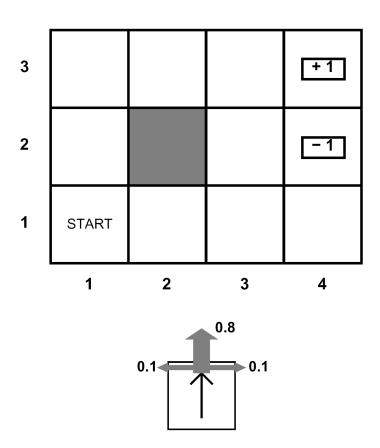
- Grid map with solid/open cells
- State: An open grid cell
- Actions: Move North, East, South, West



Toy Example

Dynamics

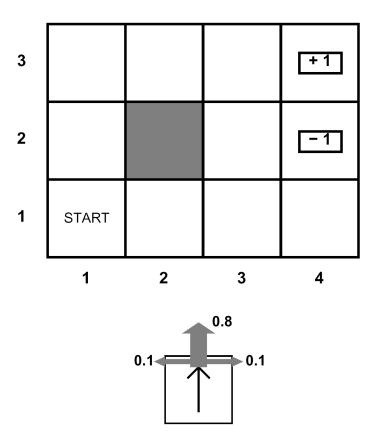
- Move in chosen direction, but not deterministically!
- Succeeds 80% of the time
- 10% of the time, end up 90° off
- 10% of the time, end up -90° off
- The agent stays put if it tries to move into a solid cell or outside the world
- At terminal states, any action ends episode (or rollout)

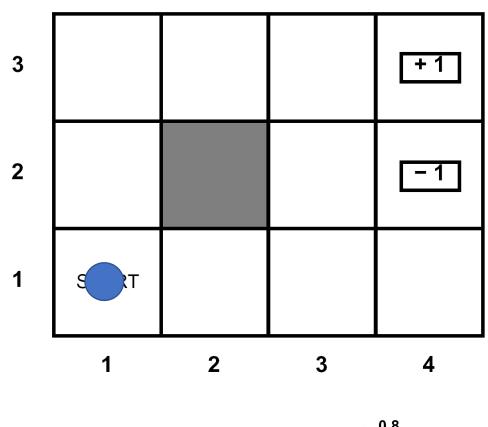


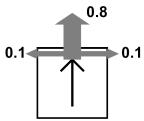
Toy Example

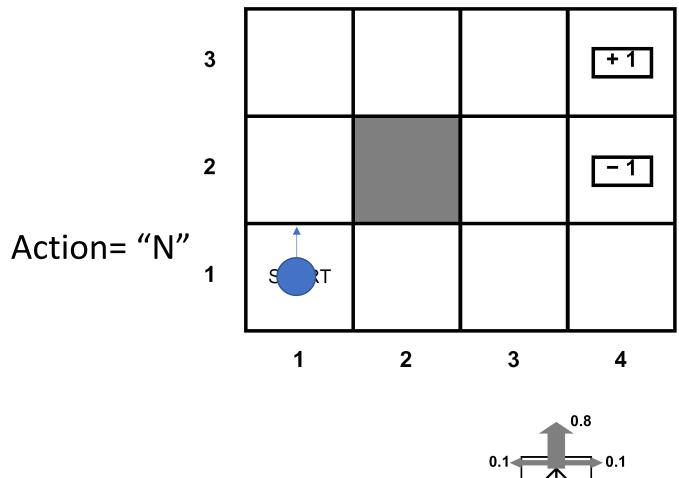
Rewards

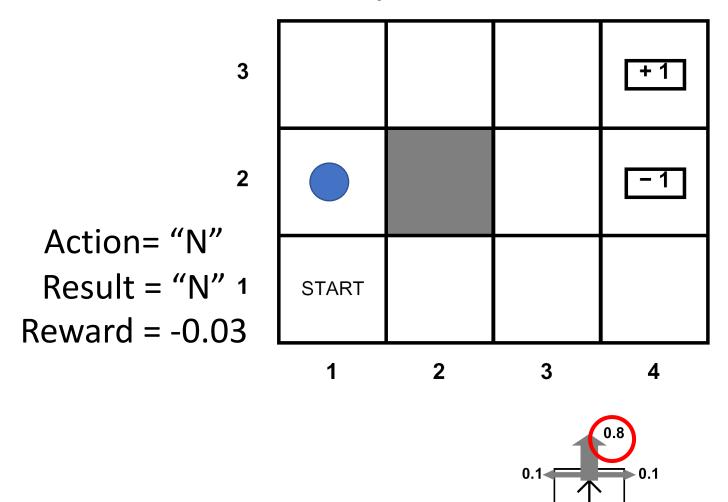
- At terminal state, agent receives the specified reward
- For each timestep outside terminal states , the agent pays a small cost, e.g., a "reward" of -0.03

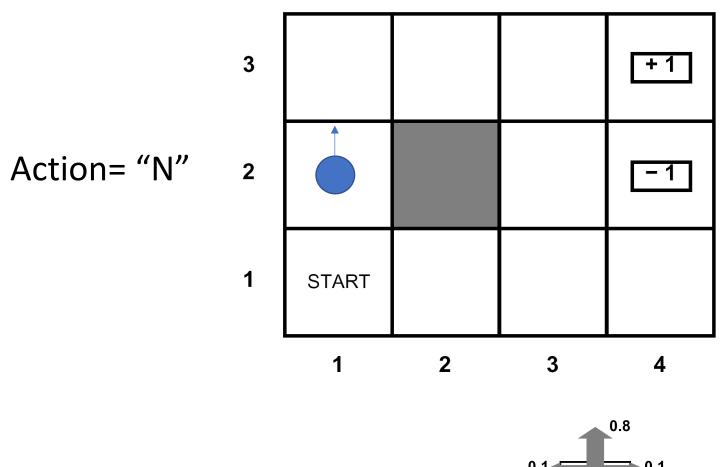


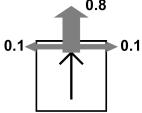






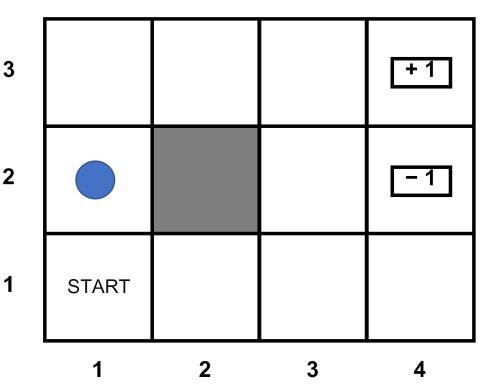


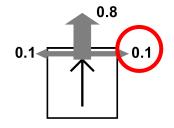


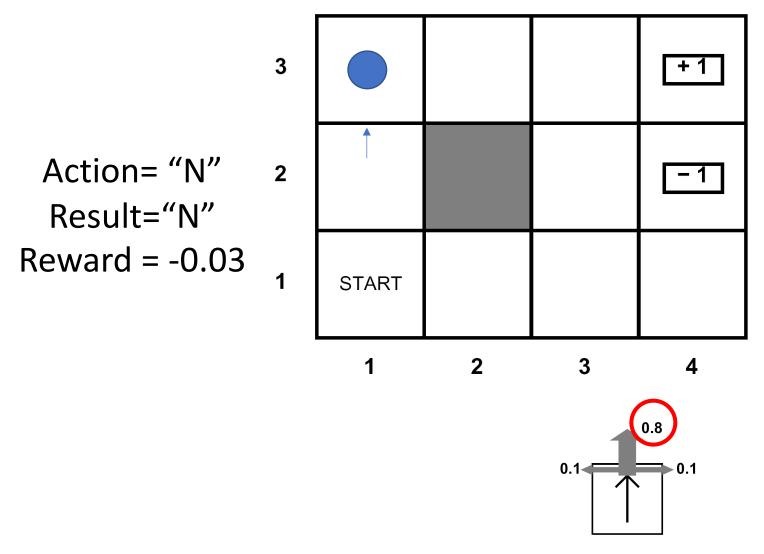


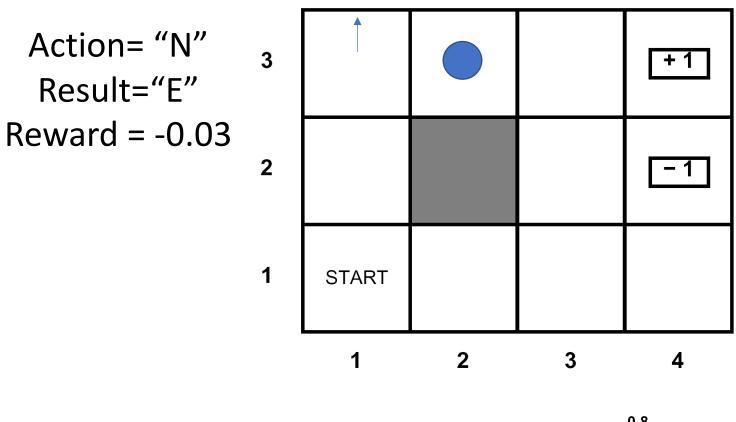
(stays still because blocked)

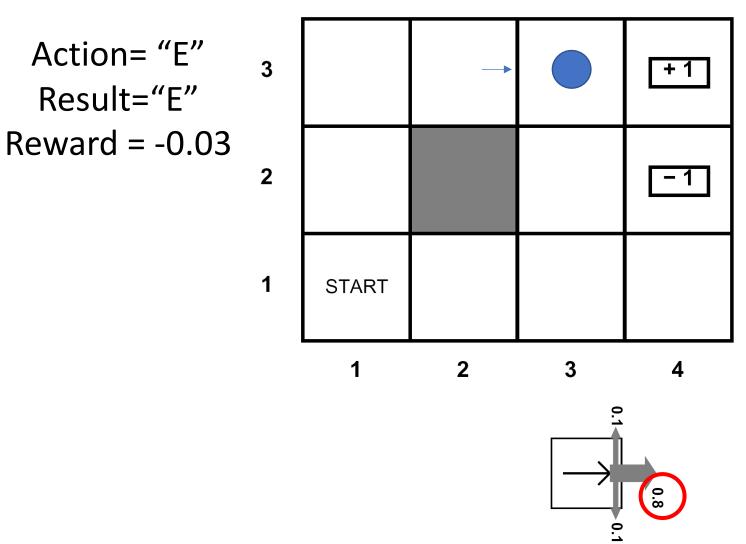
Action= "N" Result="E" Reward = -0.03

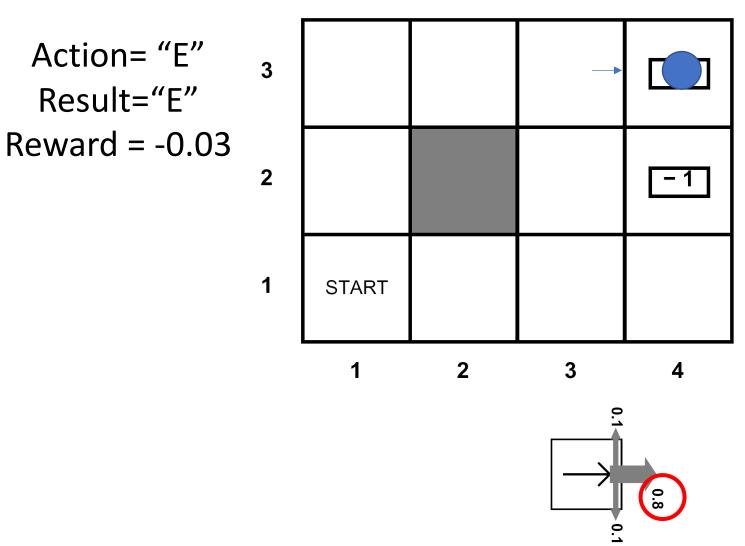


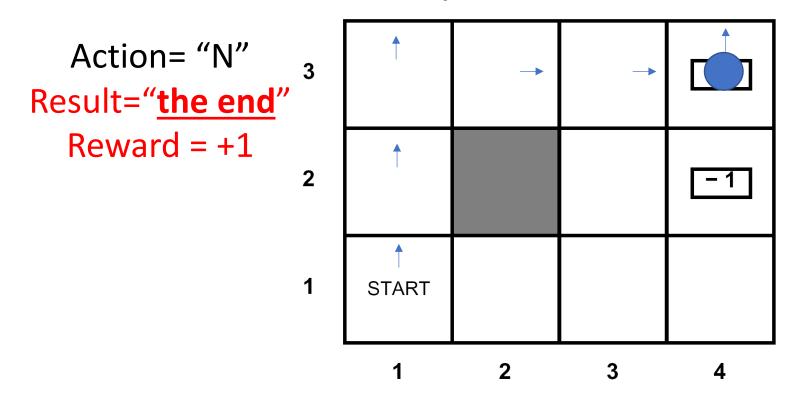




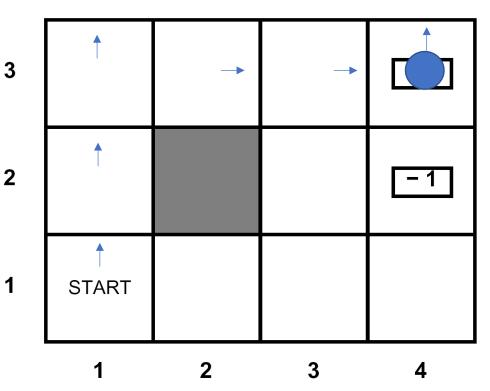






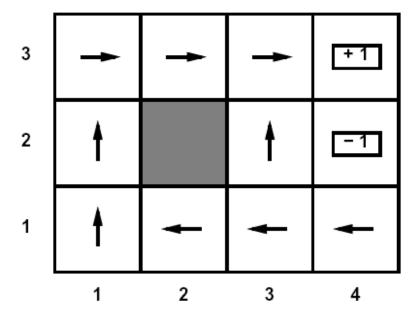


- Our random trajectory happened to end in the right place!
- Optimal policy? No!
 - Only succeeded by random chance



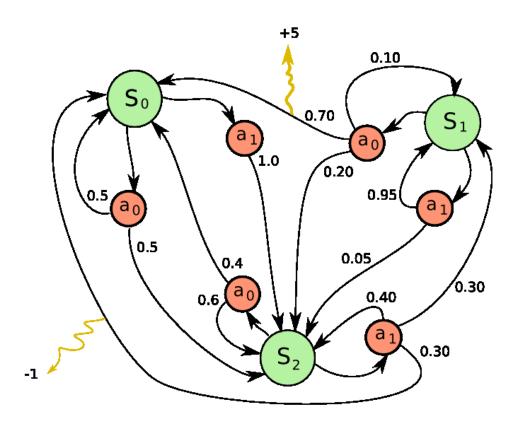
Optimal Policy

- Optimal policy: Following π^* maximizes total reward received
 - **Discounted:** Future rewards are downweighted
 - In expectation: On average across randomness of environment and actions



Markov Decision Process (MDP)

- An MDP (S, A, P, R, γ) is defined by:
 - Set of states $s \in S$
 - Set of actions $a \in A$
 - Transition function $P(s' \mid s, a)$ (also called "dynamics" or the "model")
 - Reward function R(s, a, s')
 - Discount factor $\gamma < 1$
- Also assume an initial state distribution D(s)
 - Often omitted since optimal policy does not depend on D



Markov Decision Process (MDP)

• Goal: Maximize cumulative expected discounted reward:

$$\pi^* = \max_{\pi} J(\pi)$$
 where $J(\pi) = \mathbb{E}_{\zeta} \left[\sum_{t=0}^{\infty} \gamma^t \cdot r_t \right]$

- Expectation over **episodes** $\zeta = (s_0, a_0, r_0, s_1, ...)$, where
 - $s_0 \sim D$
 - $a_t = \pi(s_t)$
 - $s_{t+1} \sim P(\cdot | s_t, a_t)$
 - $r_t = R(s_t, a_t, s_{t+1})$

Markov Decision Process (MDP)

- **Planning:** Given P and R, compute the optimal policy π^*
 - Purely an optimization problem! No learning
- Reinforcement learning: Compute the optimal policy π^* without prior knowledge of P and R

Policy Value Function

• Policy Value Function: Expected reward if we start in s and use π :

$$V^{\pi}(s) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^{t} \cdot r_{t} \mid s_{0} = s\right)$$

$$V^{\pi}(s) = \sum_{s' \in S} P(s' \mid s, \pi(s)) \cdot \left(R(s, \pi(s), s') + \gamma \cdot V^{\pi}(s')\right)$$
current value
$$\text{expectation} \quad \text{current reward +} \quad \text{over next state} \quad \text{discounted future reward}$$

Optimal Value Function

• Optimal value function: Expected reward if we start in s and use π^* :

$$V^*(s) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^t \cdot r_t \mid s_0 = s\right)$$

• Bellman equation:

Optimal policy selects action that maximizes future expected reward from state *s*

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} P(s' \mid s, a) \cdot (R(s, a, s') + \gamma \cdot V^*(s'))$$
current value

expectation
over next state

current reward +
discounted future reward

Optimal Value Function

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} P(s' \mid s, a) \cdot (R(s, a, s') + \gamma \cdot V^*(s'))$$

- Do not need to know the optimal policy π^* !
- Strategy: Compute V^* and then use it to compute π^*
 - Caveat: Latter step requires knowing P

Policy Action-Value Function

• Policy Action-Value Function (or Q function): Expected reward if we start in s, take action a, and then use π thereafter:

$$Q^{\pi}(s,a) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^t \cdot r_t \mid s_0 = s, a_0 = a\right)$$

$$Q^{\pi}(s, \mathbf{a}) = \sum_{s' \in S} P(s' \mid s, \mathbf{a}) \cdot \left(R(s, \mathbf{a}, s') + \gamma \cdot Q^{\pi}(s', \pi(s')) \right)$$

Optimal Action-Value Function

• Optimal Action-Value Function (or Q function): Expected reward if we start in s, take action a, and then act optimally thereafter:

$$Q^*(s,a) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^t \cdot r_t \mid s_0 = s, a_0 = a\right)$$

$$Q^*(s,a) = \sum_{s' \in S} P(s' \mid s,a) \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q^*(s',a') \right)$$

Relationship

• We have

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

• Similarly, we have

$$V^*(s) = \max_a Q^*(s, a)$$

Q Iteration

• We have

$$\pi^*(s) = \max_{a \in A} Q^*(s, a)$$

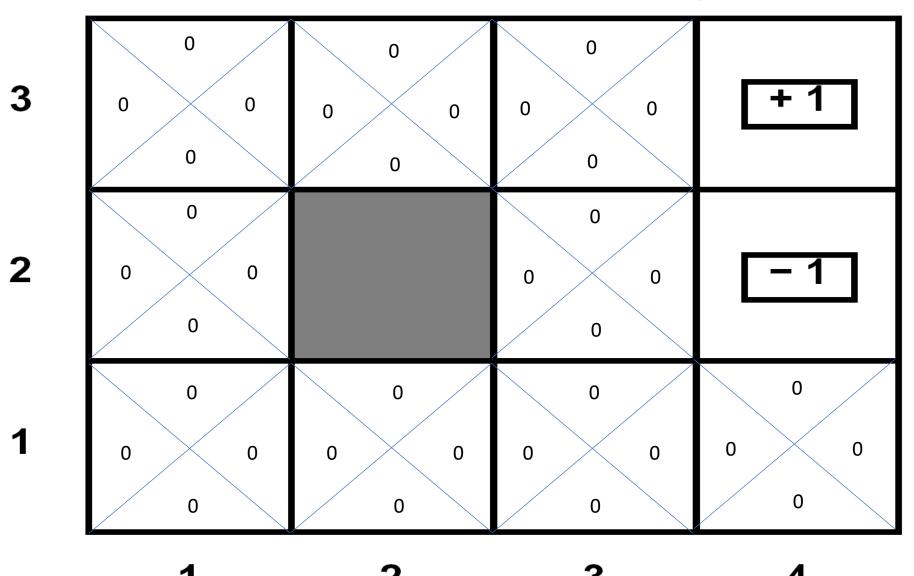
• Strategy: Compute Q^* and then use it to compute π^*

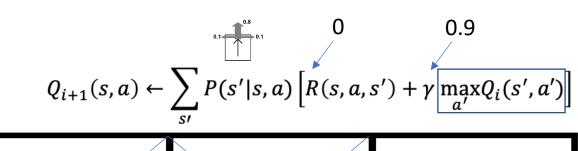
Q Iteration

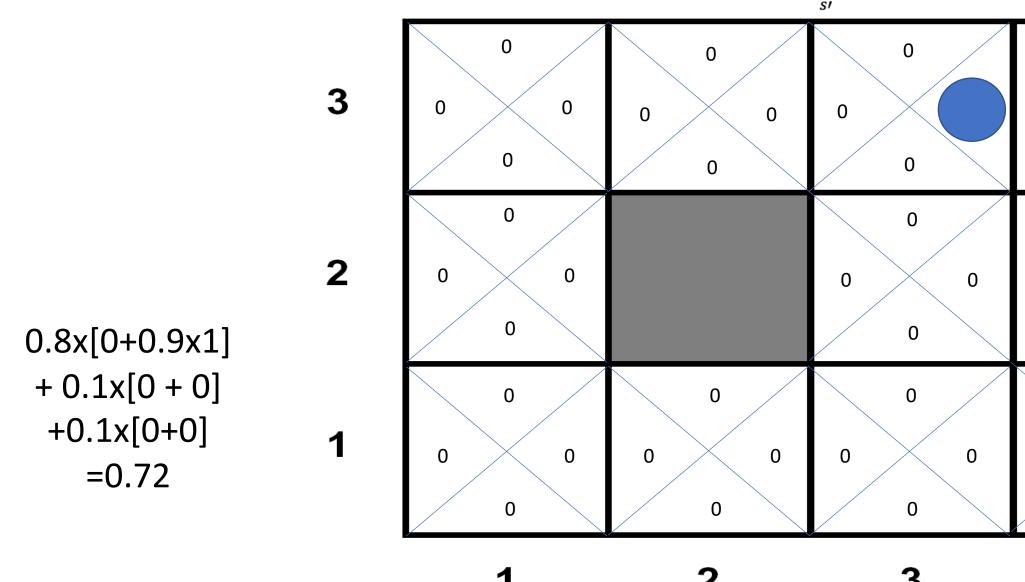
- Initialize $Q_1(s, a) \leftarrow 0$ for all s, a
- For $i \in \{1,2,...\}$ until convergence:

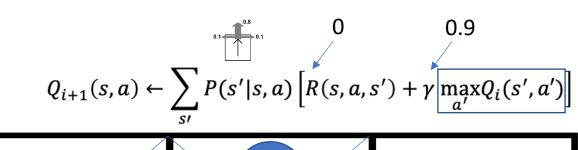
$$Q_{i+1}(s,a) \leftarrow \sum_{s' \in S} P(s' \mid s,a) \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a') \right)$$

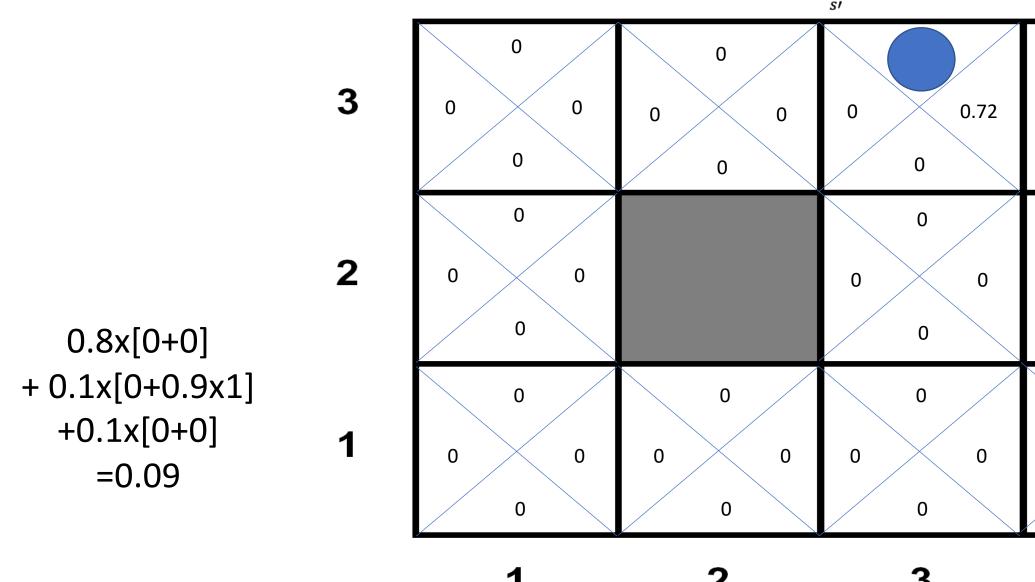
$$Q_{i+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma \max_{a'} Q_i(s',a') \right]$$

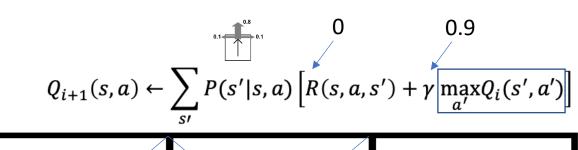


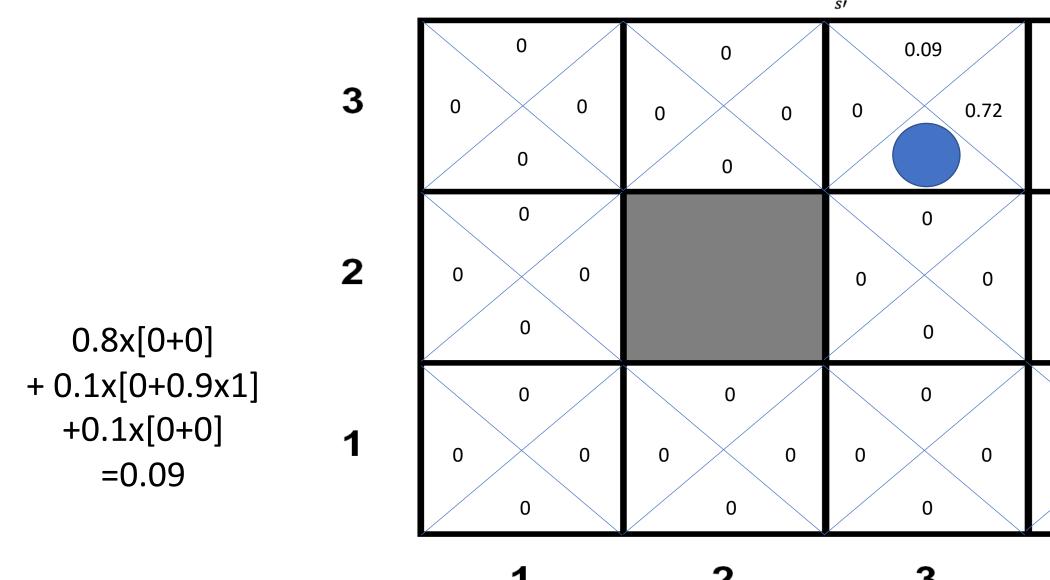


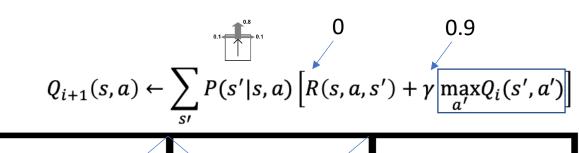


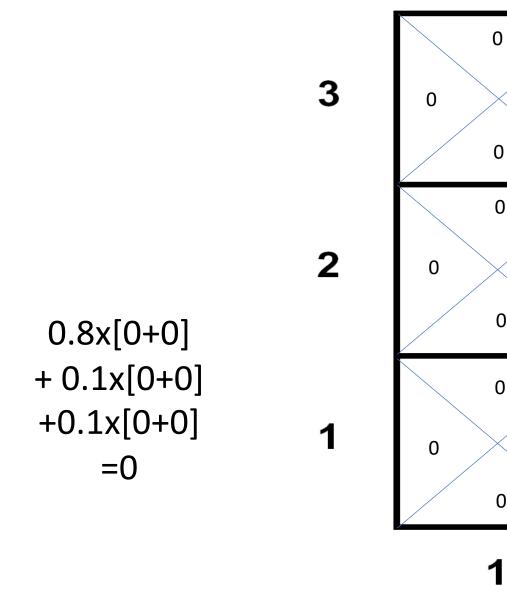


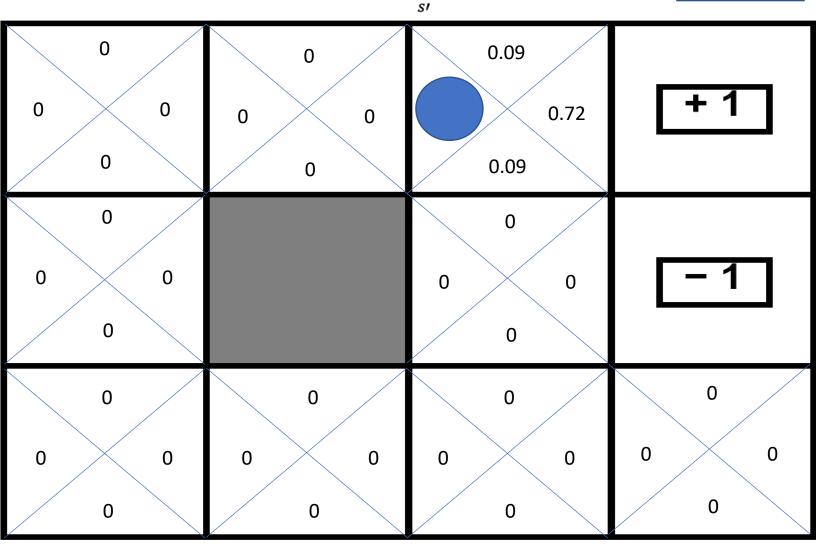


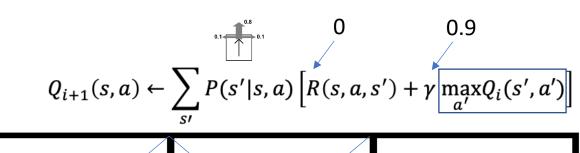




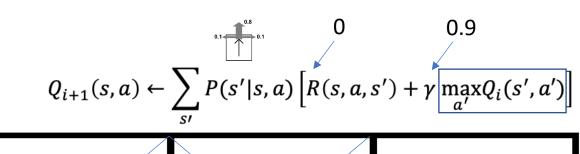


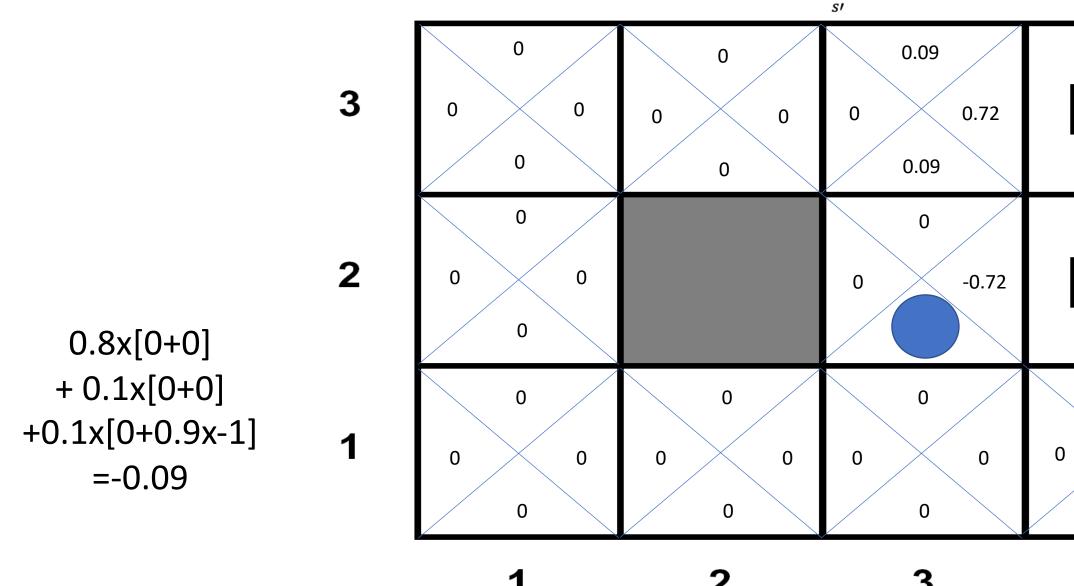


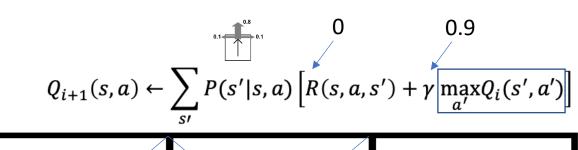


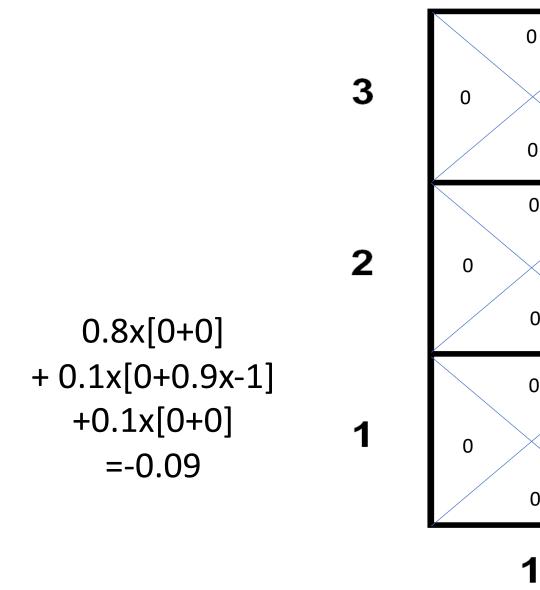


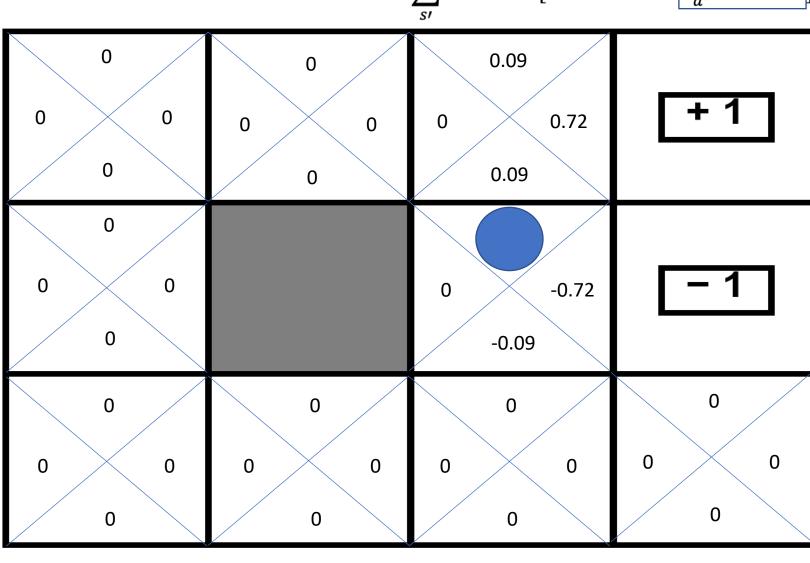
		•	SI L	a'
	3	0 0 0	0 0.09 0 0.72 0.09	+ 1
0.8x[0+0.9x-1]	2		0 0	-1
+ 0.1x[0+0] +0.1x[0+0] =-0.72	1	0 0	0 0	0 0

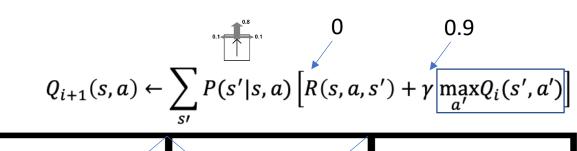


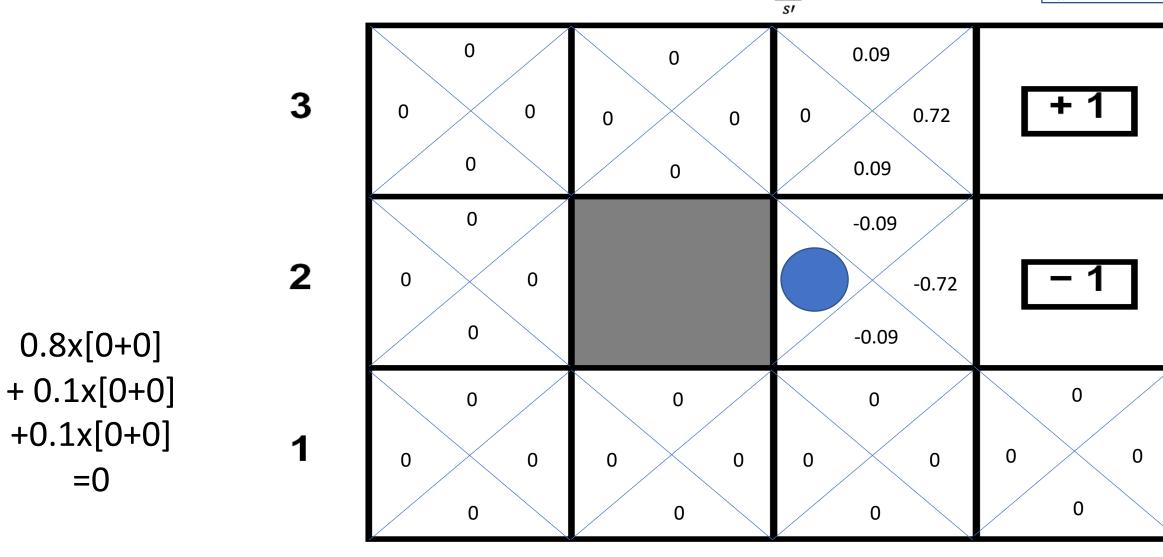


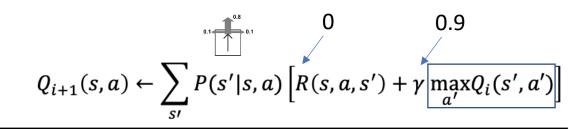


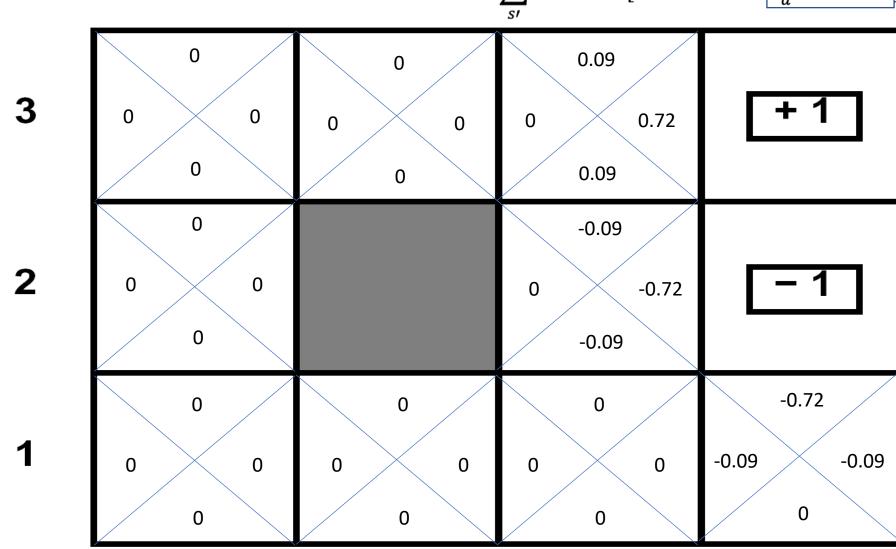




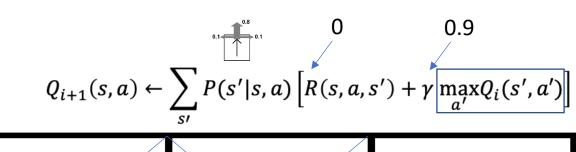


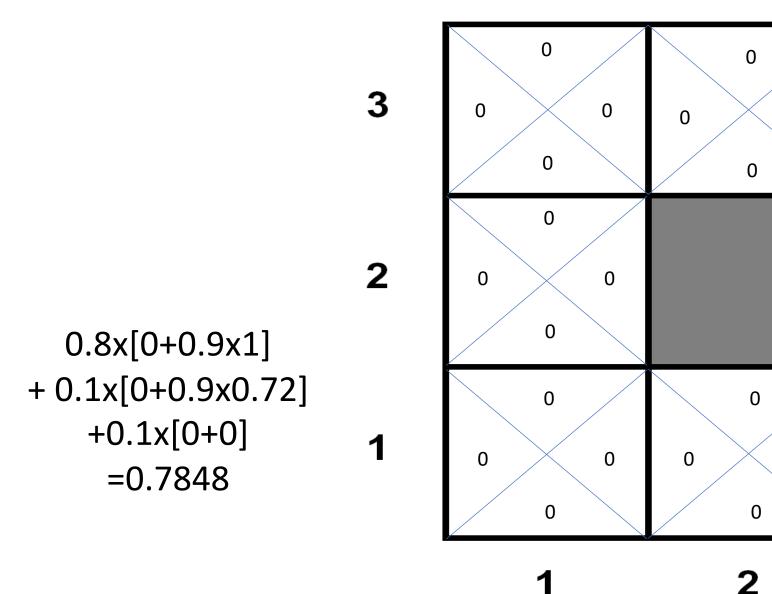


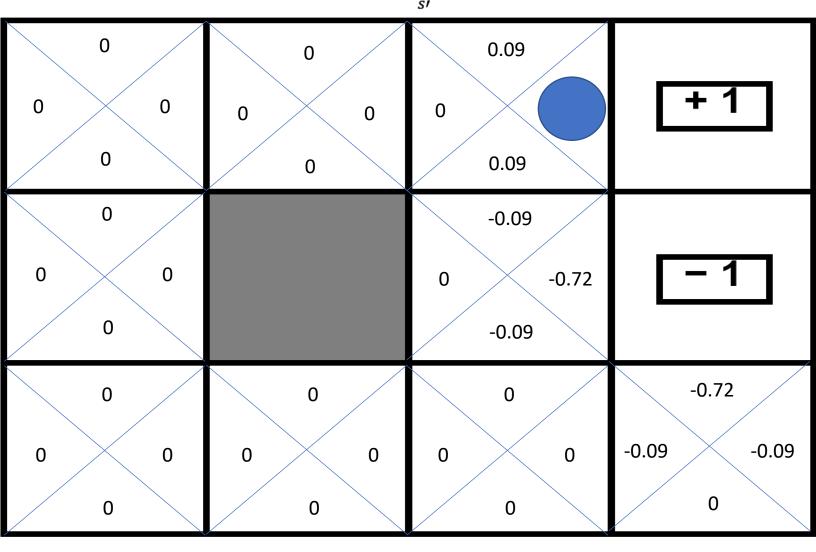


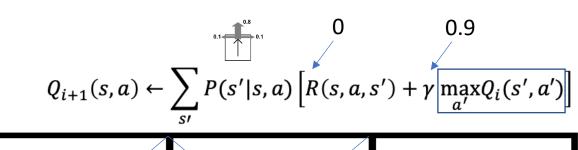


Now we have $Q_1(s, a)$ for all (s, a)







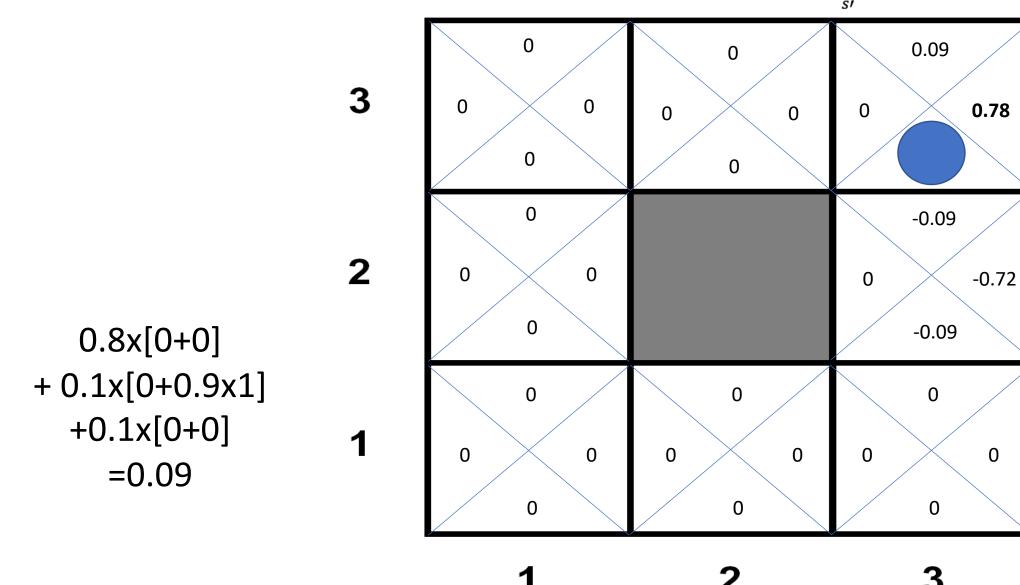


-0.72

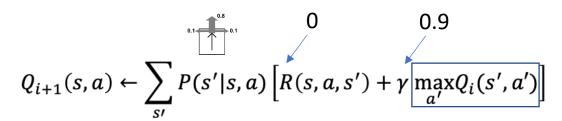
0

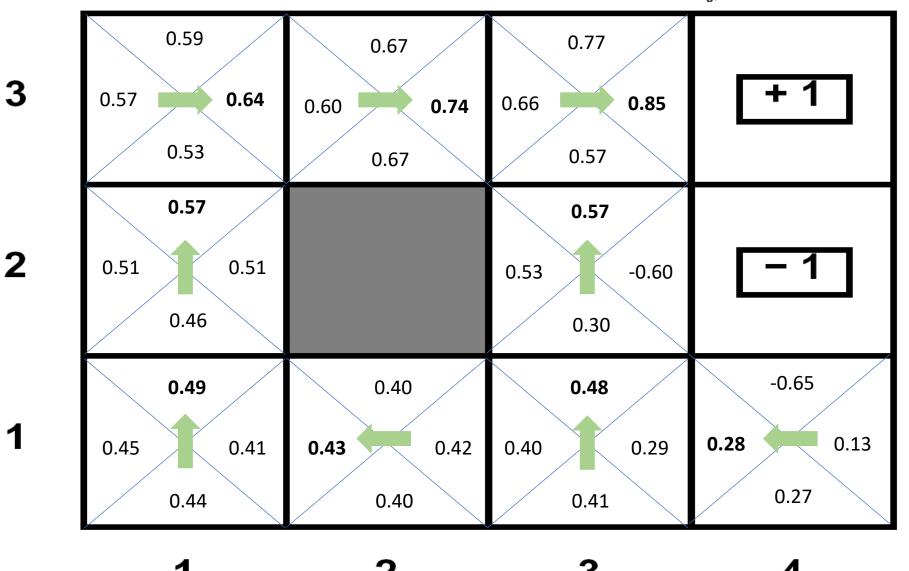
-0.09

-0.09



After 1000 iterations:





Q Iteration

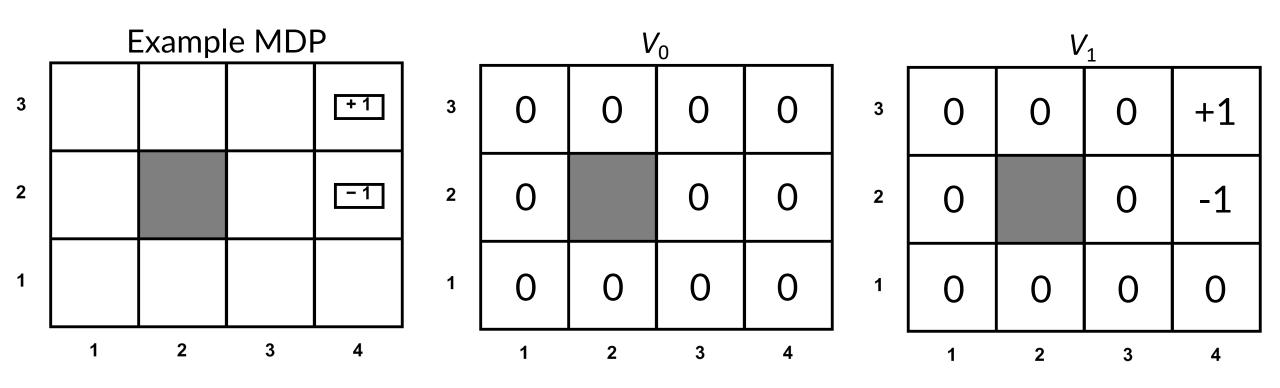
- Information propagates outward from terminal states
- Eventually all state-action pairs converge to correct Q-value estimates

Aside: Value Iteration

- Analogous to Q-Policy iteration but for computing the value function
- Initialize $V_1(s) \leftarrow 0$ for all s
- For $i \in \{1,2,...\}$ until convergence:

$$V_{i+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} P(s' \mid s, a) \cdot \left(R(s, a, s') + \gamma \cdot V_i(s') \right)$$

$$V_{i+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} P(s'|s,a) [R(s,a,s') + \gamma V_i(s')]$$



$$V_{i+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} P(s'|s,a) [R(s,a,s') + \gamma V_i(s')]$$

Example MDP						V_1						V ₂			
3				+1	3	0	0	0	+1	3	0	0	0.72	+1	
2				-1	2	0		0	-1	2	0		0	-1	
1					1	0	0	0	0	1	0	0	0	0	
,	1	2	3	4		1	2	3	4		1	2	3	4	
$V_2(\langle 4,3 \rangle) \leftarrow 1$									$V_2(\langle 4,2\rangle) \leftarrow -1$						

$$V_{i+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} P(s'|s,a) [R(s,a,s') + \gamma V_i(s')]$$

Example MDP						V_2					V_3			
3				+1	3	0	0	0.72	+1	3	0	0.52	0.78	+1
2				-1	2	0		0	-1	2	0		0.43	-1
1					1	0	0	0	0	1	0	0	0	0
·	1	2	3	4	•	1	2	3	4	•	1	2	3	4

Reinforcement Learning

- Q iteration can be used to compute the optimal Q function when P and R are known
- How can we adapt it to the setting where these are unknown?
 - **Observation:** Every time you take action a from state s, you obtain one sample $s' \sim P(\cdot | s, a)$ and observe R(s, a, s')
 - Use single sample instead of full P

• Can we learn π^* without explicitly learning P and R?

$$Q_{i+1}(s,a) \leftarrow \sum_{s' \in S} P(s' \mid s,a) \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a') \right)$$

• Can we learn π^* without explicitly learning P and R?

$$Q_{i+1}(s,a) \leftarrow \mathbb{E}_{s' \sim P(\cdot \mid S,a)} \left[R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a') \right]$$

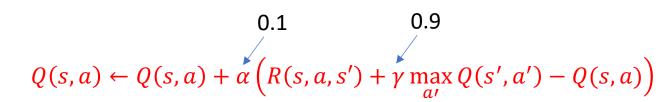
Q Learning update:

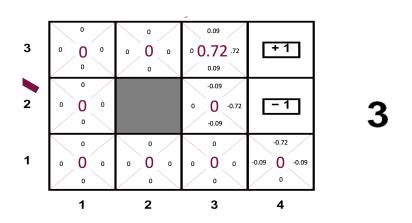
$$Q_{i+1}(s,a) \leftarrow R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a')$$

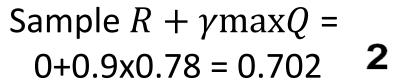
- **Q Iteration:** Update for all (s, a, s') at each step
- **Q Learning:** Update just for current (s, a), and approximate with the state s' we actually reached (i.e., a single sample $s' \sim P(\cdot | s, a)$)

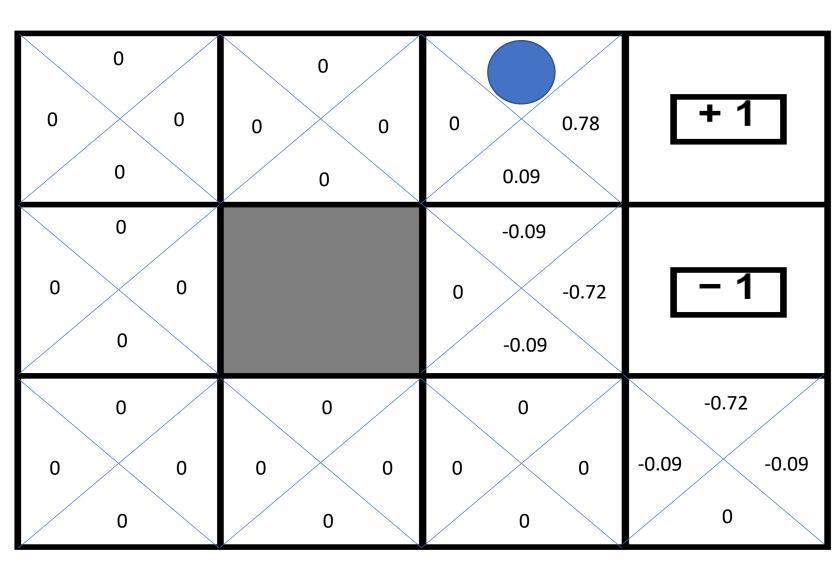
- **Problem:** Forget everything we learned before (i.e., $Q_i(s, a)$)
- Solution: Incremental update:

$$Q_{i+1}(s,a) \leftarrow (1-\alpha) \cdot Q_i(s,a) + \alpha \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a')\right)$$

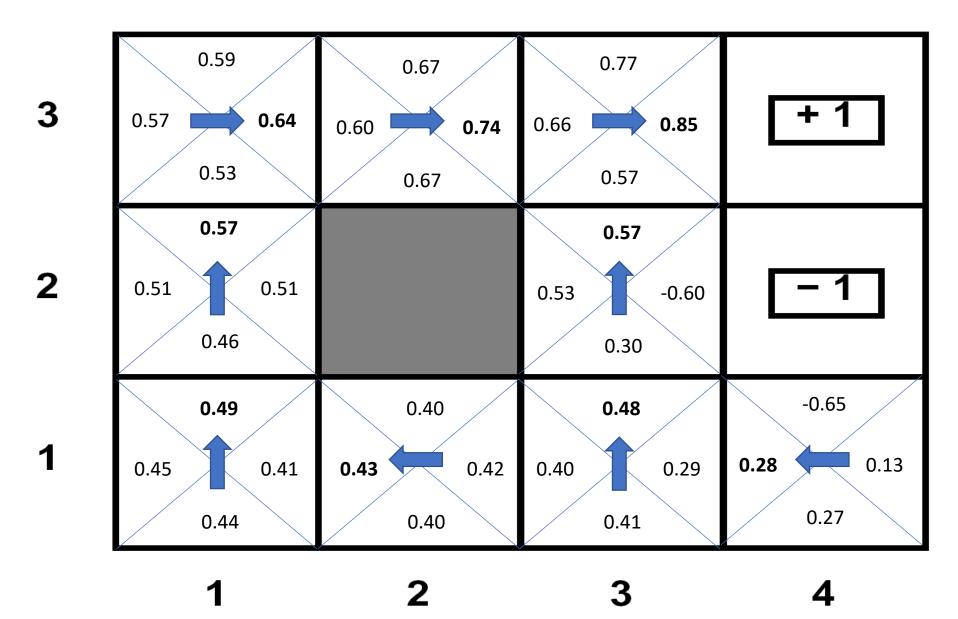






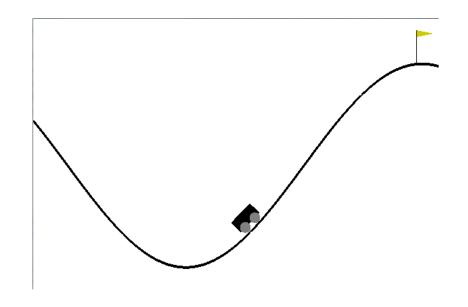


After 100,000 actions:
$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$



Policy for Gathering Data

- Strategy 1: Randomly explore all (s, a) pairs
 - Not obvious how to do so!
 - E.g., if we act randomly, it may take a very long time to explore states that are difficult to reach
- Strategy 2: Use current best policy
 - Can get stuck in local minima
 - E.g., we may never discover a shortcut if it sticks to a known route to the goal



Policy for Gathering Data

• *ϵ*-greedy:

- Play current best with probability $1-\epsilon$ and randomly with probability ϵ
- Can reduce ϵ over time
- Works okay, but exploration is undirected

Visitation counts:

- Maintain a count N(s, a) of number of times we tried action a in state s
- Choose $a^* = \arg\max_{a \in A} \left\{ Q(s, a) + \frac{1}{N(s, a)} \right\}$, i.e., inflate less visited states

Summary

 Q iteration: Compute optimal Q function when the transitions and rewards are known

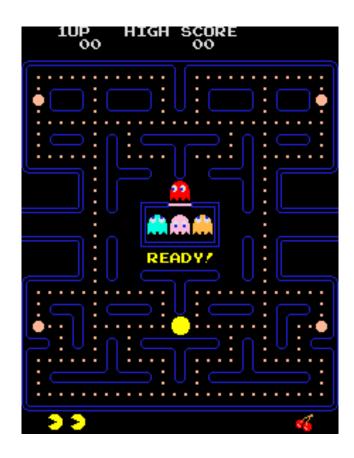
 Q learning: Compute optimal Q function when the transitions and rewards are unknown

Extensions

- Various strategies for exploring the state space during learning
- Handling large or continuous state spaces

Curse of Dimensionality

- How large is the state space?
 - **Gridworld:** One for each of the *n* cells
 - **Pacman:** State is (player, ghost₁, ..., ghost_k), so there are n^k states!
- **Problem:** Learning in one state does not tell us anything about the other states!
- Many states → learn very slowly



State-Action Features

- Can we learn across state-action pairs?
- Yes, use features!
 - $\phi(s,a) \in \mathbb{R}^d$
 - Then, learn to predict $Q^*(s,a) \approx Q_{\theta}(s,a) = f_{\theta}(\phi(s,a))$
 - Enables generalization to similar states