
Announcements

• Project Milestone 2 due tonight at 8pm

• Homework 6 due November 29
• You have 3 weeks!

Lecture 22: Reinforcement Learning

CIS 4190/5190
Fall 2023

Optimal Action-Value Function

• Optimal Action-Value Function (or Q function): Expected reward if
we start in 𝑠, take action 𝑎, and then act optimally thereafter:

𝑄∗ 𝑠, 𝑎 = 𝔼 '
"#$

%

𝛾" ⋅ 𝑟" ∣ 𝑠$ = 𝑠, 𝑎$ = 𝑎

• Bellman equation:

𝑄∗ 𝑠, 𝑎 = '
&!∈(

𝑃 𝑠) 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠) + 𝛾 ⋅ max
*!∈+

𝑄∗ 𝑠), 𝑎)	

Q Iteration

• We have

𝜋∗ 𝑠 = max
*∈+

𝑄∗ 𝑠, 𝑎

• Strategy: Compute 𝑄∗ and then use it to compute 𝜋∗

Q Iteration

• Initialize 𝑄, 𝑠, 𝑎 ← 0 for all 𝑠, 𝑎
• For 𝑖 ∈ 1,2, … until convergence:

𝑄-., 𝑠, 𝑎 ← '
&!∈(

𝑃 𝑠) 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠) + 𝛾 ⋅ max
*!∈+

𝑄- 𝑠), 𝑎)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Living cost 0 0.9

0

0

0

0

0

0

0

0

0

0.72

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0.9x1]
+ 0.1x[0 + 0]
+0.1x[0+0]

=0.72

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x1]

+0.1x[0+0]
=0.09

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x1]

+0.1x[0+0]
=0.09

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0]
+0.1x[0+0]

=0

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

-0.72

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0.9x-1]
+ 0.1x[0+0]
+0.1x[0+0]

=-0.72

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

-0.72

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0]

+0.1x[0+0.9x-1]
=-0.09

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x-1]

+0.1x[0+0]
=-0.09

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0]
+0.1x[0+0]

=0

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

Now we have
𝑄!(𝑠, 𝑎) for all (𝑠, 𝑎)

0 0.9

0

0

0

0

0

0

0

0

0.09

0.78

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0.9x1]
+ 0.1x[0+0.9x0.72]

+0.1x[0+0]
=0.7848

0 0.9

0

0

0

0

0

0

0

0

0.09

0.78

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x1]

+0.1x[0+0]
=0.09

0 0.9

0.59

0.64

0.53

0.57

0.67

0.74

0.67

0.60

0.77

0.85

0.57

0.66

0.57

-0.60

0.30

0.53

0.48

0.29

0.41

0.40

-0.65

0.13

0.27

0.28

0.40

0.42

0.40

0.43

0.49

0.41

0.44

0.45

0.57

0.51

0.46

0.51

After 1000 iterations:
0 0.9

Reinforcement Learning

• Q iteration can be used to compute the optimal Q function when 𝑃
and 𝑅 are known

• How can we adapt it to the setting where these are unknown?
• Observation: Every time you take action 𝑎 from state 𝑠, you obtain one

sample 𝑠" ∼ 𝑃 ⋅ 𝑠, 𝑎 and observe 𝑅 𝑠, 𝑎, 𝑠"
• Use single sample instead of full 𝑃

Q Learning

• Can we learn 𝜋∗ without explicitly learning 𝑃 and 𝑅?

𝑄-., 𝑠, 𝑎 ← '
&!∈(

𝑃 𝑠) 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠) + 𝛾 ⋅ max
*!∈+

𝑄- 𝑠), 𝑎)

Q Learning

• Can we learn 𝜋∗ without explicitly learning 𝑃 and 𝑅?

𝑄-., 𝑠, 𝑎 ← 𝔼&!∼0 ⋅ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠) + 𝛾 ⋅ max
*!∈+

𝑄- 𝑠), 𝑎)

Q Learning

• Q Learning update:

𝑄-., 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎, 𝑠) + 𝛾 ⋅ max
*!∈+

𝑄- 𝑠), 𝑎)

• Q Iteration: Update for all 𝑠, 𝑎, 𝑠) at each step

• Q Learning: Update just for current 𝑠, 𝑎 , and approximate with the
state 𝑠) we actually reached (i.e., a single sample 𝑠) ∼ 𝑃 ⋅ 𝑠, 𝑎)

Q Learning

• Problem: Forget everything we learned before (i.e., 𝑄- 𝑠, 𝑎)

• Solution: Incremental update:

𝑄-., 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄- 𝑠, 𝑎 + 𝛼 ⋅ 𝑅 𝑠, 𝑎, 𝑠) + 𝛾 ⋅ max
*!∈+

𝑄- 𝑠), 𝑎)

0

0

0

0

0

0

0

0

0.15

0.78

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

Sample 𝑅 + 𝛾max𝑄 =
0+0.9x0.78 = 0.702

New Q =
0.09+0.1X(0.702-0.09)

= 0.1512

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
!"

𝑄 𝑠", 𝑎" − 𝑄(𝑠, 𝑎)

0.90.1

0.59

0.64

0.53

0.57

0.67

0.74

0.67

0.60

0.77

0.85

0.57

0.66

0.57

-0.60

0.30

0.53

0.48

0.29

0.41

0.40

-0.65

0.13

0.27

0.28

0.40

0.42

0.40

0.43

0.49

0.41

0.44

0.45

0.57

0.51

0.46

0.51

After 100,000 actions: 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
!"

𝑄 𝑠", 𝑎" − 𝑄(𝑠, 𝑎)

Policy for Gathering Data

• Strategy 1: Randomly explore all 𝑠, 𝑎 pairs
• Not obvious how to do so!
• E.g., if we act randomly, it may take a very long

time to explore states that are difficult to reach

• Strategy 2: Use current best policy
• Can get stuck in local minima
• E.g., we may never discover a shortcut if it

sticks to a known route to the goal

Policy for Gathering Data

• 𝝐-greedy:
• Play current best with probability 1 − 𝜖 and randomly with probability 𝜖
• Can reduce 𝜖 over time
• Works okay, but exploration is undirected

• Visitation counts:
• Maintain a count 𝑁 𝑠, 𝑎 of number of times we tried action 𝑎 in state 𝑠
• Choose 𝑎∗ = arg	max4∈6 𝑄 𝑠, 𝑎 + !

7 8,4 , i.e., inflate less visited states

Summary

• Q iteration: Compute optimal Q function when the transitions and
rewards are known

• Q learning: Compute optimal Q function when the transitions and
rewards are unknown

• Extensions
• Various strategies for exploring the state space during learning
• Handling large or continuous state spaces

Curse of Dimensionality

• How large is the state space?
• Gridworld: One for each of the 𝑛 cells
• Pacman: State is player, ghost!, … , ghost9 ,

so there are 𝑛9 states!

• Problem: Learning in one state does not
tell us anything about the other states!

• Many states à learn very slowly

State-Action Features

• Can we learn across state-action pairs?

• Yes, use features!
• 𝜙 𝑠, 𝑎 ∈ ℝ:

• Then, learn to predict 𝑄∗ 𝑠, 𝑎 ≈ 𝑄; 𝑠, 𝑎 = 𝑓; 𝜙 𝑠, 𝑎
• Enables generalization to similar states

Neural Network 𝑄 Function

• Examples: Distance to closest ghost, distance to closest dot, etc.
• Can also use neural networks to learn features (e.g., represent Pacman game

state as an image and feed to CNN)!

𝑄# 𝑠, 𝑎$
𝑄# 𝑠, 𝑎%

:
:

𝑠

Deep Q Learning

• Learning: Gradient descent with the squared Bellman error loss:

𝑅 𝑠, 𝑎, 𝑠" + 𝛾 ⋅ max
4!

𝑄; 𝑠", 𝑎" 	− 𝑄; 𝑠, 𝑎
=

Based on slide by Sergey Levine

“Label” 𝑦

Deep Q Learning

• Iteratively perform the following:
• Take an action 𝑎> and observe 𝑠>, 𝑎>, 𝑠>?!, 𝑟>
• 𝑦> ← 𝑟> + 𝛾 ⋅ max4!∈6

𝑄; 𝑠>?!, 𝑎"

• 𝜙 ← 𝜙 − 𝛼 ⋅ ::; 𝑄; 𝑠>, 𝑎> − 𝑦> =

• Note: Pretend like 𝑦- is constant when taking the gradient

• For finite state setting, recover incremental update if the
“parameters” are the Q values for each state-action pair

Based on slide by Sergey Levine

Experience Replay Buffer

• Problem
• Sequences of states are highly correlated
• Tend to overfit to current states and forget older states

• Solution
• Keep a replay buffer of observations (as a priority queue)
• Gradient updates on samples from replay buffer instead

of current state

• Advantages
• Breaks correlations between consecutive samples
• Can take multiple gradient steps on each observation Based on slide by Sergey Levine

Replay Buffer

Priority Queue

𝑠!, 𝑎!, 𝑟!, 𝑠"

𝑠", 𝑎", 𝑟", 𝑠#

𝑠$, 𝑎$, 𝑟$, 𝑠$%!

⋯

Deep Q Learning with Replay Buffer

• Iteratively perform the following:
• Take an action 𝑎> and add observation 𝑠>, 𝑎>, 𝑠>?!, 𝑟> to replay buffer 𝐷
• For 𝑘 ∈ 1,… , 𝐾 :

• Sample 𝑠&,(, 𝑎&,(, 𝑠&%!,(, 𝑟&,(from 𝐷
• 𝑦&,(← 𝑟&,(+ 𝛾 ⋅ max)!∈+

𝑄, 𝑠&%!,(, 𝑎-

• 𝜃 ← 𝜃 − 𝛼 ⋅ .
.,

𝑄, 𝑠&,(, 𝑎&,(− 𝑦&,(
"

Based on slide by Sergey Levine

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠", 𝑟

𝜋 𝑠

Target Q Network

• Problem
• Q network occurs in the label 𝑦>!

• 𝜃 ← 𝜃 − 𝛼 ⋅ :
:;

𝑄; 𝑠>, 𝑎> − 𝑟> + 𝛾 ⋅ max4!∈6
𝑄; 𝑠>?!, 𝑎"

=

• Thus, labels change as Q network changes (distribution shift)

• Solution
• Use a separate target Q network for the occurrence in 𝑦>
• Only update target network occasionally

• 𝜃 ← 𝜃 − 𝛼 ⋅ :
:;

𝑄; 𝑠>, 𝑎> − 𝑟> + 𝛾 ⋅ max4!∈6
𝑄;! 𝑠>?!, 𝑎"

=

Based on slide by Sergey Levine
Original Q Network Target Q Network

Deep Q Learning with Target Q Network

• Iteratively perform the following:
• Take an action 𝑎> and add observation 𝑠>, 𝑎>, 𝑠>?!, 𝑟> to replay buffer 𝐷
• For 𝑘 ∈ 1,… , 𝐾 :

• Sample 𝑠&,(, 𝑎&,(, 𝑠&%!,(, 𝑟&,(from 𝐷
• 𝑦&,(← 𝑟&,(+ 𝛾 ⋅ max)!∈+

𝑄,! 𝑠&%!,(, 𝑎-

• 𝜃 ← 𝜃 − 𝛼 ⋅ .
.,

𝑄, 𝑠&,(, 𝑎&,(− 𝑦&,(
"

• Every 𝑁 steps, 𝜃" ← 𝜃

Based on slide by Sergey Levine

Deep Q Learning for Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/

Aside: Policy Gradient Algorithm

• Directly train policy 𝜋C 𝑎 𝑠 mapping states to action distributions

• Policy gradient theorem gives the gradient update:

𝜃	 ← 𝜃 + 𝜂 ⋅
1
𝑁
'
-#,

D

'
"#,

E

∇C log 𝜋C 𝑎-," 𝑠-," '
"!#"

E

𝛾"!F"𝑟"!

• Can be combined with Q learning to form “actor-critic algorithms”

Multi-Armed Bandits

• State: None! (To be precise, a single state 𝑆 = 𝑠$)

• Action: Item to recommend (often called arms)

• Transitions: Just stay in the same state

• Rewards: Random payoff for each arm
• Denote 𝑅 𝑎 = 𝑅 𝑠B, 𝑎 , where 𝑎 is the chosen action

Example: Ad Targeting

• Setting
• Google wants to show the most popular ad for a search term (e.g., “lawyer”)
• There are a fixed number of ads to choose from

Ad 3

Click

Ad 1

No Click

Ad 2

Click

Ad 3

No Click

Ad 2

Click

Ad 3

??

Multi-Armed Bandits

• Many applications
• Cold-start for news/ad/movie recommendations
• A/B testing
• Flagging potentially harmful content on a social media platform
• Prioritizing medical tests

• Learning dynamically

• Many practical RL problems are multi-armed bandits

Exploration-Exploitation Tradeoff

• For 𝑡 ∈ 1,2, … , 𝑇
• Compute reward estimates 𝑟C,4 =

∑"#$
%&$ E"⋅! 4"G4
∑"#$
%&$! 4"G4

• Choose action 𝑎C	based on reward estimates
• Add 𝑎C, 𝑟C to replay buffer

• Question: How to choose actions?
• Exploration: Try actions to better estimate their rewards
• Exploitation: Use action with the best estimated reward to maximize payoff

Multi-Armed Bandit Algorithms

• Naïve strategy: 𝜖-Greedy
• Choose action 𝑎C ∼ Uniform 𝐴 with probability 𝜖
• Choose action 𝑎C = arg	max

4∈6
𝑟C,4 with probability 1 − 𝜖

• Can we do better?

Multi-Armed Bandit Algorithms

• Upper confidence bound (UCB)
• Choose action 𝑎C = arg	max

4∈6
𝑟C,4 +

HIJKL
7% 4

• 𝑁C 𝑎 = ∑>G!CM!1 𝑎> = 𝑎 is the number of times action 𝑎 has been played

• Thompson sampling
• Choose action 𝑎C = arg	max

4∈6
𝑟C,4 + 𝜖C,4 , where 𝜖C,4 ∼ 𝑁 0, HIJKL

7% 4

• Both come with theoretical guarantees

Application: Targeted COVID-19 Testing

Test Blue

Negative

Test Green

Positive

Test Green

Negative

Test Brown

Negative

H. Bastani, K. Drakopoulos, V. Gupta, et al. Efficient and Targeted COVID-19 Border Testing via Reinforcement Learning.

EVA

PLF form

EVA test
(6k-8k)

no test
Travelers report:
• Origin
• Demographics
• Destination
• Contact

Labs submit
positive results to
central database
with ~2-day delay

QR code scanned to link
sample with PLF info

30k-100k
passengers

24 hours prior
to travel

Use prior testing
results to allocate
tests efficiently at

every point of entry

Why Bandits?

• Bandit feedback
• Only observe positive/negative if the traveler is tested
• Technically “semi-bandit feedback”

• Nonstationarity
• Infection rate for different passenger types changes over time
• Need to continue to explore and collect data over time

Cases Caught

• 1.85× improvement compared
to random testing

• 1.25-1.45× improvement vs.
targeting based on public data

Season

Peak

Improvement

Off−Peak

1.85x

1.36x

Sep Oct Nov

N
o.

 In
fe

ct
io

ns
 C

au
gh

t (
A

no
ny

m
iz

ed
)

Application: Content Moderation

• Problem
• Millions of pieces of content are posted on Meta platforms each day
• Too much to manually review all content
• How to moderate to make sure no harmful?

• Solution
• ML to prioritize potentially harmful content for manual review
• Featurize content and predict likelihood that it is harmful

V. Avadhanula, O. Baki, H. Bastani, O. Bastani, et al. Bandits for Online Calibration: An Application to
Content Moderation on Social Media Platforms

Application: Content Moderation

Content Reported by
Users

(Reactive)

Content Flagged by
AI Systems

(Proactive)

Generating scores from
different ML models

+
Filtering, De-duping

Auto-delete

Unambiguously violating
content with high-risk scores

Ambiguous content with low
precision/uncertain risk scores

Enqueue for
Human Review

Ranking to
optimize reviewer

capacity

Application: Content Moderation

• What about new “types” of content?
• E.g., new kind of racial slur
• Cold start problem!

• Use multi-armed bandits!

Application: Content Moderation

• Multi-armed bandit
• Each “step” corresponds to one piece of content

• Action: Whether to manually review content

• Reward: 1 if content is harmful, 0 otherwise
• Intuition: Goal is to maximize amount of harmful content caught
• Include an 𝛼 penalty for flagging content to avoid flagging everything

Application: Training ChatGPT

• Problem
• Language models are trained using unsupervised learning
• Generating from these models mimics training data rather than human

preferences

• Solution
• Step 1: Predict human preferences over possible generations (the reward)
• Step 2: Finetune GPT using reinforcement learning, where it is rewarded for

generating content preferred by humans

Application: Training ChatGPT

Source: Ouyang et al., Training language models to follow instructions with human feedback.

Application: Training ChatGPT

Source: Ouyang et al., Training language models to follow instructions with human feedback.

Application: Training ChatGPT

Source: Ouyang et al., Training language models to follow instructions with human feedback.

Application: Training ChatGPT

Source: Ouyang et al., Training language models to follow instructions with human feedback.

Exploration in Reinforcement Learning

• 𝜖-greedy suffers additional
issues due to state space

• Policy learning is an effective
practical solution
• No theoretical guarantees due to

local minima

Exploration in Finite MDPs

• Upper confidence bound (UCB)
• Choose action 𝑎C = arg	max

4∈6
𝑄C 𝑠, 𝑎 + HIJKL

7% 8,4

• 𝑁C 𝑠, 𝑎 = ∑>G!CM!1 𝑠> = 𝑠, 𝑎> = 𝑎 is the number of times action 𝑎 has been
played in state 𝑠

• Thompson sampling
• Choose action 𝑎C = arg	max

4∈6
𝑄C 𝑠, 𝑎 + 𝜖C,8,4 , where 𝜖C,8,4 ∼ 𝑁 0, HIJKL

7% 8,4

• Both come with theoretical guarantees

Exploration in Continuous MDPs

• Can we adapt these ideas to continuous MDPs?
• Thompson sampling is more suitable

• Bootstrap DQN
• Train ensemble of 𝑘 different 𝑄-function estimates 𝑄;$, … , 𝑄;' in parallel
• Original idea was to use online bootstrap, but training from different random

initial 𝜃’s worked as well
• In each episode, act optimally according to 𝑄;" for 𝑖 ∼ Uniform 1,… , 𝑘

Exploration in Continuous MDPs

• Can we adapt these ideas to continuous MDPs?
• Thompson sampling is more suitable

• Soft Q-learning
• Sample actions according to 𝑎 ∼ Softmax 𝛽 ⋅ Y𝑄; 𝑠, 𝑎 4∈6

Curiosity

• Intuition: Rather than focus on optimism with respect to reward,
focus on exploring where we are uncertain

• How to determine uncertainty?

• Candidate strategy
• Train a dynamics model to predict 𝑠" = 𝑓 𝑠, 𝑎
• Take actions where 𝑓 𝑠, 𝑎 has high variance (e.g., use bootstrap)

• Problems?
• What if 𝑠" includes spurious components, like a TV screen playing a movie?

Curiosity

• Learn a feature map 𝜙 𝑠 ∈ ℝG

• Model 1: Train a model to predict state transitions:

R𝜙 𝑠) = 𝑓C 𝜙 𝑠 , 𝑎

• Feature map lets the model “ignore” spurious components of 𝑠 such as a TV
• Problem: We could just learn 𝜙 𝑠 = 0?

Curiosity

• Learn a feature map 𝜙 𝑠 ∈ ℝG

• Model 1: Train a model to predict state transitions:

R𝜙 𝑠) = 𝑓C 𝜙 𝑠 , 𝑎

• Model 2: Train a model to predict action to achieve a transition:

T𝑎 = 𝑔C 𝜙 𝑠 , 𝜙 𝑠)

• “Inverse dynamics model” that avoids collapsing 𝜙

Curiosity

• Curiosity reward is

𝑅 𝑠, 𝑎, 𝑠) = R𝜙 𝑠) − 𝜙 𝑠)
H
H

• In other words, reward agent for exercising transitions that 𝑓 cannot
yet predict accurately

Offline Reinforcement Learning

• Offline reinforcement learning: How can we learn without actively
gathering new data?
• E.g., learn how to perform a task from videos of humans performing the task
• Also known as off-policy or batch reinforcement learning

• Recall: Drawback of Q learning was we need an exploration strategy

• However, this also enables us to use Q learning with offline data!

Offline Reinforcement Learning

• Iteratively perform the following:
• Take an action 𝑎> and add observation 𝑠>, 𝑎>, 𝑠>?!, 𝑟> to replay buffer 𝐷
• For 𝑘 ∈ 1,… , 𝐾 :

• Sample 𝑠&,(, 𝑎&,(, 𝑠&%!,(, 𝑟&,(from 𝐷
• 𝑦&,(← 𝑟&,(+ 𝛾 ⋅ max)!∈+

𝑄, 𝑠&%!,(, 𝑎-

• 𝜙 ← 𝜙 − 𝛼 ⋅ .
.,

𝑄, 𝑠&,(, 𝑎&,(− 𝑦&,(
"

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠", 𝑟

𝜋 𝑠

Offline Reinforcement Learning

• Iteratively perform the following:
• Take an action 𝑎> and add observation 𝑠>, 𝑎>, 𝑠>?!, 𝑟> to replay buffer 𝐷
• For 𝑘 ∈ 1,… , 𝐾 :

• Sample 𝑠&,(, 𝑎&,(, 𝑠&%!,(, 𝑟&,(from 𝐷
• 𝑦&,(← 𝑟&,(+ 𝛾 ⋅ max)!∈+

𝑄, 𝑠&%!,(, 𝑎-

• 𝜙 ← 𝜙 − 𝛼 ⋅ .
.,

𝑄, 𝑠&,(, 𝑎&,(− 𝑦&,(
"

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠", 𝑟

𝜋 𝑠

