
Announcements

• Limited/modified office hours this week (see Ed Discussion)

• HW 6 due Wednesday, 11/29

• Quiz 10 due Thursday, 11/30

• Project Milestone 3 due Wednesday, 12/6
• https://docs.google.com/document/d/17EAxAYeYB7bfs3YK69p6mPB75Mpby

Rq0/edit?usp=sharing&ouid=104445367729520435803&rtpof=true&sd=true

https://docs.google.com/document/d/17EAxAYeYB7bfs3YK69p6mPB75MpbyRq0/edit?usp=sharing&ouid=104445367729520435803&rtpof=true&sd=true
https://docs.google.com/document/d/17EAxAYeYB7bfs3YK69p6mPB75MpbyRq0/edit?usp=sharing&ouid=104445367729520435803&rtpof=true&sd=true

Recap

• Q iteration: Compute optimal Q function when the transitions and
rewards are known

• Q learning: Compute optimal Q function when the transitions and
rewards are unknown

• Extensions
• Various strategies for exploring the state space during learning
• Handling large or continuous state spaces

Exploration-Exploitation Tradeoff

• Question: How to choose actions?
• Exploration: Try actions to better estimate their rewards
• Exploitation: Use action with the best estimated reward to maximize payoff

Application: Training ChatGPT

• Problem
• Language models are trained using unsupervised learning
• Generating from these models mimics training data rather than human

preferences

• Solution
• Step 1: Predict human preferences over possible generations (the reward)
• Step 2: Finetune GPT using reinforcement learning, where it is rewarded for

generating content preferred by humans

Application: Training ChatGPT

Source: Ouyang et al., Training language models to follow instructions with human feedback.

Application: Training ChatGPT

Source: Ouyang et al., Training language models to follow instructions with human feedback.

Application: Training ChatGPT

Source: Ouyang et al., Training language models to follow instructions with human feedback.

Application: Training ChatGPT

Source: Ouyang et al., Training language models to follow instructions with human feedback.

Exploration in Reinforcement Learning

• 𝜖-greedy suffers additional
issues due to state space

• Policy learning is an effective
practical solution
• No theoretical guarantees due to

local minima

Exploration in Finite MDPs

• Upper confidence bound (UCB)
• Choose action 𝑎! = arg max

"∈$
𝑄! 𝑠, 𝑎 + %&'()

*! +,"

• 𝑁! 𝑠, 𝑎 = ∑-./!0/1 𝑠- = 𝑠, 𝑎- = 𝑎 is the number of times action 𝑎 has been
played in state 𝑠

• Thompson sampling
• Choose action 𝑎! = arg max

"∈$
𝑄! 𝑠, 𝑎 + 𝜖!,+," , where 𝜖!,+," ∼ 𝑁 0, %&'()

*! +,"

• Both come with theoretical guarantees

Exploration in Continuous MDPs

• Can we adapt these ideas to continuous MDPs?
• Thompson sampling is more suitable

• Bootstrap DQN
• Train ensemble of 𝑘 different 𝑄-function estimates 𝑄1" , … , 𝑄1# in parallel
• Original idea was to use online bootstrap, but training from different random

initial 𝜃’s worked as well
• In each episode, act optimally according to 𝑄1$ for 𝑖 ∼ Uniform 1,… , 𝑘

Exploration in Continuous MDPs

• Can we adapt these ideas to continuous MDPs?
• Thompson sampling is more suitable

• Soft Q-learning
• Sample actions according to 𝑎 ∼ Softmax 𝛽 ⋅ ?𝑄1 𝑠, 𝑎 "∈$

Curiosity

• Intuition: Rather than focus on optimism with respect to reward,
focus on exploring where we are uncertain

• How to determine uncertainty?

• Candidate strategy
• Train a dynamics model to predict 𝑠2 = 𝑓 𝑠, 𝑎
• Take actions where 𝑓 𝑠, 𝑎 has high variance (e.g., use bootstrap)

• Problems?
• What if 𝑠2 includes spurious components, like a TV screen playing a movie?

Curiosity

• Learn a feature map 𝜙 𝑠 ∈ ℝ!

• Model 1: Train a model to predict state transitions:

&𝜙 𝑠" = 𝑓# 𝜙 𝑠 , 𝑎

• Feature map lets the model “ignore” spurious components of 𝑠 such as a TV
• Problem: We could just learn 𝜙 𝑠 = 0?

Curiosity

• Learn a feature map 𝜙 𝑠 ∈ ℝ!

• Model 1: Train a model to predict state transitions:

&𝜙 𝑠" = 𝑓# 𝜙 𝑠 , 𝑎

• Model 2: Train a model to predict action to achieve a transition:

+𝑎 = 𝑔# 𝜙 𝑠 , 𝜙 𝑠"

• “Inverse dynamics model” that avoids collapsing 𝜙

Curiosity

• Curiosity reward is

𝑅 𝑠, 𝑎, 𝑠" = &𝜙 𝑠" − 𝜙 𝑠"
$
$

• In other words, reward agent for exercising transitions that 𝑓 cannot
yet predict accurately

Offline Reinforcement Learning

• Offline reinforcement learning: How can we learn without actively
gathering new data?
• E.g., learn how to perform a task from videos of humans performing the task
• Also known as off-policy or batch reinforcement learning

• Recall: Drawback of Q learning was we need an exploration strategy

• However, this also enables us to use Q learning with offline data!

Offline Reinforcement Learning

• Iteratively perform the following:
• Take an action 𝑎- and add observation 𝑠-, 𝑎-, 𝑠-3/, 𝑟- to replay buffer 𝐷
• For 𝑘 ∈ 1,… , 𝐾 :

• Sample 𝑠!,#, 𝑎!,#, 𝑠!$%,#, 𝑟!,# from 𝐷
• 𝑦!,# ← 𝑟!,# + 𝛾 ⋅ max&!∈(

𝑄) 𝑠!$%,#, 𝑎*

• 𝜙 ← 𝜙 − 𝛼 ⋅ +
+)

𝑄) 𝑠!,#, 𝑎!,# − 𝑦!,#
,

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠!, 𝑟

𝜋 𝑠

Offline Reinforcement Learning

• Iteratively perform the following:
• Take an action 𝑎- and add observation 𝑠-, 𝑎-, 𝑠-3/, 𝑟- to replay buffer 𝐷
• For 𝑘 ∈ 1,… , 𝐾 :

• Sample 𝑠!,#, 𝑎!,#, 𝑠!$%,#, 𝑟!,# from 𝐷
• 𝑦!,# ← 𝑟!,# + 𝛾 ⋅ max&!∈(

𝑄) 𝑠!$%,#, 𝑎*

• 𝜙 ← 𝜙 − 𝛼 ⋅ +
+)

𝑄) 𝑠!,#, 𝑎!,# − 𝑦!,#
,

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠!, 𝑟

𝜋 𝑠

Lecture 23: Recommender Systems

CIS 4190/5190
Fall 2023

Recommender Systems

• Media recommendations: Netflix, Youtube, etc.

• News feed: Google News, Facebook, Twitter, Reddit, etc.

• Search ads: Google, Bing, etc.

• Products: Amazon, ebay, Walmart, etc.

• Dating: okcupid, eharmony, coffee-meets-bagel, etc.

Recommender Systems

• Account for:
• 75% of movies watched on Netflix [1]
• 60% of YouTube video clicks [2]
• 35% of Amazon sales [3]

[1] McKinsey & Company (Oct 2013): https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers [Note: non-authoritative
source; estimates only]

[2] J. Davidson, et al. (2010). The YouTube video recommendation system. Proc. of the 4th ACM Conference on Recommender systems (RecSys).
doi.org/10.1145/1864708.1864770

[3] M. Rosenfeld, et al. (2019). Disintermediating your friends: How online dating in the United States displaces other ways of meeting.
Proc. National Academy of Sciences 116(36).

https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers

Popularity-Based Recommendation

• Just recommend whatever is currently popular

• Simple and effective, always try as a baseline

• Can be combined with more sophisticated techniques

Collaborative Filtering

User 1 User 2

Collaborative Filtering

User 1 User 2

Collaborative Filtering

• Given:

• Matrix 𝑋-,8 = G
rating-,8
N/A

if user- rated product8
otherwise

• Assume fixed set of 𝑛 users and 𝑚 products
• Not given any information about the products!

• Problem: Predict what 𝑋6,7 would be if it is observed
• Not quite supervised or unsupervised learning!

Collaborative Filtering

Gossip
Girl

The
Office

The
Mandalorian

Criminal
Minds

The Good
Place

Grey’s
Anatomy

...

Grace 4 5 4 1 5 3 ...

Eric 1 4 5 1 5 3 ...

Haren 5 5 5 1 3 4 ...

Sai 1 2 5 4 3 5 ...

Siyan 3 1 1 3 4 5 ...

Nikhil 2 3 4 2 2 2 ...

Felix 1 1 1 5 2 2 ...

Missing
entries!

Collaborative Filtering

Gossip
Girl

The
Office

The
Mandalorian

Criminal
Minds

The Good
Place

Grey’s
Anatomy

...

Grace 5 1 5 ...

Eric 4 5 5 3 ...

Haren 5 5 3 4 ...

Sai 2 ...

Siyan 3 1 3 5 ...

Nikhil 2 2 ...

Felix 1 1 2 ...

Missing
entries!

General Strategy

• Step 1: Construct user-item ratings

• Step 2: Identify similar users

• Step 3: Predict unknown ratings

Step 1: Constructing User-Item Ratings

• Can use explicit ratings (e.g., Netflix)

• Can be implicitly inferred from user activity
• User stops watching after 15 minutes
• User repeatedly clicks on a video

• Feedback can vary in strength
• Weak: User views a video
• Strong: User writes a positive comment

Step 2: Identifying Similar Users

Gossip
Girl

The
Office

The
Mandalorian

Criminal
Minds

The Good
Place

Grey’s
Anatomy

...

Grace 5 1 5 ...

Eric 4 5 5 3 ...

Haren 5 5 3 4 ...

Sai 2 ...

Siyan 3 1 3 5 ...

Nikhil 2 2 ...

Felix 1 1 2 ...

Step 2: Identifying Similar Users

Gossip
Girl

The
Office

The
Mandalorian

Criminal
Minds

The Good
Place

Grey’s
Anatomy

...

Grace 5 1 5 ...

Eric 4 5 5 3 ...

Haren 5 5 3 4 ...

Sai 2 ...

Siyan 3 1 3 5 ...

Nikhil 2 2 ...

Felix 1 1 2 ...

similar

Step 2: Identifying Similar Users

Gossip
Girl

The
Office

The
Mandalorian

Criminal
Minds

The Good
Place

Grey’s
Anatomy

...

Grace 5 1 5 ...

Eric 4 5 5 3 ...

Haren 5 5 3 4 ...

Sai 2 ...

Siyan 3 1 3 5 ...

Nikhil 2 2 ...

Felix 1 1 2 ...

not similar

Step 2: Identifying Similar Users

• How to measure similarity?
• Distance 𝑑 𝑋-, 𝑋9 , where 𝑋- is vector of ratings for user 𝑖

• Strategy 1: Euclidean distance 𝑑 𝑋6 , 𝑋8 = 𝑋6 − 𝑋8 $
• Ignore entries where either 𝑋- or 𝑋9 is N/A
• Shortcoming: Some users might give higher ratings everywhere!

• Similar issues with other distance metrics such as cosine similarity

Step 2: Identifying Similar Users

• Strategy 2: Pearson correlation: 𝜌 =
∑!"#
$:%,!; <:% :',!; <:'

∑!"#
$:%,!; <:%

(∑!"#
$:',!; <:'

(

• Here, V𝑋- =
/
:
∑8./: 𝑋-,8

• Normalization by variance deals with differences in individual rating scales

𝜌 ≈ 1

𝜌 = 0

𝑋"

0 < 𝜌 < 1 −1 < 𝜌 < 0

𝑋" 𝑋" 𝑋"

𝑋# 𝑋# 𝑋# 𝑋#

Step 3: Predict Unknown Ratings

• Weighted averaging strategy
• Compute weights 𝑤-,9 = 𝑔 𝑑 𝑋-, 𝑋9 based on the distances

• Normalize the weights to obtain Y𝑤-,9 =
C$,&

∑&'"
(C$,&

• For user 𝑖 rating item 𝑘, predict

𝑋6,7 = 2𝑋6 +4
8=>

?

5𝑤6,8 ⋅ 𝑋8,7 − 2𝑋8

Step 3: Predict Unknown Ratings

• Variations
• Instead of weights, choose a neighborhood (e.g., threshold based on

similarity, top-k based on similarity, or use k-means clustering)
• Instead of subtracting the mean, normalize by standard deviation

Matrix Factorization

• Model family: Consider parameterization

𝑋6,7 ≈ 𝑈6@𝑉7

• Both 𝑈- ∈ ℝE and 𝑉8 ∈ ℝE are parameters
• 𝑈- represents “features” for user 𝑖
• 𝑉8 represents “features” for product 𝑘

Matrix Factorization

• Loss function:

𝐿 𝑈, 𝑉; 𝑋 =4
6=>

?

4
7=>

A

1 𝑋6,7 ≠ N/A ⋅ 𝑋6,7 − 𝑈6@𝑉7
$

• Optimizer:
• Can be minimized using gradient descent
• “Alternating” least squares: Hold 𝑈 fixed, then optimizing 𝑉 is linear

regression (and vice versa), so alternate between the two

Koren, et al. (2009) Matrix factorization techniques for recommender systems. Computer 42 (8), ACM.
https://datajobs.com/data-science-repo/Recommender-Systems-%5BNetflix%5D.pdf

https://datajobs.com/data-science-repo/Recommender-Systems-%5BNetflix%5D.pdf

Collaborative Filtering

• Pros
• No domain knowledge needed, only user behavior
• Captures that users may have diverse preferences

• Cons
• Suffers when data is sparse
• Does not consider item content, so cannot generalize to new items
• Does not consider user features, so cannot generalize to new users

Content-Based Approaches

• Step 1: Manually construct feature vector 𝑈6 for item

• Step 2: Manually construct feature vector 𝑉7 for user

• Step 3: Train a model using supervised learning to predict the user’s
rating for the given item:

𝑋6,8 ≈ 𝑓B(𝑈6 , 𝑉7)

Content-Based Approaches

• Pros
• Incorporates external sources of knowledge on items/users to generalize
• More explainable since recommendations are based on handcrafted features

• Cons
• Requires domain knowledge and feature engineering
• Narrow recommendations

Hybrid Approaches

• Combine collaborative filtering with content-based approaches
• Ensemble different predictions
• Concatenate collaborative filtering features with handcrafted features

• Deep-learning based approaches
• Can be used with both approaches (or a combination)
• Active area of research

Other Considerations

• Challenges measuring utility
• Ratings can be misleading
• Fake reviews/ratings are commonplace

• Time-varying preferences
• User preferences change, item popularities change
• Can upweight recent data (e.g., exponentially weighted moving average)

• Evaluation
• Offline: Split users into train/test, and evaluate model on test users
• Online: Split users into train/test, and run separate algorithms for each

What About New Users?

• Called the “cold start” problem

• Feature-based approach
• Just featurize the user!

• Collaborative filtering
• Need to collect ratings from the user!
• Use multi-armed bandits

