Announcements

* Homework 1 due Wednesday at 8pm
* Quiz 1 released on Thursday (on Canvas)

 Office hours posted on Course Website (starting today!)
* See announcement on Ed Discussion



Lecture 3: Linear Regression (Part 2)

CIS 4190/5190
Fall 2023



Recap: Linear Regression

* Input: Dataset Z = { (x4, V1), ..., (%, Vo) }
* Compute

3 .1
p(Z) = g min =30, (v = B0
ER

* Output: 3, (x) = B(Z)Tx
* Discuss algorithm for computing the minimal [ later today



Recap: Views of ML

Function Approximation

Loss Minimization

Classification

Supervised Learning

Unsupervised Learning

Reinforcement Learning



Recap: Loss Minimization View of ML

* To design an ML algorithm:
* Choose model family F = {fﬁ}ﬁ (e.g., linear functions)

* Choose loss function L(f; Z) (e.g., MSE loss)

* Resulting algorithm:

p(Z) = arg min L(S; Z)
B



Recap: Overfitting vs. Underfitting

* Overfitting * Underfitting
* Fit the training data Z well * Fit the training data Z poorly
* Fit new test data (x, y) poorly  (Necessarily fit new test data

(x, y) poorly)
y




Recap: Training/Test Split Algorithm

* Step 1: Split Z into Z,,;,, and Z;ast

Training data Zirain

Test data Ziegt

« Step 2: Run linear regression with 7., to obtain 5(Z,,.:,,)

* Step 3: Evaluate
* Training loss: Liy4in = L(,é(Ztrain); Ztrain)

* Test (or generalization) loss: Liest = L(,[? (Zirain); Ztest)




Recap: Training/Test Split Algorithm

* Overfitting * Underfitting
* Fit the training data Z well * Fit the training data Z poorly
* Fit new test data (x, y) poorly  (Necessarily fit new test data

(x, y) poorly)
y




Recap: Training/Test Split Algorithm

* Overfitting * Underfitting
* Lirain is small * Fit the training data Z poorly
* Liest IS large * (Necessarily fit new test data

(x, y) poorly)
y




Recap: Training/Test Split Algorithm

* Overfitting * Underfitting
* Lirain is small * Lirain is large
* Liest is large * Liest is large

y




How to Fix Underfitting/Overfitting?

* Choose the right model family!



Role of Capacity

e Capacity of a model family captures “complexity” of data it can fit
* Higher capacity = more likely to overfit (model family has high variance)
* Lower capacity = more likely to underfit (model family has high bias)

* For linear regression, capacity roughly corresponds to feature
dimension d

* |.e., number of features in ¢(x)



Bias-Variance Tradeoff

* Overfitting (high variance) e Underfitting (high bias)
* High capacity model capable of * Low capacity model that can only
fitting complex data fit simple data
* |Insufficient data to constrain it  Sufficient data but poor fit
y y ?

|
| A \fﬁ(x) /,,/’/
‘\‘ /l\T/f/ \. I/ fp(x)

”




Bias-Variance Tradeoff

 Underfitting Ideal Overfitting

Loss

—_— » Training loss

Capacity
(not actually 1D!)

Slide by Padhraic Smyth, UClrvine



Bias-Variance Tradeoff

* For linear regression, increasing feature dimension d...
* Tends to increase capacity
* Tends to decrease bias but increase variance

* Need to construct ¢ to balance tradeoff between bias and variance
* Rule of thumb: n = d logd
* Large fraction of data science work is data cleaning + feature engineering



Bias-Variance Tradeoff

* Increasing number of examples n in the data...
* Tends to keep bias fixed and decrease variance

* General strategy
* High bias: Increase model capacity d
* High variance: Increase data size n (i.e., gather more labeled data)



Bias-Variance Tradeoff

variance




Bias-Variance Tradeoff (Overfitting)

variance

k
f i total loss




Bias-Variance Tradeoff (Underfitting)

F

varlance

total loss



Bias-Variance Tradeoff (Ideal)

variance

total loss



Agenda

* Regularization
» Strategy to address bias-variance tradeoff
* By example: Linear regression with L, regularization

* Minimizing the MSE Loss
* Closed-form solution
* Gradient descent



Recall: Mean Squared Error Loss

* Mean squared error loss for linear regression:

1 n
LB Z) = ) 0= FTx)?



Linear Regression with L, Regularization

 Original loss + regularization:

1 n
LB Z) == i — BT + - 1613

l%l d
1
==X 0= FTx)? 42 ) B
i=1 j=1

* 1 € Ris a hyperparameter that must be tuned (satisfies 4 = 0)



Intuition on L, Regularization

* Equivalently the L, norm of [5:
d
> B2 = 1813 = 115 — Ol13
j=1

* |l.e., “pulling” [ to zero
* “Pulls” more as /1 becomes larger



Intuition on L, Regularization

* Why does it help?
* Encourages “simple” functions
* E.g.,as 1 > oo,0btainff =0
* Use / to tune bias-variance tradeoff



Bias-Variance Tradeoff for Regularization

+ Underfitting Ideal Overfitting

o

rrrrrr

Loss

/ festloss

— » Training loss

Capacity



Bias-Variance Tradeoff for Regularization

+ Underfitting Ideal Overfitting

o

rrrrrr

Loss

/ festloss

— » Training loss




Intuition on L, Regularization

* More precisely: Restricts directions of 5 with little variation in data
e Little variation in data = highly varying loss

* Example:
* Suppose that x;; = 0.36 for all training examples x;
* Then, we cannot learn what would happen if x; = 1.29 (for a new input x)

* l.e., hard to estimate f3;

* How does L, regularization help?



Intuition on L, Regularization

Iip Minimizes
original loss
Loss varies greatly (orif 1 = 0)
in this direction . _ "
—> Penalizes more Minimizes At th.'s point, the
gradients are equal
full loss . L
(with opposite sign)
* Tradeoff depends on
b1 choice of /1

Minimizes
regularization term
(orif A > o)

n d
1
LB Z) =~ 0= BTx)? +71 )
i=1 j=1



Aside: Regularization and Intercept Term

* If using intercept term (¢p(x) = [1 x; - Xa]'), no penalty on B;:

n d
1
L(B;Z) = EZ(%' — B x;)? + /12,3]'2
i=1 =2+

Sum from j = 2

-As,l—>oo,wehave,82 = - =,Bd =0
* le., only fit 8, (which yields £, (Z2) = mean({y;}’-,))




Aside: Feature Standardization

* Unregularized linear regression is invariant to feature scaling
* Suppose we scale x;; < 2x;; for all examples x;
* Without regularization, simply use ; < [;/2 to obtain equivalent solution

: Bj
In particular, e 2xij = Bj - Xij

* Not true for regularized regression!
* Penalty (,8]-/2)2 is scaled by 1/4 (not cancelled out!)

n d
1
L(B;Z) = EZ(yi — B x;)? + /12,3]'2
i=1 =2



Aside: Feature Standardization

* Unregularized linear regression is invariant to feature scaling
* Suppose we scale x;; < 2x;; for all examples x;
* Without regularization, simply use ; < [;/2 to obtain equivalent solution

: Bj
In particular, e 2xij = Bj - Xij

* Not true for regularized regression!
* Penalty (,8]-/2)2 is scaled by 1/4 (not cancelled out!)

1 n
LB Z) = ) (i = BT + A(BF + -+ B7 4+ 53)
=1



Feature Standardization

* Unregularized linear regression is invariant to feature scaling
* Suppose we scale x;; < 2x;; for all examples x;
* Without regularization, simply use ; < [;/2 to obtain equivalent solution

. Bj
* |n particular, Zj-l:l?] ' inj — ?:1,3j * Xij

* Not true for regularized regression!
* Penalty (,8]-/2)2 is scaled by 1/4 (not cancelled out!)

2

LB Z) =~ (= BTx)? + (ﬁ% L - ﬁé)
=1



Feature Standardization

* Solution: Rescale features to zero mean and unit variance

Xij—Hj _1ynN _1ywN 2
Xij < o/ Hj = NZi:l Xij  0j = Nzl’:l(xi,j —.Uj)

* Note: When using intercept term, do not rescale x; = 1
* Can be sensitive to outliers (fix by dropping outliers)

* Must use same transformation during training and for prediction
* Compute u; and g;j on training data and use on test data



Hyperparameter Tuning

* /1 is a hyperparameter that must be tuned (satisfies 1 = 0)

* Naive strategy: Try a few different candidates /; and choose the one
that minimizes the test loss

* Problem: We may overfit the test set!
* Major problem if we have more hyperparameters



Training/Val/Test Split

* Goal: Choose best hyperpar

ameter /A

e Can also compare different model families, feature maps, etc.

 Solution: Optimize /4 on a held-out validation data

* Rule of thumb: 60/20/20 split

Given data Z

>

Training data Ziy,in

Val data Z,,,;

Test data Ziagt




Basic Cross Validation Algorithm

* Step 1: Split Z into Z i1, Zyal, and Ziast

Training data Zirain

Val data Z,

Test data Ziast

e Step 2: Fort € {1, ..., h}:

« Step 2a: Run linear regression with Z,,.;, and A, to obtain £ (Z; 41, A¢)
* Step 2b: Evaluate validation loss Lf,al = L(B(Ztrain, At); Zval)

* Step 3: Use best A,

« Choose t' = arg min; L, with lowest validation loss
* Re-run linear regression with Z;,,;, and A, to obtain B(Zirain, Agr)




Alternative Cross-Validation Algorithms

 If Z is small, then splitting it can reduce performance
* Solution: Can use Z;,,i, U Z,4 in Step 3

 Alternative solution: k-fold cross-validation (e.g., k = 3)
* Split Z into Z,,i, and Ziast
* Split Z;.,i, into k disjoint sets Z__;, and let Z;..;,, = Ugrsg vl
» Use A’ that works best on average across s € {1, ..., k} with Z i,

* Chooses better A’ than above strategy



Example: 3-Fold Cross Validation

3

Training data Z; ., Val data Z;

Test data Ziast

Train data Z2,;

Val data Zéal Train data Zéal

Test data Ziast

Val data Zy,

Train data Zgain

Test data Ziast

Train data Zirain

Test data Ziegt




k-Fold Cross-Validation

 Compute vs. accuracy tradeoff
* As k > N, the model becomes more accurate
* But algorithm becomes more computationally expensive



General Regularization Strategy

 Original loss + regularization:

Loyew(B;Z) = L(B;Z) + A+ R(P)

* Offers a way to express a preference “simpler” functions in family
* Typically, regularization is independent of data



L, Regularization

e Sparsity: Can we minimize ||/ ||, = |{] | B # O}|?
* That is, the number of nonzero components of 3
* Improves interpretability (automatic feature selection!)
* Also serves as a strong regularizer (n~slogd, where s = ||/]|o)

* Challenge: ||/ ]|, is not differentiable, making it hard to optimize

* Solution
* We can instead use an L; norm as the regularizer!
* Still harder to optimize than L, norm, but at least it is convex



Intuition on L4 Regularization

,32 Minimizes
original loss
(orif A = 0)

Minimizer of full loss at
corner = sparse ([, = 0)!

Minimizes f1
regularization term
(orif A — o)

" d
1
L(B;Z) = EZ(% —Bx;)? + AZ"BJ‘
i=1 J=1



L Regularization for Feature Selection

* Step 1: Construct a lot of features and add to feature map

* Step 2: Use L, regularized regression to “select” subset of features
* l.e., coefficient f; # 0 - feature j is selected)

* Optional: Remove unselected features from the feature map and run
vanilla linear regression (a.k.a. ordinary least squares)



Housing Dataset

* Sales of residential property in Ames, lowa from 2006 to 2010
* Examples: 1,022
* Features: 79 total (real-valued + categorical), some are missing!
* Label: Sales price

MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape "’ MoSold YrSold SaleType SaleCondition SalePrice
20 RL 80.0 10400 Pave  NaN Reg ' 5 2008 WD Normal 174000

180 RM 35.0 3675 Pave NaN Reg 5 2006 WD Normal 145000

60 FV 72.0 8640 Pave NaN Reg 6 2010 Con Normal 215200

20 RL 84.0 11670 Pave NaN IR1 3 2007 WD Normal 320000

60 RL 43.0 10667 Pave NaN IR2 4 2009 ConLw Normal 212000

80 RL 82.0 9020 Pave NaN Reg 6 2008 WD Normal 168500

60 RL 70.0 11218 Pave NaN Reg 5 2010 WD Normal 189000

80 RL 85.0 13825 Pave NaN Reg ™~ 12 2008 WD Normal 140000

60 RL NaN 13031 Pave NaN IR2 7 7 2006 WD Normal 187500

Data from: De Cock. Journal of Statistics Education 19(3), 2011



count

mean
std
min
25%
50%
75%

max

Summary Statistics

» dataframe.describe()

Id MSSubClass LotFrontage

1022.000000
732.338552
425.860402

1.000000
367.500000
735.500000

1100.500000

1460.000000

1022.000000
57.059687
42.669715
20.000000
20.000000
50.000000
70.000000

190.000000

832.000000
70.375000
25.533607
21.000000
59.000000
70.000000
80.000000

313.000000

LotArea
1022.000000
10745.437378
11329.753423
1300.000000
7564.250000
9600.000000
11692.500000

215245.000000

1022.000000
6.128180
1.371391
1.000000
5.000000
6.000000
7.000000

10.000000

OverallQual OverallCond

1022.000000
5.564579
1.110557
1.000000
5.000000
5.000000
6.000000
9.000000

YearBuilt YearRemodAdd

1022.000000
1970.995108

30.748816
1872.000000
1953.000000
1972.000000
2001.000000
2010.000000

1022.000000
1984.757339

20.747109
1950.000000
1966.000000
1994.000000
2004.000000
2010.000000

MasVnrArea
1019.000000
105.261040
172.707705
0.000000
0.000000
0.000000
170.000000
1378.000000

SalePrice
1022.000000
181312.692759
77617.461005
34900.000000
130000.000000
165000.000000
215000.000000
745000.000000



Features Most Correlated with Label
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eature Correlation Matrix
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SalePrice




Missing Values

* Possible ways to handle missing values
* Numerical: Impute with mean
e Categorical: Impute with mode

Feature % Missing Values
PoolQC 99.5108
MiscFeature 96.0861
Alley 93.5421
Fence 80.2348
FireplaceQu 47.6517
LotFrontage 18.5910
GarageCond 05.2838
GarageType 05.2838
GarageYrBlt 05.2838
GarageFinish 05.2838
GarageQual 05.2838
BsmtFinTypel 02.5440



Other Preprocessing

e Categorical: Featurize using one-hot encoding

* Ordinal
* Convert to integer (e.g., low, medium, high =2 1, 2, 3)
* Does not fully capture relationships (try different featurizations!)
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Evaluation

* 438 test examples, preprocessed same as training data
* Sorted by prediction error
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Regularization

« Quadratic features, feature standardization, L, regularization
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Agenda

* Regularization
» Strategy to address bias-variance tradeoff
* By example: Linear regression with L, regularization

* Minimizing the MSE Loss
* Closed-form solution
e Stochastic gradient descent



Minimizing the MSE Loss

* Recall that linear regression minimizes the loss
n
1 T. 2
L(5;72) = EZ(YL’ — B x;)
i=1

* Closed-form solution: Compute using matrix operations

* Optimization-based solution: Search over candidate [



Vectorizing Linear Regression



Vectorizing Linear Regression

_fﬁ(x1)_

_f,B (.xn)_



Vectorizing Linear Regression

fp(x1) BT,

_f,B (.xn)_ L T.xn-



Vectorizing Linear Regression
o _
Zﬁ]xlj
) :
ZIB] n]

fp(x1) BT,

_f,B (.xn)_ L T.xn-




Vectorizing Linear Regression

Z ﬁjxu_

_fﬁ(x1)_

_fﬁ (.xn)_

j=1




Vectorizing Linear Regression

Z ﬁjxu_

_fﬁ(x1)_

_fﬁ (.xn)_

j=1




Vectorizing Linear Regression

Z ﬁjxu_

_fﬁ(x1)_

_fﬁ (.xn)_

j=1

18,

Xp



Vectorizing Linear Regression

Z ﬁjxu_

-fﬁ (1) BT x,] j=1 X1,1

_fﬁ (.xn)_ -,BTxn- d An,1
2 Z g
_]=1
i

Vn.




Vectorizing Linear Regression

i i z Bixy ;
fﬁ(xl) _IBT.X'l- j=1 _xl.,l .X,'l.’d‘ ‘181'
_fﬁ(.xn)_ ) -,BT.xn_ B i | - Xn1 °° Xpd. _le_
bjxn
2 & J7n,j

Y1

. Summary: /' = X[




Vectorizing Linear Regression

Vi

Vn.

By
Ba.




Vectorizing Mean Squared Error



Vectorizing Mean Squared Error

L(S;7)



Vectorizing Mean Squared Error

1 n
L(p;7) = EZ(%' — B x;)?
i=1



Vectorizing Mean Squared Error

J’1 -fﬁ(xl)_
yn _f,B(.xn)_
1% 1 /
L 2) == ) (i = BTx)? =~ IIY = XBI



Intuition on Vectorized Linear Regression

* Rewriting the vectorized loss:

n-L(B;Z) =Y =XBl5 = IVII5 =2V "XB + IXBI3
=|IY|lz-2Y"XB + BT (XTX)P

* Quadratic function of 8 with leading “coefficient” X ' X

* In one dimension, “width” of parabola ax? + bx + cisa ™'

* In multiple dimensions, “width” along direction v; is /1{1, where v; is an
eigenvector of X ' X with eigenvalue /;



Intuition on Vectorized Linear Regression

B2

Minimizer £ (2)

b1

Directions/magnitudes are given by eigenvectors/eigenvalues of X ' X



Strategy 1: Closed-Form Solution
* Recall that linear regression minimizes the loss
1 2
L(B; 7) =~ IV = XBII3

* Minimum solution has gradient equal to zero:

VoL(B(2);Z2) =0




Strategy 1: Closed-Form Solution
* Recall that linear regression minimizes the loss
1 2
L(B; 7) =~ IV = XBII3

* Minimum solution has gradient equal to zero:

VsL(B;Z) =0




Strategy 1: Closed-Form Solution
* The gradient is

VeL(B;7)



Strategy 1: Closed-Form Solution
* The gradient is

1
VeL(B;2) = Vg —IIY = XS5



Strategy 1: Closed-Form Solution
* The gradient is

VoL(B;7) = Vg~V = XBlI3 = Vs~ (¥ = XR)T(Y — XP)

= 2 [V (v = XB)T](V = XB)

= —2XT(Y = Xp)

n

= —2XTY +2XTXp

n



Aside: Intuition on Computing Gradients

* Warning: Intuitive but easy to make mistakes

* The loss is

Y = X(B+dp)lls

(v = XB) — XdB13
Y = XBlIZ — = (v — XB)TXdB + —l|XdBII3
(B; 7) — — (v = Xp)TXdf + O(lldBI3)

L(p+dp;7) =

~ S|RrS|rS|r

= VBL(,B; Z)T Coefficient of dff term



Intuition on the Gradient

* By linearity of the gradient, we have
n n
VeL(B;7) = z Ve (v, — B x)* = z 2(y; = B x)x;
i=1 i=1

* The gradient for a single term is
V(i = Bx)* = 2(y; — B x)x;

* |.e., the current error y; — " x; times the feature x;



Strategy 1: Closed-Form Solution
* The gradient is
VoL(B;Z) = Vg —|lY — XBII3 = —2XTY + 2XT X

» Setting Vs L(f;Z) = 0, we have X X[ = XY



Strategy 1: Closed-Form Solution

* Setting V;L(f;Z) = 0, we have X "X = XY

« Assuming X ' X is invertible, we have

B(Z)=XTX)TXTY



Note on Invertibility

* Closed-form solution only unique if X ' X is invertible

* Otherwise, multiple solutions existto X ' X = XY
* Intuition: Underconstrained system of linear equations

o 1=

* In this case, any 5, = 2 — 3, is a solution



When Can this Happen?

* Casel
* Fewer data examples than feature dimension (i.e., n < d)
* Solution: Remove featuressod < n
* Solution: Collect more data untild <n

e Case 2: Some feature is a linear combination of the others
* Special case (duplicated feature): For some j and j', x; ; = x; ; forall i
* Solution: Remove linearly dependent features
* Solution: Use L, regularization



Shortcomings of Closed-Form Solution

« Computing £(Z) = (X "X)"'X Y can be challenging

» Computing (X"X) 1is 0(d?)
* d = 10* features = 0(10%%)
* Even storing X ' X requires a lot of memory

* Numerical accuracy issues due to “ill-conditioning”
* X "X is “barely” invertible

* Then, (X "X) ™! has large variance along some dimension
* Regularization helps (more on this later)



