Announcements

- Homework 1 due **Wednesday at 8pm**
- Quiz 1 released on Thursday (on Canvas)
- Office hours posted on Course Website (starting **today**!)
	- See announcement on Ed Discussion

Lecture 3: Linear Regression (Part 2)

CIS 4190/5190 Fall 2023

Recap: Linear Regression

- Input: Dataset $Z = \{(x_1, y_1), ..., (x_n, y_n)\}\$
- Compute

$$
\hat{\beta}(Z) = \underset{\beta \in \mathbb{R}^d}{\arg \min} \frac{1}{n} \sum_{i=1}^n (y_i - \beta^\top x_i)^2
$$

- Output: $f_{\widehat{\beta}(Z)}(x) = \widehat{\beta}(Z)^{\top}x$
- Discuss algorithm for computing the minimal β later today

Recap: Views of ML

Recap: Loss Minimization View of ML

• **To design an ML algorithm:**

- Choose model family $F = \{f_\beta\}_{\beta}$ (e.g., linear functions)
- Choose loss function $L(\beta; Z)$ (e.g., MSE loss)
- **Resulting algorithm:**

$$
\hat{\beta}(Z) = \argmin_{\beta} L(\beta; Z)
$$

Recap: Overfitting vs. Underfitting

• **Overfitting**

- Fit the **training data** Z well
- Fit new **test data** (x, y) poorly

• **Underfitting**

- Fit the **training data** Z poorly
- (Necessarily fit new **test data** (x, y) poorly)

• **Step 1:** Split Z into Z_{train} and Z_{test}

Training data Z_{train} | Test data Z_{test}

- **Step 2:** Run linear regression with Z_{train} to obtain $\hat{\beta}(Z_{train})$
- **Step 3:** Evaluate
	- **Training loss:** $L_{\text{train}} = L(\hat{\beta}(Z_{\text{train}}); Z_{\text{train}})$
	- **Test (or generalization) loss:** $L_{\text{test}} = L(\hat{\beta}(Z_{\text{train}}); Z_{\text{test}})$

• **Overfitting**

- Fit the **training data** Z well
- Fit new **test data** (x, y) poorly

• **Underfitting**

- Fit the **training data** Z poorly
- (Necessarily fit new **test data** (x, y) poorly)

 χ

• **Overfitting**

- L_{train} is small
- L_{test} is large

• **Underfitting**

- Fit the **training data** Z poorly
- (Necessarily fit new **test data** (x, y) poorly)

 χ

- **Overfitting**
	- L_{train} is small
	- L_{test} is large

- **Underfitting**
	- L_{train} is large
	- L_{test} is large

How to Fix Underfitting/Overfitting?

• Choose the right model family!

Role of Capacity

- **Capacity** of a model family captures "complexity" of data it can fit
	- Higher capacity \rightarrow more likely to overfit (model family has high **variance**)
	- Lower capacity \rightarrow more likely to underfit (model family has high **bias**)
- For linear regression, capacity roughly corresponds to feature dimension d
	- I.e., number of features in $\phi(x)$

• **Overfitting (high variance)**

- High capacity model capable of fitting complex data
- Insufficient data to constrain it

• **Underfitting (high bias)**

- Low capacity model that can only fit simple data
- Sufficient data but poor fit

- For linear regression, increasing feature dimension $d...$
	- Tends to **increase capacity**
	- Tends to **decrease bias** but **increase variance**
- Need to construct ϕ to balance tradeoff between bias and variance
	- **Rule of thumb:** $n \approx d \log d$
	- Large fraction of data science work is data cleaning + feature engineering

- Increasing number of examples n in the data...
	- Tends to **keep bias fixed** and **decrease variance**
- **General strategy**
	- **High bias:** Increase model capacity d
	- **High variance:** Increase data size n (i.e., gather more labeled data)

Bias-Variance Tradeoff (Underfitting)

Agenda

• **Regularization**

- Strategy to address bias-variance tradeoff
- By example: Linear regression with L_2 regularization

• **Minimizing the MSE Loss**

- Closed-form solution
- Gradient descent

Recall: Mean Squared Error Loss

• Mean squared error loss for linear regression:

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2
$$

Linear Regression with L_2 Regularization

• **Original loss + regularization:**

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 + \lambda \cdot ||\beta||_2^2
$$

=
$$
\frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 + \lambda \sum_{j=1}^{d} \beta_j^2
$$

• $\lambda \in \mathbb{R}$ is a **hyperparameter** that must be tuned (satisfies $\lambda \geq 0$)

Intuition on L_2 Regularization

• Equivalently the L_2 norm of β :

$$
\sum_{j=1}^{d} \beta_j^2 = ||\beta||_2^2 = ||\beta - 0||_2^2
$$

- I.e., "pulling" β to zero
	- "Pulls" more as λ becomes larger

Intuition on L_2 Regularization

• **Why does it help?**

- Encourages "simple" functions
- E.g., as $\lambda \to \infty$, obtain $\beta = 0$
- Use λ to tune bias-variance tradeoff

Bias-Variance Tradeoff for Regularization

Capacity

Bias-Variance Tradeoff for Regularization

Intuition on L_2 Regularization

- **More precisely:** Restricts directions of β with little variation in data
	- Little variation in data \rightarrow highly varying loss

• **Example:**

- Suppose that $x_{ij} = 0.36$ for all training examples x_i
- Then, we cannot learn what would happen if $x_i = 1.29$ (for a new input x)
- I.e., hard to estimate β_i
- How does L_2 regularization help?

Intuition on L_2 Regularization

- At this point, the gradients are **equal** (with opposite sign)
- Tradeoff depends on choice of λ

Aside: Regularization and Intercept Term

• If using intercept term $(\phi(x) = \begin{bmatrix} 1 & x_1 & \cdots & x_d \end{bmatrix}^\top)$, no penalty on β_1 :

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2 + \lambda \sum_{j=2}^{d} \beta_j^2
$$
 Sum from $j = 2$

• As $\lambda \to \infty$, we have $\beta_2 = \cdots = \beta_d = 0$

• I.e., only fit β_1 (which yields $\hat{\beta}_1(Z)$ = mean $(\{y_i\}_{i=1}^n)$)

Aside: Feature Standardization

- **Unregularized linear regression is invariant to feature scaling**
	- Suppose we scale $x_{ij} \leftarrow 2x_{ij}$ for all examples x_i
	- Without regularization, simply use $\beta_i \leftarrow \beta_i/2$ to obtain equivalent solution

• In particular,
$$
\frac{\beta_j}{2} \cdot 2x_{ij} = \beta_j \cdot x_{ij}
$$

- Not true for regularized regression!
	- Penalty $(\beta_i/2)^2$ is scaled by 1/4 (not cancelled out!)

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2 + \lambda \sum_{j=2}^{d} \beta_j^2
$$

Aside: Feature Standardization

- **Unregularized linear regression is invariant to feature scaling**
	- Suppose we scale $x_{ij} \leftarrow 2x_{ij}$ for all examples x_i
	- Without regularization, simply use $\beta_i \leftarrow \beta_i/2$ to obtain equivalent solution

• In particular,
$$
\frac{\beta_j}{2} \cdot 2x_{ij} = \beta_j \cdot x_{ij}
$$

- Not true for regularized regression!
	- Penalty $(\beta_i/2)^2$ is scaled by 1/4 (not cancelled out!)

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2 + \lambda (\beta_2^2 + \dots + \beta_j^2 + \dots + \beta_d^2)
$$

Feature Standardization

- **Unregularized linear regression is invariant to feature scaling**
	- Suppose we scale $x_{ij} \leftarrow 2x_{ij}$ for all examples x_i
	- Without regularization, simply use $\beta_i \leftarrow \beta_i/2$ to obtain equivalent solution

• In particular,
$$
\sum_{j=1}^{d} \frac{\beta_j}{2} \cdot 2x_{ij} = \sum_{j=1}^{d} \beta_j \cdot x_{ij}
$$

- Not true for regularized regression!
	- Penalty $(\beta_i/2)^2$ is scaled by 1/4 (not cancelled out!)

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2 + \lambda \left(\beta_2^2 + \dots + \frac{\beta_j^2}{4} + \dots + \beta_d^2\right)
$$

Feature Standardization

• **Solution:** Rescale features to zero mean and unit variance

$$
x_{i,j} \leftarrow \frac{x_{i,j} - \mu_j}{\sigma_j} \qquad \mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \qquad \sigma_j = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2
$$

- **Note:** When using intercept term, do not rescale $x_1 = 1$
- Can be sensitive to outliers (fix by dropping outliers)

• **Must use same transformation during training and for prediction**

• Compute μ_i and σ_i on training data and use on test data

Hyperparameter Tuning

- λ is a **hyperparameter** that must be tuned (satisfies $\lambda \geq 0$)
- **Naïve strategy:** Try a few different candidates λ_t and choose the one that minimizes the test loss
- **Problem:** We may overfit the test set!
	- Major problem if we have more hyperparameters

Training/Val/Test Split

- **Goal:** Choose best hyperparameter λ
	- Can also compare different model families, feature maps, etc.
- **Solution:** Optimize λ on a held-out validation data
	- **Rule of thumb:** 60/20/20 split

Basic Cross Validation Algorithm

• **Step 1:** Split Z into Z_{train} , Z_{val} , and Z_{test}

- **Step 2:** For $t \in \{1, ..., h\}$:
	- **Step 2a:** Run linear regression with Z_{train} and λ_t to obtain $\hat{\beta}(Z_{\text{train}}, \lambda_t)$
	- Step 2b: Evaluate validation loss $L_{\text{val}}^t = L(\hat{\beta}(Z_{\text{train}}, \lambda_t); Z_{\text{val}})$
- **Step 3:** Use best λ_t
	- Choose $t' = \argmin_t L_{val}^t$ with lowest validation loss
	- Re-run linear regression with Z_{train} and λ_{t} to obtain $\hat{\beta}(Z_{\text{train}}, \lambda_{t})$

Alternative Cross-Validation Algorithms

- If Z is small, then splitting it can reduce performance
	- **Solution:** Can use $Z_{\text{train}} \cup Z_{\text{val}}$ in Step 3
- **Alternative solution:** k -fold cross-validation (e.g., $k = 3$)
	- Split Z into Z_{train} and Z_{test}
	- Split Z_{train} into k disjoint sets Z_{val}^s , and let $Z_{\text{train}}^s = \bigcup_{s' \neq s} Z_{\text{val}}^s$
	- Use λ' that works best on average across $s \in \{1, ..., k\}$ with Z_{train}
	- Chooses better λ' than above strategy

Example: 3-Fold Cross Validation

-Fold Cross-Validation

• **Compute vs. accuracy tradeoff**

- As $k \rightarrow N$, the model becomes more accurate
- But algorithm becomes more computationally expensive

General Regularization Strategy

• **Original loss + regularization:**

$$
L_{\text{new}}(\beta; Z) = L(\beta; Z) + \lambda \cdot R(\beta)
$$

- Offers a way to express a preference "simpler" functions in family
- Typically, regularization is independent of data

L_1 Regularization

- **Sparsity:** Can we minimize $\|\beta\|_0 = |\{j | \beta_j \neq 0\}|$?
	- That is, the number of nonzero components of β
	- Improves interpretability (automatic **feature selection**!)
	- Also serves as a **strong** regularizer $(n \sim s \log d)$, where $s = ||\beta||_0$
- **Challenge:** $\|\beta\|_0$ is not differentiable, making it hard to optimize
- **Solution**
	- We can instead use an L_1 norm as the regularizer!
	- Still harder to optimize than L_2 norm, but at least it is convex

Intuition on L_1 Regularization

L_1 Regularization for Feature Selection

- **Step 1:** Construct a lot of features and add to feature map
- **Step 2:** Use L_1 regularized regression to "select" subset of features
	- I.e., coefficient $\beta_i \neq 0$ \rightarrow feature *j* is selected)
- **Optional:** Remove unselected features from the feature map and run vanilla linear regression (a.k.a. ordinary least squares)

Housing Dataset

- Sales of residential property in Ames, Iowa from 2006 to 2010
	- **Examples:** 1,022
	- **Features:** 79 total (real-valued + categorical), some are missing!
	- **Label**: Sales price

Summary Statistics

· dataframe.describe()

Features Most Correlated with Label

Feature Correlation Matrix

Missing Values

- Possible ways to handle missing values
	- **Numerical:** Impute with mean
	- **Categorical:** Impute with mode

Other Preprocessing

- **Categorical:** Featurize using one-hot encoding
- **Ordinal**
	- Convert to integer (e.g., low, medium, high \rightarrow 1, 2, 3)
	- Does not fully capture relationships (try different featurizations!)

Evaluation

- 438 test examples, **preprocessed same as training data**
- Sorted by prediction error

Regularization

• Quadratic features, feature standardization, L_2 regularization

Agenda

• **Regularization**

- Strategy to address bias-variance tradeoff
- By example: Linear regression with L_2 regularization

• **Minimizing the MSE Loss**

- Closed-form solution
- Stochastic gradient descent

Minimizing the MSE Loss

• Recall that linear regression minimizes the loss

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2
$$

- **Closed-form solution:** Compute using matrix operations
- **Optimization-based solution:** Search over candidate

 $\begin{bmatrix} f_{\beta}(x_1) \\ \vdots \\ f_{\beta}(x_n) \end{bmatrix} = \begin{bmatrix} \beta^{\top} x_1 \\ \vdots \\ \beta^{\top} x_n \end{bmatrix}$

$$
\begin{bmatrix} f_{\beta}(x_1) \\ \vdots \\ f_{\beta}(x_n) \end{bmatrix} = \begin{bmatrix} \beta^{\top} x_1 \\ \vdots \\ \beta^{\top} x_n \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{d} \beta_j x_{1,j} \\ \vdots \\ \sum_{j=1}^{d} \beta_j x_{n,j} \end{bmatrix} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,d} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_d \end{bmatrix} = X\beta
$$

$$
\begin{bmatrix} f_{\beta}(x_1) \\ \vdots \\ f_{\beta}(x_n) \end{bmatrix} = \begin{bmatrix} \beta^{\top} x_1 \\ \vdots \\ \beta^{\top} x_n \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{d} \beta_j x_{1,j} \\ \vdots \\ \sum_{j=1}^{d} \beta_j x_{n,j} \end{bmatrix} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,d} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_d \end{bmatrix} = X\beta
$$

 $\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$

 $\left| \begin{array}{c} \vdots \\ \vdots \end{array} \right| = Y$

Summary: $Y \approx X\beta$

 $Y \approx X\beta$

Vectorizing Mean Squared Error

Vectorizing Mean Squared Error

 $L(\beta;Z)$

Vectorizing Mean Squared Error

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2
$$

Intuition on Vectorized Linear Regression

• Rewriting the vectorized loss:

$$
n \cdot L(\beta; Z) = ||Y - X\beta||_2^2 = ||Y||_2^2 - 2Y^{\top}X\beta + ||X\beta||_2^2
$$

= ||Y||_2^2 - 2Y^{\top}X\beta + \beta^{\top}(X^{\top}X)\beta

- Quadratic function of β with leading "coefficient" $X^{\top}X$
	- In one dimension, "width" of parabola $ax^2 + bx + c$ is a^{-1}
	- In multiple dimensions, "width" along direction v_i is λ_i^{-1} , where v_i is an eigenvector of $X^{\top} X$ with eigenvalue λ_i

Intuition on Vectorized Linear Regression

Directions/magnitudes are given by eigenvectors/eigenvalues of $X^T X$

Strategy 1: Closed-Form Solution

• Recall that linear regression minimizes the loss

$$
L(\beta; Z) = \frac{1}{n} ||Y - X\beta||_2^2
$$

• Minimum solution has gradient equal to zero:

$$
\nabla_{\beta} L(\hat{\beta}(Z); Z) = 0
$$

Strategy 1: Closed-Form Solution

• Recall that linear regression minimizes the loss

$$
L(\beta; Z) = \frac{1}{n} ||Y - X\beta||_2^2
$$

• Minimum solution has gradient equal to zero:

$$
\nabla_{\beta}L\big(\hat{\beta};Z\big)=0
$$

• The gradient is

• The gradient is

$$
\nabla_{\beta} L(\beta; Z) = \nabla_{\beta} \frac{1}{n} ||Y - X\beta||_2^2
$$

• The gradient is

$$
\nabla_{\beta} L(\beta; Z) = \nabla_{\beta} \frac{1}{n} \|Y - X\beta\|_2^2 = \nabla_{\beta} \frac{1}{n} (Y - X\beta)^{\top} (Y - X\beta)
$$

$$
= \frac{2}{n} [\nabla_{\beta} (Y - X\beta)^{\top}] (Y - X\beta)
$$

$$
= -\frac{2}{n} X^{\top} (Y - X\beta)
$$

$$
= -\frac{2}{n} X^{\top} Y + \frac{2}{n} X^{\top} X\beta
$$

Aside: Intuition on Computing Gradients

- **Warning:** Intuitive but **easy to make mistakes**
- The loss is

$$
L(\beta + d\beta; Z) = \frac{1}{n} ||Y - X(\beta + d\beta)||_2^2
$$

=
$$
\frac{1}{n} ||(Y - X\beta) - Xd\beta||_2^2
$$

=
$$
\frac{1}{n} ||Y - X\beta||_2^2 - \frac{2}{n}(Y - X\beta)^T Xd\beta + \frac{1}{n} ||Xd\beta||_2^2
$$

=
$$
L(\beta; Z) - \frac{2}{n}(Y - X\beta)^T Xd\beta + O(||d\beta||_2^2)
$$

=
$$
\nabla_{\beta}L(\beta; Z)^T
$$
 Coefficient of $d\beta$ term

Intuition on the Gradient

• By linearity of the gradient, we have

$$
\nabla_{\beta} L(\beta; Z) = \sum_{i=1}^{n} \nabla_{\beta} (y_i - \beta^{\top} x_i)^2 = \sum_{i=1}^{n} 2(y_i - \beta^{\top} x_i) x_i
$$

• The gradient for a single term is

$$
\nabla_{\beta}(y_i - \beta^{\top} x_i)^2 = 2(y_i - \beta^{\top} x_i)x_i
$$

• I.e., the current error $y_i - \beta^\top x_i$ times the feature x_i

• The gradient is

$$
\nabla_{\beta} L(\beta; Z) = \nabla_{\beta} \frac{1}{n} ||Y - X\beta||_2^2 = -\frac{2}{n} X^{\top} Y + \frac{2}{n} X^{\top} X\beta
$$

• Setting $\nabla_{\beta} L(\hat{\beta}; Z) = 0$, we have $X^{\top} X \hat{\beta} = X^{\top} Y$

- Setting $\nabla_{\beta} L(\hat{\beta}; Z) = 0$, we have $X^{\top} X \hat{\beta} = X^{\top} Y$
- Assuming $X^{\top}X$ is invertible, we have

 $\hat{\beta}(Z) = (X^{\top}X)^{-1}X^{\top}Y$

Note on Invertibility

- Closed-form solution only **unique** if $X^T X$ is invertible
	- Otherwise, **multiple solutions exist** to $X^{\top} X \hat{\beta} = X^{\top} Y$
	- **Intuition:** Underconstrained system of linear equations
- **Example:**

$$
\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}
$$

• In this case, any
$$
\hat{\beta}_2 = 2 - \hat{\beta}_1
$$
 is a solution

When Can this Happen?

• **Case 1**

- Fewer data examples than feature dimension (i.e., $n < d$)
- **Solution:** Remove features so $d \leq n$
- **Solution:** Collect more data until $d \leq n$
- **Case 2:** Some feature is a linear combination of the others
	- Special case (duplicated feature): For some j and j', $x_{i,j} = x_{i,j'}$ for all i
	- **Solution:** Remove linearly dependent features
	- **Solution:** Use L_2 regularization

Shortcomings of Closed-Form Solution

- Computing $\hat{\beta}(Z) = (X^{\top}X)^{-1}X^{\top}Y$ can be challenging
- **Computing** $(X^{\top}X)^{-1}$ is $O(d^3)$
	- $d = 10^4$ features $\rightarrow O(10^{12})$
	- Even storing X^TX requires a lot of memory
- **Numerical accuracy issues due to "ill-conditioning"**
	- $X^{\top}X$ is "barely" invertible
	- Then, $(X^TX)^{-1}$ has large variance along some dimension
	- Regularization helps (more on this later)