
Announcements

• Homework 1 due Wednesday at 8pm

• Quiz 1 released on Thursday (on Canvas)

• Office hours posted on Course Website (starting today!)
• See announcement on Ed Discussion



Lecture 3: Linear Regression (Part 2)

CIS 4190/5190
Fall 2023



Recap: Linear Regression

• Input: Dataset 𝑍 = 𝑥!, 𝑦! , … , 𝑥" , 𝑦"
• Compute

   '𝛽 𝑍 = arg	min
#∈ℝ!

!
"
∑&'!" 𝑦& − 𝛽(𝑥& )

• Output: 𝑓*# + 𝑥 = '𝛽 𝑍 (𝑥
• Discuss algorithm for computing the minimal 𝛽 later today



Recap: Views of ML

Supervised Learning

RegressionClassificationUnsupervised Learning

Reinforcement Learning

Loss Minimization

Function Approximation



Recap: Loss Minimization View of ML

• To design an ML algorithm:
• Choose model family 𝐹 = 𝑓! !

 (e.g., linear functions)

• Choose loss function 𝐿 𝛽; 𝑍  (e.g., MSE loss)

• Resulting algorithm:

'𝛽 𝑍 = arg	min
#

𝐿 𝛽; 𝑍



Recap: Overfitting vs. Underfitting

• Overfitting
• Fit the training data 𝑍 well
• Fit new test data 𝑥, 𝑦  poorly

• Underfitting
• Fit the training data 𝑍 poorly
• (Necessarily fit new test data
𝑥, 𝑦  poorly)

𝑥

𝑦

𝑓# 𝑥

𝑥

𝑦

𝑓# 𝑥



Recap: Training/Test Split Algorithm

• Step 1: Split 𝑍 into 𝑍,-./0 and 𝑍,12,

• Step 2: Run linear regression with 𝑍,-./0 to obtain '𝛽 𝑍,-./0

• Step 3: Evaluate
• Training loss: 𝐿"#$%& = 𝐿 +𝛽 𝑍"#$%& ; 𝑍"#$%&
• Test (or generalization) loss: 𝐿"'(" = 𝐿 +𝛽 𝑍"#$%& ; 𝑍"'("

Training data 𝑍!"#$% Test data 𝑍!&'!



Recap: Training/Test Split Algorithm

• Overfitting
• Fit the training data 𝑍 well
• Fit new test data 𝑥, 𝑦  poorly

• Underfitting
• Fit the training data 𝑍 poorly
• (Necessarily fit new test data
𝑥, 𝑦  poorly)

𝑥

𝑦

𝑓# 𝑥

𝑥

𝑦

𝑓# 𝑥



Recap: Training/Test Split Algorithm

• Overfitting
• 𝐿"#$%&	is small
• 𝐿"'(" is large

• Underfitting
• Fit the training data 𝑍 poorly
• (Necessarily fit new test data
𝑥, 𝑦  poorly)

𝑥

𝑦

𝑓# 𝑥

𝑥

𝑦

𝑓# 𝑥



Recap: Training/Test Split Algorithm

• Overfitting
• 𝐿"#$%&	is small
• 𝐿"'(" is large

• Underfitting
• 𝐿"#$%&	is large
• 𝐿"'(" is large

𝑥

𝑦

𝑓# 𝑥

𝑥

𝑦

𝑓# 𝑥



How to Fix Underfitting/Overfitting?

• Choose the right model family!



Role of Capacity

• Capacity of a model family captures “complexity” of data it can fit
• Higher capacity à more likely to overfit (model family has high variance)
• Lower capacity à more likely to underfit (model family has high bias)

• For linear regression, capacity roughly corresponds to feature 
dimension 𝑑
• I.e., number of features in 𝜙 𝑥



Bias-Variance Tradeoff

• Overfitting (high variance)
• High capacity model capable of 

fitting complex data
• Insufficient data to constrain it

• Underfitting (high bias)
• Low capacity model that can only 

fit simple data
• Sufficient data but poor fit

𝑥

𝑦

𝑓# 𝑥

𝑥

𝑦

𝑓# 𝑥



Bias-Variance Tradeoff

Lo
ss

Capacity
(not actually 1D!)

Training loss

Test loss

Ideal OverfittingUnderfitting

Slide by Padhraic Smyth, UCIrvine



Bias-Variance Tradeoff

• For linear regression, increasing feature dimension 𝑑…
• Tends to increase capacity
• Tends to decrease bias but increase variance

• Need to construct 𝜙 to balance tradeoff between bias and variance
• Rule of thumb: 𝑛 ≈ 𝑑 log 𝑑
• Large fraction of data science work is data cleaning + feature engineering



Bias-Variance Tradeoff

• Increasing number of examples 𝑛 in the data…
• Tends to keep bias fixed and decrease variance

• General strategy
• High bias: Increase model capacity 𝑑
• High variance: Increase data size 𝑛 (i.e., gather more labeled data)



Bias-Variance Tradeoff

𝐹

𝑓()
𝑓∗

𝑓+)
variance

bias

total loss



Bias-Variance Tradeoff (Overfitting)

𝐹

𝑓()
𝑓∗ 𝑓+)

variancebias

total loss



Bias-Variance Tradeoff (Underfitting)

𝐹
𝑓()

𝑓∗

𝑓+)
variance

bias

total loss



Bias-Variance Tradeoff (Ideal)

𝐹

𝑓()
𝑓∗

𝑓+)
variance

bias

total loss



Agenda

• Regularization
• Strategy to address bias-variance tradeoff
• By example: Linear regression with 𝐿) regularization

• Minimizing the MSE Loss
• Closed-form solution
• Gradient descent



Recall: Mean Squared Error Loss

• Mean squared error loss for linear regression:

𝐿 𝛽; 𝑍 =
1
𝑛
9
&'!

"

𝑦& − 𝛽(𝑥& )



Linear Regression with 𝑳𝟐 Regularization

• Original loss + regularization:

𝐿 𝛽; 𝑍 =
1
𝑛
9
&'!

"

𝑦& − 𝛽(𝑥& ) + 𝜆 ⋅ 𝛽 )
)

𝐿 𝛽; 𝑍 =
1
𝑛
9
&'!

"

𝑦& − 𝛽(𝑥& ) + 𝜆9
3'!

4

𝛽3)

• 𝜆 ∈ ℝ is a hyperparameter that must be tuned (satisfies 𝜆 ≥ 0) 



Intuition on 𝑳𝟐 Regularization 

• Equivalently the 𝐿) norm of 𝛽:

9
3'!

4

𝛽3) = 𝛽 )
) = 𝛽 − 0 )

)

• I.e., “pulling” 𝛽 to zero
• “Pulls” more as 𝜆 becomes larger



Intuition on 𝑳𝟐 Regularization 

• Why does it help?
• Encourages “simple” functions
• E.g., as 𝜆 → ∞, obtain 𝛽 = 0
• Use 𝜆 to tune bias-variance tradeoff



Bias-Variance Tradeoff for Regularization

Lo
ss

Capacity *+

Training loss

Test loss

Ideal OverfittingUnderfitting



Bias-Variance Tradeoff for Regularization

Lo
ss

Capacity *
+

Training loss

Test loss

Ideal OverfittingUnderfitting



Intuition on 𝑳𝟐 Regularization 

• More precisely: Restricts directions of 𝛽 with little variation in data
• Little variation in data à highly varying loss

• Example:
• Suppose that 𝑥,- = 0.36 for all training examples 𝑥,
• Then, we cannot learn what would happen if 𝑥- = 1.29 (for a new input 𝑥)
• I.e., hard to estimate 𝛽-

• How does 𝐿) regularization help?



𝛽)

𝛽!

• At this point, the 
gradients are equal 
(with opposite sign)

• Tradeoff depends on 
choice of 𝜆

Intuition on 𝑳𝟐 Regularization 

𝐿 𝛽; 𝑍 =
1
𝑛
9
&'!

"

𝑦& − 𝛽(𝑥& ) + 𝜆9
3'!

4

𝛽3)

Minimizes 
original loss
(or if 𝜆 = 0)

Minimizes 
regularization term

(or if 𝜆 → ∞)

Minimizes 
full loss

Loss varies greatly 
in this direction
à Penalizes more



Aside: Regularization and Intercept Term

• If using intercept term (𝜙 𝑥 = 1 𝑥! … 𝑥4 (), no penalty on 𝛽!:

𝐿 𝛽; 𝑍 =
1
𝑛
9
&'!

"

𝑦& − 𝛽(𝑥& ) + 𝜆9
3')

4

𝛽3)

• As 𝜆 → ∞, we have 𝛽) = ⋯ = 𝛽4 = 0
• I.e., only fit 𝛽* (which yields +𝛽* 𝑍 = mean 𝑦, ,.*/ )

Sum from 𝑗 = 2



Aside: Feature Standardization

• Unregularized linear regression is invariant to feature scaling
• Suppose we scale 𝑥,- ← 2𝑥,- for all examples 𝑥,
• Without regularization, simply use 𝛽- ← 𝛽-/2 to obtain equivalent solution

• In particular,
!!
) ⋅ 2𝑥,- = 𝛽- ⋅ 𝑥,-

• Not true for regularized regression!
• Penalty 𝛽-/2

)
 is scaled by 1/4 (not cancelled out!)

𝐿 𝛽; 𝑍 =
1
𝑛
9
&'!

"

𝑦& − 𝛽(𝑥& ) + 𝜆9
3')

4

𝛽3)



Aside: Feature Standardization

• Unregularized linear regression is invariant to feature scaling
• Suppose we scale 𝑥,- ← 2𝑥,- for all examples 𝑥,
• Without regularization, simply use 𝛽- ← 𝛽-/2 to obtain equivalent solution

• In particular,
!!
) ⋅ 2𝑥,- = 𝛽- ⋅ 𝑥,-

• Not true for regularized regression!
• Penalty 𝛽-/2

)
 is scaled by 1/4 (not cancelled out!)

𝐿 𝛽; 𝑍 =
1
𝑛
9
&'!

"

𝑦& − 𝛽(𝑥& ) + 𝜆 𝛽)) +⋯+ 𝛽3) +⋯+ 𝛽4)



Feature Standardization

• Unregularized linear regression is invariant to feature scaling
• Suppose we scale 𝑥,- ← 2𝑥,- for all examples 𝑥,
• Without regularization, simply use 𝛽- ← 𝛽-/2 to obtain equivalent solution

• In particular, ∑-.*0 !!
) ⋅ 2𝑥,- = ∑-.*0 𝛽- ⋅ 𝑥,-

• Not true for regularized regression!
• Penalty 𝛽-/2

)
 is scaled by 1/4 (not cancelled out!)

𝐿 𝛽; 𝑍 =
1
𝑛
9
&'!

"

𝑦& − 𝛽(𝑥& ) + 𝜆 𝛽)) +⋯+
𝛽3)

4
+⋯+ 𝛽4)



Feature Standardization

• Solution: Rescale features to zero mean and unit variance

𝑥&,3 ←
6",$78$
9$

 𝜇3 =
!
:
∑&'!: 𝑥&,3   𝜎3 =

!
:
∑&'!: 𝑥&,3 − 𝜇3

)

• Note: When using intercept term, do not rescale 𝑥* = 1
• Can be sensitive to outliers (fix by dropping outliers)

• Must use same transformation during training and for prediction
• Compute 𝜇- and 𝜎- on training data and use on test data



Hyperparameter Tuning

• 𝜆 is a hyperparameter that must be tuned (satisfies 𝜆 ≥ 0) 

• Naïve strategy: Try a few different candidates 𝜆;  and choose the one 
that minimizes the test loss

• Problem: We may overfit the test set!
• Major problem if we have more hyperparameters



Training/Val/Test Split

• Goal: Choose best hyperparameter 𝜆
• Can also compare different model families, feature maps, etc.

• Solution: Optimize 𝜆 on a held-out validation data
• Rule of thumb: 60/20/20 split

Given data 𝑍

Training data 𝑍,-./0 Test data 𝑍,12,Val data 𝑍<.=



Basic Cross Validation Algorithm

• Step 1: Split 𝑍 into 𝑍,-./0, 𝑍<.=, and 𝑍,12,

• Step 2: For 𝑡 ∈ 1,… , ℎ :
• Step 2a: Run linear regression with 𝑍"#$%& and 𝜆1 to obtain +𝛽 𝑍"#$%&, 𝜆1
• Step 2b: Evaluate validation loss 𝐿2$3

1 = 𝐿 +𝛽 𝑍"#$%&, 𝜆1 ; 𝑍2$3

• Step 3: Use best 𝜆;
• Choose 𝑡4 = arg	min1 𝐿2$3

1  with lowest validation loss
• Re-run linear regression with 𝑍"#$%& and 𝜆1"  to obtain +𝛽 𝑍"#$%&, 𝜆1"

Training data 𝑍,-./0 Test data 𝑍,12,Val data 𝑍<.=



Alternative Cross-Validation Algorithms

• If 𝑍 is small, then splitting it can reduce performance
• Solution: Can use 𝑍"#$%& ∪ 𝑍2$3 in Step 3

• Alternative solution: 𝑘-fold cross-validation (e.g., 𝑘 = 3)
• Split 𝑍 into 𝑍"#$%& and 𝑍"'("
• Split 𝑍"#$%& into 𝑘 disjoint sets 𝑍2$3

5 , and let 𝑍"#$%&5 = ⋃5"65𝑍2$3
5

• Use 𝜆4 that works best on average across 𝑠 ∈ 1,… , 𝑘 	with 𝑍"#$%&
• Chooses better 𝜆4 than above strategy



Example: 3-Fold Cross Validation

Test data 𝑍,12,Val data 𝑍<.=
>Training data 𝑍,-./0>

Test data 𝑍,12,Train data 𝑍<.=
)Val data 𝑍<.=

)Train data 𝑍<.=
)

Test data 𝑍,12,Train data 𝑍,-./0!Val data 𝑍<.=!

Test data 𝑍,12,Train data 𝑍,-./0



𝑘-Fold Cross-Validation

• Compute vs. accuracy tradeoff
• As 𝑘 → 	𝑁, the model becomes more accurate
• But algorithm becomes more computationally expensive



General Regularization Strategy

• Original loss + regularization:

𝐿01? 𝛽; 𝑍 = 𝐿 𝛽; 𝑍 + 𝜆 ⋅ 𝑅 𝛽

• Offers a way to express a preference “simpler” functions in family
• Typically, regularization is independent of data



𝑳𝟏 Regularization 

• Sparsity: Can we minimize 𝛽 @ = 𝑗 𝛽3 ≠ 0 ?
• That is, the number of nonzero components of 𝛽
• Improves interpretability (automatic feature selection!)
• Also serves as a strong regularizer (𝑛~𝑠 log 𝑑, where 𝑠 = 𝛽 7)

• Challenge: 𝛽 @ is not differentiable, making it hard to optimize

• Solution
• We can instead use an 𝐿* norm as the regularizer!
• Still harder to optimize than 𝐿) norm, but at least it is convex



Intuition on 𝑳𝟏 Regularization 

𝐿 𝛽; 𝑍 =
1
𝑛
9
&'!

"

𝑦& − 𝛽(𝑥& ) + 𝜆9
3'!

4

𝛽3

𝛽)

𝛽!

Minimizes 
original loss
(or if 𝜆 = 0)

Minimizes 
regularization term

(or if 𝜆 → ∞)

Minimizer of full loss at 
corner à sparse (𝛽* = 0)!



𝑳𝟏 Regularization for Feature Selection

• Step 1: Construct a lot of features and add to feature map

• Step 2: Use 𝐿! regularized regression to “select” subset of features
• I.e., coefficient 𝛽- ≠ 0 à feature 𝑗 is selected)

• Optional: Remove unselected features from the feature map and run 
vanilla linear regression (a.k.a. ordinary least squares)



Housing Dataset

• Sales of residential property in Ames, Iowa from 2006 to 2010
• Examples: 1,022
• Features: 79 total (real-valued + categorical), some are missing!
• Label: Sales price

...

...

...

...

...

...

...

...

...

...

Data from: De Cock. Journal of Statistics Education 19(3), 2011



Summary Statistics

• dataframe.describe()

...



Features Most Correlated with Label



Feature Correlation Matrix



Missing Values
Feature  % Missing Values
PoolQC  99.5108 
MiscFeature  96.0861 
Alley   93.5421 
Fence   80.2348 
FireplaceQu  47.6517 
LotFrontage  18.5910 
GarageCond  05.2838 
GarageType  05.2838 
GarageYrBlt  05.2838 
GarageFinish  05.2838 
GarageQual  05.2838 
BsmtFinType1  02.5440 
...

• Possible ways to handle missing values
• Numerical: Impute with mean
• Categorical: Impute with mode



Other Preprocessing

• Categorical: Featurize using one-hot encoding
• Ordinal
• Convert to integer (e.g., low, medium, high à 1, 2, 3)
• Does not fully capture relationships (try different featurizations!)



Evaluation

• 438 test examples, preprocessed same as training data
• Sorted by prediction error



Regularization

• Quadratic features, feature standardization, 𝐿) regularization

new model
original model



Agenda

• Regularization
• Strategy to address bias-variance tradeoff
• By example: Linear regression with 𝐿) regularization

• Minimizing the MSE Loss
• Closed-form solution
• Stochastic gradient descent



Minimizing the MSE Loss

• Recall that linear regression minimizes the loss

𝐿(𝛽; 𝑍) =
1
𝑛
9
&'!

"

𝑦& − 𝛽(𝑥& )

• Closed-form solution: Compute using matrix operations

• Optimization-based solution: Search over candidate 𝛽



Vectorizing Linear Regression



Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

9
3'!

4

𝛽3𝑥!,3

⋮

9
3'!

4

𝛽3𝑥",3

=
𝑥!,! ⋯ 𝑥!,4
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",4

𝛽!
⋮
𝛽4

= 𝑋𝛽



Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

9
3'!

4

𝛽3𝑥!,3

⋮

9
3'!

4

𝛽3𝑥",3

=
𝑥!,! ⋯ 𝑥!,4
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",4

𝛽!
⋮
𝛽4

= 𝑋𝛽



Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

9
3'!

4

𝛽3𝑥!,3

⋮

9
3'!

4

𝛽3𝑥",3

=
𝑥!,! ⋯ 𝑥!,4
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",4

𝛽!
⋮
𝛽4

= 𝑋𝛽



Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

9
3'!

4

𝛽3𝑥!,3

⋮

9
3'!

4

𝛽3𝑥",3

=
𝑥!,! ⋯ 𝑥!,4
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",4

𝛽!
⋮
𝛽4

= 𝑋𝛽



Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

9
3'!

4

𝛽3𝑥!,3

⋮

9
3'!

4

𝛽3𝑥",3

=
𝑥!,! ⋯ 𝑥!,4
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",4

𝛽!
⋮
𝛽4

= 𝑋𝛽



Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

9
3'!

4

𝛽3𝑥!,3

⋮

9
3'!

4

𝛽3𝑥",3

=
𝑥!,! ⋯ 𝑥!,4
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",4

𝛽!
⋮
𝛽4

= 𝑋𝛽



Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

9
3'!

4

𝛽3𝑥!,3

⋮

9
3'!

4

𝛽3𝑥",3

=
𝑥!,! ⋯ 𝑥!,4
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",4

𝛽!
⋮
𝛽4

= 𝑋𝛽

≈

𝑦!
⋮
𝑦"

= 𝑌



Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

9
3'!

4

𝛽3𝑥!,3

⋮

9
3'!

4

𝛽3𝑥",3

=
𝑥!,! ⋯ 𝑥!,4
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",4

𝛽!
⋮
𝛽4

= 𝑋𝛽

≈

𝑦!
⋮
𝑦"

= 𝑌
Summary: 𝑌 ≈ 𝑋𝛽



Vectorizing Linear Regression

𝑌 ≈ 𝑋𝛽

𝑌 =
𝑦!
⋮
𝑦"

	  𝑋 =
𝑥!,! ⋯ 𝑥!,4
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",4

	 𝛽 =
𝛽!
⋮
𝛽4



Vectorizing Mean Squared Error



Vectorizing Mean Squared Error

𝐿 𝛽; 𝑍 =
1
𝑛
9
&'!

"

𝑦& − 𝛽(𝑥& ) =
1
𝑛
𝑌 − 𝑋𝛽 )

)



Vectorizing Mean Squared Error

𝐿 𝛽; 𝑍 =
1
𝑛
9
&'!

"

𝑦& − 𝛽(𝑥& ) =
1
𝑛
𝑌 − 𝑋𝛽 )

)



Vectorizing Mean Squared Error

𝐿 𝛽; 𝑍 =
1
𝑛
9
&'!

"

𝑦& − 𝛽(𝑥& ) =
1
𝑛
𝑌 − 𝑋𝛽 )

)

𝑧 )
) =9

&'!

"

𝑧&)

𝑓# 𝑥!
⋮

𝑓# 𝑥"

𝑦!
⋮
𝑦"



Intuition on Vectorized Linear Regression

• Rewriting the vectorized loss:

 𝑛 ⋅ 𝐿 𝛽; 𝑍 = 𝑌 − 𝑋𝛽 )
) = 𝑌 )

) − 2𝑌(𝑋𝛽 + 𝑋𝛽 )
) 

 𝑛 ⋅ 𝐿 𝛽; 𝑍 = 𝑌 − 𝑋𝛽 )
) = 𝑌 )

) − 2𝑌(𝑋𝛽 + 𝛽( 𝑋(𝑋 𝛽

• Quadratic function of 𝛽 with leading “coefficient” 𝑋(𝑋
• In one dimension, “width” of parabola 𝑎𝑥) + 𝑏𝑥 + 𝑐 is 𝑎8*

• In multiple dimensions, “width” along direction 𝑣, is 𝜆,8*, where 𝑣, is an 
eigenvector of 𝑋9𝑋 with eigenvalue 𝜆,



Intuition on Vectorized Linear Regression

𝛽)

𝛽!

Minimizer +𝛽 𝑍

Directions/magnitudes are given by eigenvectors/eigenvalues of 𝑋(𝑋



Strategy 1: Closed-Form Solution

• Recall that linear regression minimizes the loss

𝐿 𝛽; 𝑍 =
1
𝑛
𝑌 − 𝑋𝛽 )

)

• Minimum solution has gradient equal to zero:

∇#𝐿 '𝛽 𝑍 ; 𝑍 = 0



Strategy 1: Closed-Form Solution

• Recall that linear regression minimizes the loss

𝐿 𝛽; 𝑍 =
1
𝑛
𝑌 − 𝑋𝛽 )

)

• Minimum solution has gradient equal to zero:

∇#𝐿 '𝛽; 𝑍 = 0



Strategy 1: Closed-Form Solution

• The gradient is

 ∇#𝐿 𝛽; 𝑍  = ∇#
!
"
𝑌 − 𝑋𝛽 )

)



Strategy 1: Closed-Form Solution

• The gradient is

 ∇#𝐿 𝛽; 𝑍 = ∇#
!
"
𝑌 − 𝑋𝛽 )

)



Strategy 1: Closed-Form Solution

• The gradient is

 ∇#𝐿 𝛽; 𝑍 = ∇#
!
"
𝑌 − 𝑋𝛽 )

) = ∇#
!
"
𝑌 − 𝑋𝛽 ( 𝑌 − 𝑋𝛽  

 ∇#𝐿 𝛽; 𝑍 = ∇#
!
"
𝑌 − 𝑋𝛽 )

) = )
"
∇# 𝑌 − 𝑋𝛽 ( 𝑌 − 𝑋𝛽

 ∇#𝐿 𝛽; 𝑍 = ∇#
!
"
𝑌 − 𝑋𝛽 )

) = − )
"
𝑋( 𝑌 − 𝑋𝛽

 ∇#𝐿 𝛽; 𝑍 = ∇#
!
"
𝑌 − 𝑋𝛽 )

) = − )
"
𝑋(𝑌 + )

"
𝑋(𝑋𝛽



Aside: Intuition on Computing Gradients

• Warning: Intuitive but easy to make mistakes
• The loss is

 𝐿 𝛽 + 𝑑𝛽; 𝑍 = !
"
𝑌 − 𝑋 𝛽 + 𝑑𝛽 )

)

 𝐿 𝛽 + 𝑑𝛽; 𝑍 = !
"

𝑌 − 𝑋𝛽 − 𝑋𝑑𝛽 )
)

 𝐿 𝛽 + 𝑑𝛽; 𝑍 = !
"
𝑌 − 𝑋𝛽 )

) − )
"
𝑌 − 𝑋𝛽 (𝑋𝑑𝛽 + !

"
𝑋𝑑𝛽 )

)

 𝐿 𝛽 + 𝑑𝛽; 𝑍 = 𝐿 𝛽; 𝑍 − )
"
𝑌 − 𝑋𝛽 (𝑋𝑑𝛽 + 𝑂 𝑑𝛽 )

)

= ∇#𝐿 𝛽; 𝑍 ( Coefficient of 𝑑𝛽 term



Intuition on the Gradient

• By linearity of the gradient, we have

∇#𝐿 𝛽; 𝑍 =9
&'!

"

∇# 𝑦& − 𝛽(𝑥& ) =9
&'!

"

2 𝑦& − 𝛽(𝑥& 𝑥&

• The gradient for a single term is

∇# 𝑦& − 𝛽(𝑥& ) = 2 𝑦& − 𝛽(𝑥& 𝑥&

• I.e., the current error 𝑦& − 𝛽(𝑥&  times the feature 𝑥&



Strategy 1: Closed-Form Solution

• The gradient is

 ∇#𝐿 𝛽; 𝑍 = ∇#
!
"
𝑌 − 𝑋𝛽 )

) = − )
"
𝑋(𝑌 + )

"
𝑋(𝑋𝛽

• Setting ∇#𝐿 '𝛽; 𝑍 = 0, we have 𝑋(𝑋 '𝛽 = 𝑋(𝑌



Strategy 1: Closed-Form Solution

• Setting ∇#𝐿 '𝛽; 𝑍 = 0, we have 𝑋(𝑋 '𝛽 = 𝑋(𝑌

• Assuming 𝑋(𝑋 is invertible, we have

'𝛽 𝑍 = 𝑋(𝑋 7!𝑋(𝑌



Note on Invertibility

• Closed-form solution only unique if 𝑋(𝑋 is invertible
• Otherwise, multiple solutions exist to 𝑋9𝑋 +𝛽 = 𝑋9𝑌
• Intuition: Underconstrained system of linear equations

• Example:
1 1
2 2

'𝛽!
'𝛽)

= 2
4

• In this case, any +𝛽) = 2 − +𝛽* is a solution



When Can this Happen?

• Case 1
• Fewer data examples than feature dimension (i.e., 𝑛 < 𝑑)
• Solution: Remove features so 𝑑 ≤ 𝑛
• Solution: Collect more data until 𝑑 ≤ 𝑛

• Case 2: Some feature is a linear combination of the others
• Special case (duplicated feature): For some 𝑗 and 𝑗4, 𝑥,,- = 𝑥,,-"  for all 𝑖
• Solution: Remove linearly dependent features
• Solution: Use 𝐿) regularization



Shortcomings of Closed-Form Solution

• Computing '𝛽 𝑍 = 𝑋(𝑋 7!𝑋(𝑌 can be challenging

• Computing (𝑿(𝑿)7𝟏	is 𝑶 𝒅𝟑
• 𝑑 = 10; features à 𝑂(10*))
• Even storing 𝑋9𝑋 requires a lot of memory

• Numerical accuracy issues due to “ill-conditioning”
• 𝑋9𝑋 is “barely” invertible
• Then, 𝑋9𝑋 8* has large variance along some dimension
• Regularization helps (more on this later)


