Announcements

- Homework 1 due today (Wednesday) at 8pm
- Homework 2 will be released tonight
 - Covers linear regression
- Quiz 1 released tomorrow (Thursday) at 8pm

Recap: L_2 Regularization

• Original MSE loss + regularization:

$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\mathsf{T}} x_i)^2 + \lambda \cdot \|\beta\|_2^2$$

• λ is a hyperparameter that must be tuned (satisfies $\lambda \ge 0$)

Recap: L_2 Regularization

Recap: Cross Validation

• Original MSE loss + regularization:

$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\mathsf{T}} x_i)^2 + \lambda \cdot \|\beta\|_2^2$$

- λ is a hyperparameter that must be tuned (satisfies $\lambda \ge 0$)
- How to choose λ ?

Recap: Cross Validation

Training data
$$Z_{train}$$
Val data Z_{val} Test data Z_{test}

$$\lambda_1 = 0.01$$
 $\hat{\beta}_1 \leftarrow \hat{\beta}(Z_{\text{train}}, \lambda_1)$

$$\lambda_2 = 0.10$$
 $\hat{\beta}_2 \leftarrow \hat{\beta}(Z_{\text{train}}, \lambda_2)$

$$\lambda_2 = 1.00$$
 $\hat{\beta}_3 \leftarrow \hat{\beta}(Z_{\text{train}}, \lambda_3)$

$$L_{val}^{1} \leftarrow L(\hat{\beta}_{1}; Z_{val})$$
$$L_{val}^{2} \leftarrow L(\hat{\beta}_{2}; Z_{val}) \quad L(\hat{\beta}_{t'}; Z_{test})$$
$$L_{val}^{3} \leftarrow L(\hat{\beta}_{3}; Z_{val})$$

$$t' \leftarrow \arg\min_{t} L_{val}^{t}$$

Recap: Cross Validation

- Generally important for tuning design choices
 - Hyperparameters
 - Features in the feature map
 - Model family
 - ...
- Alternative approaches exist for very small datasets
 - Re-train on $Z_{\text{train}} \cup Z_{\text{val}}$
 - k-fold cross validation

Lecture 3: Linear Regression (Part 3)

CIS 4190/5190 Fall 2022

Agenda

- Minimizing the MSE Loss
 - Closed-form solution
 - Gradient descent

• Recall that linear regression minimizes the loss

$$L(\boldsymbol{\beta}; \boldsymbol{Z}) = \frac{1}{n} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2$$

• Minimum solution has gradient equal to zero:

$$\nabla_{\beta} L(\hat{\beta}(Z); Z) = 0$$

• Recall that linear regression minimizes the loss

$$L(\boldsymbol{\beta}; \boldsymbol{Z}) = \frac{1}{n} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2$$

• Minimum solution has gradient equal to zero:

$$\nabla_{\beta} L(\hat{\beta}; \mathbf{Z}) = 0$$

• The gradient is

• The gradient is

$$\nabla_{\beta} L(\beta; \mathbf{Z}) = \nabla_{\beta} \frac{1}{n} \|\mathbf{Y} - \mathbf{X}\beta\|_{2}^{2}$$

• The gradient is

$$\nabla_{\beta} L(\beta; Z) = \nabla_{\beta} \frac{1}{n} ||Y - X\beta||_{2}^{2} = \nabla_{\beta} \frac{1}{n} (Y - X\beta)^{\mathsf{T}} (Y - X\beta)$$
$$= \frac{2}{n} [\nabla_{\beta} (Y - X\beta)^{\mathsf{T}}] (Y - X\beta)$$
$$= -\frac{2}{n} X^{\mathsf{T}} (Y - X\beta)$$
$$= -\frac{2}{n} X^{\mathsf{T}} Y + \frac{2}{n} X^{\mathsf{T}} X\beta$$

Intuition on the Gradient

• By linearity of the gradient, we have

$$\nabla_{\beta} L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\beta} (\mathbf{y}_i - \beta^{\mathsf{T}} \mathbf{x}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} 2(\mathbf{y}_i - \beta^{\mathsf{T}} \mathbf{x}_i) \mathbf{x}_i$$

• The gradient for a single term is

$$\nabla_{\beta}(y_i - \beta^{\mathsf{T}} x_i)^2 = 2(y_i - \beta^{\mathsf{T}} x_i)x_i$$

• I.e., the current error $y_i - \beta^T x_i$ times the feature x_i

• The gradient is

$$\nabla_{\beta}L(\beta; Z) = \nabla_{\beta} \frac{1}{n} \|Y - X\beta\|_2^2 = -\frac{2}{n} X^{\mathsf{T}}Y + \frac{2}{n} X^{\mathsf{T}}X\beta$$

• Setting $\nabla_{\beta} L(\hat{\beta}; Z) = 0$, we have $X^{\top} X \hat{\beta} = X^{\top} Y$

- Setting $\nabla_{\beta} L(\hat{\beta}; Z) = 0$, we have $X^{\top} X \hat{\beta} = X^{\top} Y$
- Assuming $X^{\top}X$ is invertible, we have

 $\hat{\beta}(Z) = (X^{\top}X)^{-1}X^{\top}Y$

Note on Invertibility

- Closed-form solution only **unique** if $X^{\top}X$ is invertible
 - Otherwise, multiple solutions exist to $X^{\top}X\hat{\beta} = X^{\top}Y$
 - Intuition: Underconstrained system of linear equations
- Example:

$$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

• In this case, any
$$\hat{\beta}_2 = 1 - \hat{\beta}_1$$
 is a solution

When Can this Happen?

Case 1

- Fewer data examples than feature dimension (i.e., n < d)
- Solution: Remove features so $d \le n$
- Solution: Collect more data until $d \leq n$
- **Solution:** Use L₁ regularization
- Case 2: Some feature is a linear combination of the others
 - Special case (duplicated feature): For some j and j', $x_{i,j} = x_{i,j'}$ for all i
 - Solution: Remove linearly dependent features
 - **Solution:** Use L₂ regularization

Shortcomings of Closed-Form Solution

- Computing $\hat{\beta}(Z) = (X^{\top}X)^{-1}X^{\top}Y$ can be challenging when the number of features d is large
- Computing $(X^{\top}X)^{-1}$ is $O(d^3)$
 - $d = 10^4$ features $\rightarrow O(10^{12})$
 - Even storing $X^{\top}X$ requires a lot of memory
- Numerical accuracy issues due to "ill-conditioning"
 - What if $X^{\mathsf{T}}X$ is "barely" invertible?
 - Then, $(X^{\top}X)^{-1}$ has large variance along some dimension
 - Regularization helps

Optimization Algorithms

• Recall that linear regression minimizes the loss

$$L(\boldsymbol{\beta}; \boldsymbol{Z}) = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{y}_i - \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{x}_i)^2$$

- Iteratively optimize β
 - Initialize $\beta_1 \leftarrow \text{Init}(...)$
 - For some number of iterations T, update $\beta_t \leftarrow \text{Step}(...)$
 - Return β_T

Optimization Algorithms

- **Global search**: Try random values of β and choose the best
 - I.e., β_t independent of β_{t-1}
 - Very unstructured, can take a long time (especially in high dimension d)!
- Local search: Start from some initial β and make local changes
 - I.e., β_t is computed based on β_{t-1}
 - What is a "local change", and how do we find good one?

• Gradient descent: Update β based on gradient $\nabla_{\beta} L(\beta; Z)$ of $L(\beta; Z)$:

$$\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_\beta L(\beta_t; \mathbf{Z})$$

- Intuition: The gradient is the direction along which $L(\beta; Z)$ changes most quickly as a function of β
- $\alpha \in \mathbb{R}$ is a hyperparameter called the **learning rate**
 - More on this later

- Choose initial value for β
- Until we reach a minimum:
 - Choose a new value for β to reduce $L(\beta; \mathbb{Z})$

Figure by Andrew Ng

- Choose initial value for β
- Until we reach a minimum:
 - Choose a new value for β to reduce $L(\beta; \mathbb{Z})$

Figure by Andrew Ng

- Choose initial value for β
- Until we reach a minimum:
 - Choose a new value for β to reduce $L(\beta; \mathbb{Z})$

Linear regression loss is convex, so no local minima

- Initialize $\beta_1 = \vec{0}$
- Repeat until convergence:

 $\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_\beta L(\beta_t; Z)$

For linear regression, know the gradient from strategy 1

 $0 \quad 0.5 \quad 1 \quad 1.5 \quad 2$ β For in-place updates $\beta \leftarrow \beta - \alpha \cdot \nabla_{\beta} L(\beta; Z)$, compute all components of $\nabla_{\beta} L(\beta; Z)$ before modifying β

 $L(\boldsymbol{\beta}; \boldsymbol{Z})$

0

- Initialize $\beta_1 = \vec{0}$
- Repeat until convergence:

 $\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_\beta L(\beta_t; \mathbf{Z})$

• For linear regression, know the gradient from strategy 1

 β_{t+1}

2

Minimizer of loss function

Choice of Learning Rate α

Problem: α too small

• $L(\beta; Z)$ decreases slowly

Problem: α too large • $L(\beta; Z)$ increases!

Plot $L(\beta_t; Z_{\text{train}})$ vs. t to diagnose these problems

Choice of Learning Rate α

- α is a hyperparameter for gradient descent that we need to choose
 - Can set just based on training data
- Rule of thumb
 - *α* too small: Loss decreases slowly
 - *α* too large: Loss increases!
- Try rates $\alpha \in \{1.0, 0.1, 0.01, ...\}$ (can tune further once one works)

Comparison of Strategies

Closed-form solution

- No hyperparameters
- Slow if *n* or *d* are large

Gradient descent

- Need to tune α
- Scales to large *n* and *d*
- For linear regression, there are better optimization algorithms, but gradient descent is very general
 - Accelerated gradient descent is an important tweak that improves performance in practice (and in theory)

L₂ Regularized Linear Regression

• Recall that linear regression with L_2 regularization minimizes the loss

$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\mathsf{T}} x_i)^2 + \lambda \sum_{j=1}^{d} \beta_j^2$$

L₂ Regularized Linear Regression

• Recall that linear regression with L_2 regularization minimizes the loss

$$L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_{i} - \beta^{\mathsf{T}} \mathbf{x}_{i})^{2} + \lambda \sum_{j=1}^{d} \beta_{j}^{2} = \frac{1}{n} \|\mathbf{Y} - \mathbf{X}\beta\|_{2}^{2} + \lambda \|\beta\|_{2}^{2}$$

• Gradient is

$$\nabla_{\beta} L(\beta; \mathbf{Z}) = -\frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{Y} + \frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} \beta + 2\lambda\beta$$

• Gradient is

$$\nabla_{\beta} L(\beta; \mathbf{Z}) = -\frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{Y} + \frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} \beta + 2\lambda\beta$$

- Setting $\nabla_{\beta} L(\hat{\beta}; Z) = 0$, we have $(X^{\top}X + n\lambda I)\hat{\beta} = X^{\top}Y$
- Always invertible if $\lambda > 0$, so we have

$$\hat{\beta}(Z) = (X^{\mathsf{T}}X + n\lambda I)^{-1}X^{\mathsf{T}}Y$$

• Gradient is

$$\nabla_{\beta} L(\beta; \mathbf{Z}) = -\frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{Y} + \frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} \beta + 2\lambda\beta$$

- Same algorithm as vanilla linear regression (a.k.a. OLS)
- Intuition: The extra term $\lambda\beta$ in the gradient is weight decay that encourages β to be small

What About L_1 Regularization?

- Gradient descent still works!
- Specialized algorithms work better in practice
 - Simple one: Gradient descent + soft thresholding
 - Basically, if $\left|\beta_{t,j}\right| \leq \lambda$, just set it to zero
 - Good theoretical properties

Loss Minimization View of ML

• Two design decisions

- Model family: What are the candidate models *f*? (E.g., linear functions)
- Loss function: How to define "approximating"? (E.g., MSE loss)

Loss Minimization View of ML

• Three design decisions

- Model family: What are the candidate models *f*? (E.g., linear functions)
- Loss function: How to define "approximating"? (E.g., MSE loss)
- **Optimizer:** How do we minimize the loss? (E.g., gradient descent)

Lecture 5: Logistic Regression

CIS 4190/5190 Fall 2022

Supervised Learning

Data $Z = \{(x_i, y_i)\}_{i=1}^n$ $\hat{\beta}(Z) = \arg \min_{\beta} L(\beta; Z)$ *L* encodes $y_i \approx f_\beta(x_i)$

Model $f_{\widehat{\beta}(Z)}$

Regression

Data $Z = \{(x_i, y_i)\}_{i=1}^n$ $\hat{\beta}(Z) = \arg \min_{\beta} L(\beta; Z)$ $L \text{ encodes } y_i \approx f_{\beta}(x_i)$ Model $f_{\widehat{\beta}(Z)}$

Label is a **real value** $y_i \in \mathbb{R}$

Classification

Model $f_{\widehat{\beta}(Z)}$

Data
$$Z = \{(x_i, y_i)\}_{i=1}^n$$

 $\hat{\beta}(Z) = \arg \min_{\beta} L(\beta; Z)$
 $L \text{ encodes } y_i \approx f_{\beta}(x_i)$

Label is a **discrete value** $y_i \in \mathcal{Y} = \{c_1, \dots, c_k\}$

(Binary) Classification

- Input: Dataset $Z = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
- **Output:** Model $y_i \approx f_\beta(x_i)$

Image: https://eyecancer.com/uncategorized/choroidalmetastasis-test/

Example: Malignant vs. Benign Ocular Tumor

Loss Minimization View of ML

• Three design decisions

- Model family: What are the candidate models *f*? (E.g., linear functions)
- Loss function: How to define "approximating"? (E.g., MSE loss)
- **Optimizer:** How do we optimize the loss? (E.g., gradient descent)
- How do we adapt to classification?

Linear Functions for (Binary) Classification

- Input: Dataset $Z = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
- Regression:
 - Labels $y_i \in \mathbb{R}$
 - Predict $y_i \approx \beta^{\top} x_i$
- Classification:
 - Labels $y_i \in \{0, 1\}$
 - Predict $y_i \approx 1(\beta^{\mathsf{T}} x_i \ge 0)$
 - 1(C) equals 1 if C is true and 0 if C is false
 - How to learn β? Need a loss function!

Loss Functions for Linear Classifiers

• (In)accuracy:

$$L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(y_i \neq f_\beta(x_i)\right)$$

- Computationally intractable
- Often, but not always the "true" loss (e.g., imbalanced data)

Loss Functions for Linear Classifiers

• Distance:

$$L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} \operatorname{dist}(\mathbf{x}_{i}, f_{\beta}) \cdot 1(f_{\beta}(\mathbf{x}_{i}) \neq \mathbf{y}_{i})$$

- If $L(\beta; \mathbb{Z}) = 0$, then 100% accuracy
- Variant of this loss results in SVM
- But, we will consider a more general strategy

