
Announcements

• Homework 1 due today (Wednesday) at 8pm

• Homework 2 will be released tonight
• Covers linear regression

• Quiz 1 released tomorrow (Thursday) at 8pm



Recap: 𝐿! Regularization

• Original MSE loss + regularization:

𝐿 𝛽; 𝑍 =
1
𝑛
(
!"#

$

𝑦! − 𝛽%𝑥! & + 𝜆 ⋅ 𝛽 &
&

• 𝜆 is a hyperparameter that must be tuned (satisfies 𝜆 ≥ 0) 
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Recap: Cross Validation

• Original MSE loss + regularization:

𝐿 𝛽; 𝑍 =
1
𝑛
(
!"#
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𝑦! − 𝛽%𝑥! & + 𝜆 ⋅ 𝛽 &
&

• 𝜆 is a hyperparameter that must be tuned (satisfies 𝜆 ≥ 0)

• How to choose 𝜆?



Recap: Cross Validation
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Recap: Cross Validation

• Generally important for tuning design choices
• Hyperparameters
• Features in the feature map
• Model family
• …

• Alternative approaches exist for very small datasets
• Re-train on 𝑍#$%&' ∪ 𝑍*%+
• 𝑘-fold cross validation



Lecture 3: Linear Regression (Part 3)

CIS 4190/5190
Fall 2022



Agenda

• Minimizing the MSE Loss
• Closed-form solution
• Gradient descent



Recap: Linear Regression in Matrix Form

𝐿 𝛽; 𝑍 =
1
𝑛
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Strategy 1: Closed-Form Solution

• Recall that linear regression minimizes the loss

𝐿 𝛽; 𝑍 =
1
𝑛
𝑌 − 𝑋𝛽 &

&

• Minimum solution has gradient equal to zero:

∇0𝐿 6𝛽 𝑍 ; 𝑍 = 0
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• The gradient is
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Strategy 1: Closed-Form Solution

• The gradient is

 ∇0𝐿 𝛽; 𝑍 = ∇0
#
$
𝑌 − 𝑋𝛽 &

& = ∇0
#
$
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Intuition on the Gradient

• By linearity of the gradient, we have

∇0𝐿 𝛽; 𝑍 =
1
𝑛
(
!"#

$

∇0 𝑦! − 𝛽%𝑥! & =
1
𝑛
(
!"#

$

2 𝑦! − 𝛽%𝑥! 𝑥!

• The gradient for a single term is

∇0 𝑦! − 𝛽%𝑥! & = 2 𝑦! − 𝛽%𝑥! 𝑥!

• I.e., the current error 𝑦! − 𝛽%𝑥!  times the feature 𝑥!



Strategy 1: Closed-Form Solution

• The gradient is

 ∇0𝐿 𝛽; 𝑍 = ∇0
#
$
𝑌 − 𝑋𝛽 &

& = − &
$
𝑋%𝑌 + &

$
𝑋%𝑋𝛽

• Setting ∇0𝐿 6𝛽; 𝑍 = 0, we have 𝑋%𝑋 6𝛽 = 𝑋%𝑌



Strategy 1: Closed-Form Solution

• Setting ∇0𝐿 6𝛽; 𝑍 = 0, we have 𝑋%𝑋 6𝛽 = 𝑋%𝑌

• Assuming 𝑋%𝑋 is invertible, we have

6𝛽 𝑍 = 𝑋%𝑋 1#𝑋%𝑌



Note on Invertibility

• Closed-form solution only unique if 𝑋%𝑋 is invertible
• Otherwise, multiple solutions exist to 𝑋0𝑋 &𝛽 = 𝑋0𝑌
• Intuition: Underconstrained system of linear equations

• Example:
2 2
2 2

6𝛽#
6𝛽&

= 2
2

• In this case, any &𝛽( = 1 − &𝛽! is a solution



When Can this Happen?

• Case 1
• Fewer data examples than feature dimension (i.e., 𝑛 < 𝑑)
• Solution: Remove features so 𝑑 ≤ 𝑛
• Solution: Collect more data until 𝑑 ≤ 𝑛
• Solution: Use 𝐿! regularization

• Case 2: Some feature is a linear combination of the others
• Special case (duplicated feature): For some 𝑗 and 𝑗,, 𝑥1,3 = 𝑥1,3!  for all 𝑖
• Solution: Remove linearly dependent features
• Solution: Use 𝐿( regularization



Shortcomings of Closed-Form Solution

• Computing 6𝛽 𝑍 = 𝑋%𝑋 1#𝑋%𝑌 can be challenging when the 
number of features 𝑑 is large

• Computing (𝑿%𝑿)1𝟏	is 𝑶 𝒅𝟑
• 𝑑 = 104 features à 𝑂(10!()
• Even storing 𝑋0𝑋 requires a lot of memory

• Numerical accuracy issues due to “ill-conditioning”
• What if 𝑋0𝑋 is “barely” invertible?
• Then, 𝑋0𝑋 5! has large variance along some dimension
• Regularization helps



Optimization Algorithms

• Recall that linear regression minimizes the loss

𝐿(𝛽; 𝑍) =
1
𝑛
(
!"#

$

𝑦! − 𝛽%𝑥! &

• Iteratively optimize 𝛽
• Initialize 𝛽! ← Init …
• For some number of iterations 𝑇, update 𝛽- ← Step(… )
• Return 𝛽6



Optimization Algorithms

• Global search: Try random values of 𝛽 and choose the best
• I.e., 𝛽- independent of 𝛽-5!
• Very unstructured, can take a long time (especially in high dimension 𝑑)!

• Local search: Start from some initial 𝛽 and make local changes
• I.e., 𝛽- is computed based on 𝛽-5!
• What is a “local change”, and how do we find good one?



Strategy 2: Gradient Descent

• Gradient descent: Update 𝛽 based on gradient ∇0𝐿 𝛽; 𝑍  of 𝐿 𝛽; 𝑍 :

𝛽45# ← 𝛽4 − 𝛼 ⋅ ∇0𝐿 𝛽4; 𝑍

• Intuition: The gradient is the direction along which 𝐿 𝛽; 𝑍  changes 
most quickly as a function of 𝛽

• 𝛼 ∈ ℝ is a hyperparameter called the learning rate
• More on this later



Strategy 2: Gradient Descent

• Choose initial value for 𝛽 
• Until we reach a minimum:
• Choose a new value for 𝛽 to reduce 𝐿 𝛽; 𝑍

𝐿 𝛽; 𝑍

𝛽# 𝛽& Figure by Andrew Ng
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Strategy 2: Gradient Descent

• Choose initial value for 𝛽 
• Until we reach a minimum:
• Choose a new value for 𝛽 to reduce 𝐿 𝛽; 𝑍

Figure by Andrew Ng

Linear regression loss is 
convex, so no local minima
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Strategy 2: Gradient Descent

• Initialize 𝛽# = 0
• Repeat until convergence:

𝛽45# ← 𝛽4 − 𝛼 ⋅ ∇0𝐿 𝛽4; 𝑍

• For linear regression, know the 
gradient from strategy 1

𝐿 𝛽; 𝑍

𝛽

𝛽-
𝛽-7!

For in-place updates 𝛽 ← 𝛽 − 𝛼 ⋅ ∇8𝐿 𝛽; 𝑍 , compute 
all components of ∇8𝐿 𝛽; 𝑍  before modifying 𝛽 
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Strategy 2: Gradient Descent

• Initialize 𝛽# = 0
• Repeat until convergence:

𝛽45# ← 𝛽4 − 𝛼 ⋅ ∇0𝐿 𝛽4; 𝑍
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Strategy 2: Gradient Descent

• Initialize 𝛽# = 0
• Repeat until 𝛽4 − 𝛽45# & ≤ 𝜖:

𝛽45# ← 𝛽4 − 𝛼 ⋅ ∇0𝐿 𝛽4; 𝑍

• For linear regression, know the 
gradient from strategy 1

𝐿 𝛽; 𝑍

𝛽

𝛽-
𝛽-7!

Hyperparameter defining 
convergence



Strategy 2: Gradient Descent

ℎ(𝑥) = 	−900	– 	0.1	𝑥

Slide by Andrew Ng

𝑓! 𝑥 𝐿 𝛽; 𝑍



Slide by Andrew Ng
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Strategy 2: Gradient Descent
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Strategy 2: Gradient Descent

Slide by Andrew Ng

𝑓! 𝑥 𝐿 𝛽; 𝑍



Strategy 2: Gradient Descent

Slide by Andrew Ng

𝑓! 𝑥 𝐿 𝛽; 𝑍

Minimizer of loss function



Choice of Learning Rate 𝜶
𝐿 𝛽; 𝑍

Problem: 𝛼 too large
• 𝐿 𝛽; 𝑍  increases!

𝐿 𝛽; 𝑍

Problem: 𝛼 too small
• 𝐿 𝛽; 𝑍  decreases slowly

Plot 𝐿 𝛽"; 𝑍#$%&' vs. 𝑡 to diagnose these problems



Choice of Learning Rate 𝜶

• 𝛼 is a hyperparameter for gradient descent that we need to choose
• Can set just based on training data

• Rule of thumb
• 𝜶 too small: Loss decreases slowly
• 𝜶 too large: Loss increases!

• Try rates 𝛼 ∈ 1.0, 0.1, 0.01, …  (can tune further once one works)



Comparison of Strategies

• Closed-form solution
• No hyperparameters
• Slow if 𝑛 or 𝑑 are large

• Gradient descent
• Need to tune 𝛼
• Scales to large 𝑛 and 𝑑

• For linear regression, there are better optimization algorithms, but 
gradient descent is very general
• Accelerated gradient descent is an important tweak that improves 

performance in practice (and in theory)



𝑳𝟐 Regularized Linear Regression

• Recall that linear regression with 𝐿& regularization minimizes the loss

𝐿 𝛽; 𝑍 =
1
𝑛
(
!"#

$

𝑦! − 𝛽%𝑥! & + 𝜆(
6"#

7

𝛽6& =
1
𝑛
𝑌 − 𝑋𝛽 &

& + 𝜆 𝛽 &
&



𝑳𝟐 Regularized Linear Regression

• Recall that linear regression with 𝐿& regularization minimizes the loss

𝐿 𝛽; 𝑍 =
1
𝑛
(
!"#

$

𝑦! − 𝛽%𝑥! & + 𝜆(
6"#

7

𝛽6& =
1
𝑛
𝑌 − 𝑋𝛽 &

& + 𝜆 𝛽 &
&

• Gradient is

∇0𝐿 𝛽; 𝑍 = −
2
𝑛
𝑋%𝑌 +

2
𝑛
𝑋%𝑋𝛽 + 2𝜆𝛽



Strategy 1: Closed-Form Solution

• Gradient is

∇0𝐿 𝛽; 𝑍 = −
2
𝑛
𝑋%𝑌 +

2
𝑛
𝑋%𝑋𝛽 + 2𝜆𝛽

• Setting ∇0𝐿 6𝛽; 𝑍 = 0, we have 𝑋%𝑋 + 𝑛𝜆𝐼 6𝛽 = 𝑋%𝑌

• Always invertible if 𝜆 > 0, so we have

6𝛽 𝑍 = 𝑋%𝑋 + 𝑛𝜆𝐼 1#𝑋%𝑌



Strategy 2: Gradient Descent

• Gradient is

∇0𝐿 𝛽; 𝑍 = −
2
𝑛
𝑋%𝑌 +

2
𝑛
𝑋%𝑋𝛽 + 2𝜆𝛽

• Same algorithm as vanilla linear regression (a.k.a. OLS)
• Intuition: The extra term 𝜆𝛽 in the gradient is weight decay that 

encourages 𝛽 to be small



What About 𝑳𝟏 Regularization?

• Gradient descent still works!

• Specialized algorithms work better in practice
• Simple one: Gradient descent + soft thresholding
• Basically, if 𝛽-,3 ≤ 𝜆, just set it to zero
• Good theoretical properties



Loss Minimization View of ML

• Two design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)
• Loss function: How to define “approximating”? (E.g., MSE loss)



Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)
• Loss function: How to define “approximating”? (E.g., MSE loss)
• Optimizer: How do we minimize the loss? (E.g., gradient descent)



Lecture 5: Logistic Regression

CIS 4190/5190
Fall 2022



Supervised Learning

Data 𝑍 = 𝑥1, 𝑦1 1E!
F &𝛽 𝑍 = arg	min8 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦1 ≈ 𝑓8 𝑥1
Model 𝑓G8 H



Regression

Data 𝑍 = 𝑥1, 𝑦1 1E!
F &𝛽 𝑍 = arg	min8 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦1 ≈ 𝑓8 𝑥1
Model 𝑓G8 H

Label is a real value 𝑦1 ∈ ℝ



Classification

Data 𝑍 = 𝑥1, 𝑦1 1E!
F &𝛽 𝑍 = arg	min8 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦1 ≈ 𝑓8 𝑥1
Model 𝑓G8 H

Label is a discrete value 𝑦1 ∈ 𝒴 = 𝑐!, … , 𝑐I



(Binary) Classification

• Input: Dataset 𝑍 = { 𝑥#, 𝑦# , 𝑥&, 𝑦& , … , }𝑥$ , 𝑦$  
• Output: Model 𝑦! ≈ 𝑓0 𝑥!

Image: https://eyecancer.com/uncategorized/choroidal-
metastasis-test/𝑥!	(tumor size)

𝑥 "
 (a

ge
)

Example: Malignant vs. Benign Ocular Tumor



Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)
• Loss function: How to define “approximating”? (E.g., MSE loss)
• Optimizer: How do we optimize the loss? (E.g., gradient descent)

• How do we adapt to classification?



Linear Functions for (Binary) Classification

• Input: Dataset 𝑍 = { 𝑥#, 𝑦# , 𝑥&, 𝑦& , … , }𝑥$ , 𝑦$  

• Regression:
• Labels 𝑦1 ∈ ℝ
• Predict 𝑦1 ≈ 𝛽0𝑥1

• Classification:
• Labels 𝑦1 ∈ 0, 1
• Predict 𝑦1 ≈ 1 𝛽0𝑥1 ≥ 0
• 1 𝐶  equals 1 if 𝐶 is true and 0 if 𝐶 is false
• How to learn 𝛽? Need a loss function!



Loss Functions for Linear Classifiers

• (In)accuracy:

𝐿 𝛽; 𝑍 =
1
𝑛
(
!"#

$

1 𝑦! ≠ 𝑓0 𝑥!

• Computationally intractable
• Often, but not always the “true” 

loss (e.g., imbalanced data)

𝐿 𝛽; 𝑍 =
6
50



Loss Functions for Linear Classifiers

• Distance:

𝐿 𝛽; 𝑍 =
1
𝑛
X
1E!

F

dist(𝑥1, 𝑓8) ⋅ 1 𝑓8 𝑥1 ≠ 𝑦1

• If 𝐿 𝛽; 𝑍 = 0, then 100% accuracy
• Variant of this loss results in SVM
• But, we will consider a more general 

strategy
𝐿 𝛽; 𝑍 = 1.2


