Announcements

* Homework 1 due today (Wednesday) at 8pm

* Homework 2 will be released tonight
* Covers linear regression

* Quiz 1 released tomorrow (Thursday) at 8pm



Recap: L, Regularization

* Original MISE loss + regularization:
n
- T, )2 2
LB Z) =~ ) 0= BTx)? + - 613
i=1

1 is a hyperparameter that must be tuned (satisfies 1 = 0)



Recap: L, Regularization

4 Underfitting Ideal Overfitting
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Loss

—_— » Training loss




Recap: Cross Validation

* Original MISE loss + regularization:
n
- T, )2 2
LB Z) =~ ) 0= BTx)? + - 613
i=1

1 is a hyperparameter that must be tuned (satisfies 1 = 0)

e How to choose A7?



Recap: Cross Validation

Training data Zirain

Val data Z,,

Test data Ziest

1, = 1.00

Bl — ,BA(Ztrain: /11)
ﬁAZ “ ,é(Ztrain: /12)

IBAB « ,é(Ztrain: /13)

L%/al < L(ﬁAl; Zval)
L%Ial < L(B\Z; Zval)

L?/al N L(BB; Zval)

t' « arg minL:,,

t

L(Bt’; Ztest)




Recap: Cross Validation

* Generally important for tuning design choices
* Hyperparameters
* Features in the feature map
* Model family

 Alternative approaches exist for very small datasets
* Re-train on Z5in U Zy 41
 k-fold cross validation



Lecture 3: Linear Regression (Part 3)
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Agenda

* Minimizing the MSE Loss
* Closed-form solution
* Gradient descent



Recap: Linear Regression in Matrix Form
(V1] AEZN

Vi BTx,.

1 n
L(p;7Z) = EZ(YL' —BTx)2 ==Y — XB|I5
i=1



Strategy 1: Closed-Form Solution
* Recall that linear regression minimizes the loss
1 2
L(B; 7) =~ IV = XBII3

* Minimum solution has gradient equal to zero:

VoL(B(2);Z2) =0




Strategy 1: Closed-Form Solution
* Recall that linear regression minimizes the loss
1 2
L(B; 7) =~ IV = XBII3

* Minimum solution has gradient equal to zero:

VsL(B;Z) =0




Strategy 1: Closed-Form Solution
* The gradient is

VeL(B;7)



Strategy 1: Closed-Form Solution
* The gradient is

1
VeL(B;2) = Vg —IIY = XS5



Strategy 1: Closed-Form Solution
* The gradient is

VoL(B;7) = Vg~V = XBlI3 = Vs~ (¥ = XR)T(Y — XP)

= 2 [V (v = XB)T](V = XB)

= —2XT(Y = Xp)

n

= —2XTY +2XTXp

n



Intuition on the Gradient

* By linearity of the gradient, we have
1% 1%
VeL(B;Z) = Ez Ve (v, — B x)* = Ez 2(y;i = B x)x
i=1 i=1

* The gradient for a single term is
V(i = Bx)* = 2(y; — B x)x;

* |.e., the current error y; — " x; times the feature x;



Strategy 1: Closed-Form Solution
* The gradient is
VoL(B;Z) = Vg —|lY — XBII3 = —2XTY + 2XT X

» Setting Vs L(f;Z) = 0, we have X X[ = XY



Strategy 1: Closed-Form Solution

* Setting V;L(f;Z) = 0, we have X "X = XY

« Assuming X ' X is invertible, we have

B(Z)=XTX)TXTY



Note on Invertibility

* Closed-form solution only unique if X ' X is invertible

* Otherwise, multiple solutions existto X ' X = XY
* Intuition: Underconstrained system of linear equations

o 2 [t

* In this case, any 5, = 1 — 3, is a solution



When Can this Happen?

* Casel
* Fewer data examples than feature dimension (i.e., n < d)
* Solution: Remove featuressod < n
* Solution: Collect more data untild <n
* Solution: Use L regularization

e Case 2: Some feature is a linear combination of the others
* Special case (duplicated feature): For some j and j', x; ; = x; ; forall i

* Solution: Remove linearly dependent features
* Solution: Use L, regularization



Shortcomings of Closed-Form Solution

 Computing #(Z) = (X "X)"' XY can be challenging when the
number of features d is large

» Computing (X" X)"1is 0(d?)
* d = 10* features = 0(10%%)
* Even storing X ' X requires a lot of memory

* Numerical accuracy issues due to “ill-conditioning”
* What if X ' X is “barely” invertible?
* Then, (X "X) ™! has large variance along some dimension
* Regularization helps



Optimization Algorithms

* Recall that linear regression minimizes the loss
n
1 T. 2
L(B;7) = Ez(% — B x;)
i=1

* [teratively optimize [
* Initialize f; < Init(...)
* For some number of iterations T, update [; < Step(...)
* Return [



Optimization Algorithms

* Global search: Try random values of /5 and choose the best
* l.e., [; independent of [5;_4
* Very unstructured, can take a long time (especially in high dimension d)!

* Local search: Start from some initial / and make local changes

* l.e., [; is computed based on [;_4
* What is a “local change”, and how do we find good one?



Strategy 2: Gradient Descent

* Gradient descent: Update 5 based on gradient V;L(f; Z) of L(f; Z):
Biy1 < B —a- VﬁL(ﬁtiZ)

* Intuition: The gradient is the direction along which L(/; Z) changes
most quickly as a function of [

* o € Ris a hyperparameter called the learning rate
* More on this later



Strategy 2: Gradient Descent

* Choose initial value for 5

* Until we reach a minimum:
* Choose a new value for 8 to reduce L(f; Z)

L(S;7)

Figure by Andrew Ng




Strategy 2: Gradient Descent

* Choose initial value for 5

* Until we reach a minimum:
* Choose a new value for 8 to reduce L(f; Z)

L(S;7)
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Strategy 2: Gradient Descent

* Choose initial value for 5

* Until we reach a minimum:
* Choose a new value for 8 to reduce L(f3; Z)

Linear regression loss is
convex, so no local minima

Figure by Andrew Ng



Strategy 2: Gradient Descent

 Initialize 3, = 0

* Repeat until convergence:

3 -
Biy1 < B —a- VBL(,BtJZ) L(,B;Z)z T Be
A Berr
* For linear regression, know the
gradient from strategy 1 0 ——+—1
0O 05 1 15 2

p

For in-place updates f « [ — a - V3 L(f; Z), compute
all components of Vs L(f3; Z) before modifying /3



Strategy 2: Gradient Descent

 Initialize 8, = 0

* Repeat until convergence: ,

fri1 < fr—a- VﬁL(ﬁt;Z) L(,B’;Z)z + Bt
. Bess

* For linear regression, know the

gradient from strategy 1 0 : : — 1
0 05 1 15 2

p




Strategy 2: Gradient Descent

Hyperparameter defining

* Initialize f; = 0 / convergence

 Repeat until ||f; — Lis1ll, < e:

3 -
Biy1 < B —a- VBL(,BtJZ) L(,B;Z)z T Be
l Beas
* For linear regression, know the
gradient from strategy 1 0 : : — 1

0 0.5 1 1.5 2

p



Strategy 2: Gradient Descent
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Strategy 2: Gradient Descent
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Strategy 2: Gradient Descent
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Strategy 2: Gradient Descent
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Strategy 2: Gradient Descent
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Strategy 2: Gradient Descent
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Strategy 2: Gradient Descent

Minimizer of loss function
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Choice of Learning Rate

L(B;7Z) L(B;7)

Problem: a too small Problem: a too large
L(B; Z) decreases slowly * L(B;Z) increases!

Plot L(f;; Z:r4in) Vs. t to diagnose these problems



Choice of Learning Rate

* o is a hyperparameter for gradient descent that we need to choose
* Can set just based on training data

* Rule of thumb

* a too small: Loss decreases slowly
* a too large: Loss increases!

* Try rates a € {1.0,0.1,0.01, ... } (can tune further once one works)



Comparison of Strategies

* Closed-form solution
* No hyperparameters
* Slow if n or d are large

* Gradient descent
* Need to tune «
* Scalesto large nand d

* For linear regression, there are better optimization algorithms, but

gradient descent is very general
* Accelerated gradient descent is an important tweak that improves
performance in practice (and in theory)



L, Regularized Linear Regression

* Recall that linear regression with L, regularization minimizes the loss

n d
1
L(B;Z) = EZ(% —Bx)* + /12 B;
i=1 =1



L, Regularized Linear Regression

* Recall that linear regression with L, regularization minimizes the loss
n d
L-Z—l = BTx)*+2 Z—EY—XZA 2
B2y == = BTx)? 44 ) 57 ==V = X3 + MBI
i=1 j=1

e Gradient is

VoL(B;7) = 2XTY+2XTX + 22
plif;2) = —— — X XP+ 228



Strategy 1: Closed-Form Solution

e Gradient is

V.L(B;7) = 2XTY+2XTX + 22
15 :8' — n n :8 IB

* Setting VBL(B;Z) =0,wehave (X "X +nADf =X"Y

e Always invertible if A > 0, so we have

L(Z)=X"X+nA)~ XY



Strategy 2: Gradient Descent

e Gradient is

2 2
VoL(B;7) = —EXTY + EXTXﬁ + 2B
e Same algorithm as vanilla linear regression (a.k.a. OLS)

* Intuition: The extra term Af in the gradient is weight decay that
encourages [ to be small



What About L; Regularization?

e Gradient descent still works!

 Specialized algorithms work better in practice
* Simple one: Gradient descent + soft thresholding

* Basically, if |,6’t,j| < A, just set it to zero
* Good theoretical properties



Loss Minimization View of ML

* Two design decisions
* Model family: What are the candidate models [ ? (E.g., linear functions)
* Loss function: How to define “approximating”? (E.g., MSE loss)



Loss Minimization View of ML

* Three design decisions
* Model family: What are the candidate models f? (E.g., linear functions)
* Loss function: How to define “approximating”? (E.g., MSE loss)
e Optimizer: How do we minimize the loss? (E.g., gradient descent)



Lecture 5: Logistic Regression
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Supervised Learning

300

Data Z = {(x;, y)}j=1  B(Z) = argming L(B;Z) Model /7
L encodes y; = fz(x;)




Regression

300

Data Z = {(x;, y)}i=1  B(Z) = argming L(B; 2) Model /57

\ L encodes y; =~ fz(x;)

Label is a real value y; € R




Classification

3-0+0

Data Z = {(x;, y)}i=1  B(Z) = argming L(B; 2) Model /57

\ L encodes y; =~ fz(x;)

Label is a discrete value v; € Y = {cq, ..., Cx}




(Binary) Classification

e Input: Dataset Z = {(x, V1), (x5, v>), ..., (%, Vi) }
* Output: Model y; = f5(x;)
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Image: https://eyecancer.com/uncategorized/choroidal-
X1 (tu mor Size) metastasis-test/

Example: Malignant vs. Benign Ocular Tumor



Loss Minimization View of ML

* Three design decisions
* Model family: What are the candidate models [ ? (E.g., linear functions)
* Loss function: How to define “approximating”? (E.g., MSE loss)
* Optimizer: How do we optimize the loss? (E.g., gradient descent)

* How do we adapt to classification?



Linear Functions for (Binary) Classification

* Input: Dataset Z = {(xy, y1), (x5, v2), .., (06, v }

* Regression:
* Labelsy; € R
e Predicty; = " x;

* Classification:
* Labels y; € {0, 1}
e Predict y; = 1(f"x; = 0)
* 1(C) equals 1 if C is true and 0 if C is false
* How to learn [? Need a loss function!




Loss Functions for Linear Classifiers

* (In)accuracy:
1 n
L(B;7) = E; 1 (Yi * fﬁ(xi))

* Computationally intractable

e Often, but not always the “true”
loss (e.g., imbalanced data)




Loss Functions for Linear Classifiers

* Distance:
1 n
L(; 7) = ;Z dist(xs, /) - 1(f () # 1)

* If L(;7) = 0, then 100% accuracy
e Variant of this loss results in SVM

* But, we will consider a more general
strategy

L(B;7)=1.2



