
Announcements

• Quiz 1 due Thursday at 8pm

• Homework 2 due next Wednesday at 8pm
• Covers linear regression



Announcements: Office Hours

• My office hours will be Thursdays 1-2pm in 611 Levine Hall



Announcements: Homework Submission

• When submitting on GradeScope, please match answers for the 
written portion with questions
• Otherwise, makes grading a lot more difficult!

• For future homework, we will deduct ½ point for each sub-problem 
that is not matched



Announcements: Project Teams

• We will be permitting teams of 4

• However, more work will be expected
• Expect about 50% more work
• Teams of 3 are strongly preferred

• Team formation (due Wednesday, September 20)
• https://forms.gle/q5sW21rHkF8nCXW4A

https://forms.gle/q5sW21rHkF8nCXW4A


Recap: Choice of Optimizer

• Strategy 1: Closed-form solution

• Strategy 2: Gradient descent



Recap: Closed-Form Solution

• Setting ∇!𝐿 #𝛽; 𝑍 = 0, we have 𝑋"𝑋 #𝛽 = 𝑋"𝑌

• Assuming 𝑋"𝑋 is invertible, we have

#𝛽 𝑍 = 𝑋"𝑋 #$𝑋"𝑌

• Example:
2 2
2 2

#𝛽$
#𝛽%

= 2
2

• In this case, any $𝛽! = 1 − $𝛽" is a solution



Recap: Closed-Form Solution

• In general, 𝑋"𝑋 ∈ ℝ&×&  is the matrix 𝑋"𝑋 ((! = ∑)*$+ 𝑥)(𝑥)(!

• Case 1: Two features are perfectly correlated
• Suppose two features 𝑗" and 𝑗! are perfectly correlated
• In other words, 𝑥#$! = 𝑐𝑥#$"  for all training examples 𝑥#
• Then, 𝑋%𝑋 $!$ = 𝑋%𝑋 $"$ for all 𝑗, so the matrix is rank-deficient
• Note that we also have 𝑋%𝑋 $$! = 𝑋%𝑋 $$"

• Fix: Use regularization or remove one of the correlated features



Recap: Closed-Form Solution

• In general, 𝑋"𝑋 ∈ ℝ&×&  is the matrix 𝑋"𝑋 ((! = ∑)*$+ 𝑥)(𝑥)(!

• Case 2: Number of examples 𝑛 is fewer than number of features 𝑑
• Recall that the MSE loss is 𝐿 𝛽; 𝑍 = 𝑋𝛽 − 𝑌 !

!

• The MSE is zero when 𝑋𝛽 = 𝑌, but there are infinitely many solutions to this 
linear system when 𝑛 < 𝑑 since there are 𝑛 equations in 𝑑 variables
• Can also show that 𝑋%𝑋 is rank-deficient

• Fix: Use regularization, remove features, collect more data



Recap: Shortcomings of Closed-Form

• Computing #𝛽 𝑍 = 𝑋"𝑋 #$𝑋"𝑌 can be challenging when the 
number of features 𝑑 is large

• Computing (𝑿"𝑿)#𝟏	is 𝑶 𝒅𝟑
• 𝑑 = 10& features à 𝑂(10"!)
• Even storing 𝑋%𝑋 requires a lot of memory
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Recap: Gradient Descent

• Initialize 𝛽$ = 0
• Repeat until 𝛽. − 𝛽./$ % ≤ 𝜖:

𝛽./$ ← 𝛽. − 𝛼 ⋅ ∇!𝐿 𝛽.; 𝑍

• For linear regression, know the 
gradient from strategy 1

𝐿 𝛽; 𝑍

𝛽

𝛽'
𝛽'("



Recap: Gradient Descent

• Gradient is

  ∇!𝐿 𝛽; 𝑍 = − %
+
𝑋"𝑌 + %

+
𝑋"𝑋𝛽 + 2𝜆𝛽 

  ∇!𝐿 𝛽; 𝑍 = %
+
∑)*$+ 𝑥)𝑥)"𝛽 − 𝑦)𝑥) + 2𝜆𝛽

• Takes 𝑂 𝑛  to compute the gradient!
• Can we do better?
• Idea: Use a single example at a time to approximate the gradient



Stochastic Gradient Descent

𝛽 ← 0 
For 𝑡 ∈ 1,2, … :
 𝛽0 ← 𝛽

𝛽 ← 𝛽 − 𝛼 ⋅ ∇!𝐿 𝛽; 𝑍

 If 𝛽0 − 𝛽 % ≤ 𝜖: Break



Stochastic Gradient Descent

𝛽 ← 0 
For 𝑡 ∈ 1,2, … :
 𝛽0 ← 𝛽

𝛽 ← 𝛽 − 𝛼 ⋅ ∇!𝐿 𝛽; 𝑍

 If 𝛽0 − 𝛽 % ≤ 𝜖: Break



Stochastic Gradient Descent

𝛽 ← 0 
For 𝑡 ∈ 1,2, … :
 𝛽0 ← 𝛽 
 For 𝑖 ∈ 1, … , 𝑛 :

𝛽 ← 𝛽 − 𝛼 ⋅ ∇!𝐿 𝛽; 𝑥) , 𝑦)

 If 𝛽0 − 𝛽 % ≤ 𝜖: Break



Stochastic Gradient Descent

𝛽 ← 0 
For 𝑡 ∈ 1,2, … :
 𝛽0 ← 𝛽 
 For 𝑖 ∈ 1, … , 𝑛 :

𝛽 ← 𝛽 − 𝛼 ⋅
2
𝑛
𝑥)𝑥)"𝛽 − 𝑦)𝑥) + 2𝜆𝛽 

 If 𝛽0 − 𝛽 % ≤ 𝜖: Break



Stochastic Gradient Descent

𝛽 ← 0 
For 𝑡 ∈ 1,2, … :
 𝛽0 ← 𝛽
 For 𝑖 ∈ 1, … , 𝑛 :

𝛽 ← 𝛽 − 𝛼 ⋅
2
𝑛
𝑥)𝑥)"𝛽 − 𝑦)𝑥) + 2𝜆𝛽 

 If 𝛽0 − 𝛽 % ≤ 𝜖: Break



Stochastic Gradient Descent

• We will see more variations when we get to neural networks
• Mini-batch stochastic gradient descent
• Accelerated gradient descent
• AdaGrad
• …



Lecture 5: Logistic Regression (Part 1)

CIS 4190/5190
Spring 2023



Supervised Learning

Data 𝑍 = 𝑥#, 𝑦# #)"
* $𝛽 𝑍 = arg	min+ 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦# ≈ 𝑓+ 𝑥#
Model 𝑓,+ -



Classification

Data 𝑍 = 𝑥#, 𝑦# #)"
* $𝛽 𝑍 = arg	min+ 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦# ≈ 𝑓+ 𝑥#
Model 𝑓,+ -

Label is a discrete value 𝑦# ∈ 𝒴 = 1,… , 𝑘



(Binary) Classification

• Input: Dataset 𝑍 = { 𝑥$, 𝑦$ , 𝑥%, 𝑦% , … , }𝑥+ , 𝑦+  
• Output: Model 𝑦) ≈ 𝑓! 𝑥)

Image: https://eyecancer.com/uncategorized/choroidal-
metastasis-test/𝑥!	(tumor size)

𝑥 "
 (a

ge
)

Example: Malignant vs. Benign Ocular Tumor



Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)
• Loss function: How to define “approximating”? (E.g., MSE loss)
• Optimizer: How do we optimize the loss? (E.g., gradient descent)

• How do we adapt to classification?



Linear Functions for (Binary) Classification

• Input: Dataset 𝑍 = { 𝑥$, 𝑦$ , 𝑥%, 𝑦% , … , }𝑥+ , 𝑦+  

• Classification:
• Labels 𝑦# ∈ 0, 1
• Predict 𝑦# ≈ 1 𝛽%𝑥# ≥ 0
• 1 𝐶  equals 1 if 𝐶 is true and 0 if 𝐶 is false
• How to learn 𝛽? Need a loss function!



Loss Functions for Linear Classifiers

• (In)accuracy:

𝐿 𝛽; 𝑍 =
1
𝑛
K
)*$

+

1 𝑦) ≠ 𝑓! 𝑥)

• Computationally intractable
• Often, but not always the “true” 

loss (e.g., imbalanced data)

𝐿 𝛽; 𝑍 =
6
50



Loss Functions for Linear Classifiers

• Distance:

𝐿 𝛽; 𝑍 =
1
𝑛
H
#)"

*

dist(𝑥#, 𝑓+) ⋅ 1 𝑓+ 𝑥# ≠ 𝑦#

• If 𝐿 𝛽; 𝑍 = 0, then 100% accuracy
• Variant of this loss results in SVM
• We consider a more general strategy

𝐿 𝛽; 𝑍 = 1.2



Maximum Likelihood Estimation

• A probabilistic viewpoint on learning (from statistics)

• Given 𝑥), suppose 𝑦)  is drawn i.i.d. from distribution 𝑝3∣5 𝑌 = 𝑦 𝑥; 𝛽  
with parameters 𝛽 (or density, if 𝑦)  is continuous):

𝑦) ∼ 𝑝3∣5 ⋅ 𝑥); 𝛽

• Typically write 𝑝! 𝑌 = 𝑦 𝑥  or just 𝑝! 𝑦 𝑥
• Called a model (and 𝑝+ +

 is the model family)

• Will show up convert 𝑝+ to 𝑓+ later

𝑌 is random variable, 
not vector



Maximum Likelihood Estimation

• Compare to loss function minimization:
• Before: 𝑦# ≈ 𝑓+ 𝑥#
• Now: 𝑦# ∼ 𝑝+ ⋅ 𝑥#; 𝛽

• Intuition the difference:
• 𝑓+ 𝑥# 	just provides a point that 𝑦# should be close to
• 𝑝+ ⋅ 𝑥#; 𝛽 	provides a score for each possible 𝑦#

• Maximum likelihood estimation combines the loss function and 
model family design decisions



Maximum Likelihood Estimation

• Likelihood: Given model 𝑝!, the probability of dataset 𝑍 (replaces 
loss function in loss minimization view):

𝐿 𝛽; 𝑍 = 𝑝! 𝑌 𝑋 =R
)*$

+

𝑝! 𝑦) 𝑥)

• Negative Log-likelihood (NLL): Computationally better behaved form:

ℓ 𝛽; 𝑍 = − log 𝐿 𝛽; 𝑍 = −K
)*$

+

log 𝑝! 𝑦) 𝑥)



Intuition on the Likelihood
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Example: Linear Regression

• Assume that the conditional density is

𝑝! 𝑦) 𝑥) = 𝑁 𝑦); 𝛽"𝑥) , 1 =
1
2𝜋

⋅ 𝑒#
!"6##7#

$

%

• 𝑁 𝑦; 𝜇, 𝜎%  is the density of the normal (a.k.a. Gaussian) distribution 
with mean 𝜇 and variance 𝜎%



Example: Linear Regression

• Then, the likelihood is

𝐿 𝛽; 𝑍 =R
)*$

+

𝑝! 𝑦) 𝑥) =R
)*$

+
1
2𝜋

⋅ 𝑒#
!"6##7#

$

%

• The NLL is

ℓ 𝛽; 𝑍 = −K
)*$

+

log 𝑝! 𝑦) 𝑥) =
𝑛 log 2𝜋

2
+
1
2
K
)*$

+

𝛽"𝑥) − 𝑦) %

constant MSE!



Example: Linear Regression

• Loss minimization for maximum likelihood estimation:

#𝛽 𝑍 = arg	min
!

ℓ 𝛽; 𝑍

• Note: Called maximum likelihood estimation since maximizing the 
likelihood equivalent to minimizing the NLL



Example: Linear Regression

• What about the model family?

   𝑓! 𝑥 = arg	max
7

𝑝! 𝑦 𝑥  

   𝑓! 𝑥 = arg	max
7

$
%8
⋅ 𝑒#

%"&'( $
$

$

   𝑓! 𝑥 = 𝛽"𝑥

• Recovers linear functions!



Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)
• Loss function: How to define “approximating”? (E.g., MSE loss)
• Optimizer: How do we optimize the loss? (E.g., gradient descent)



Maximum Likelihood View of ML

• Two design decisions
• Likelihood: Probability 𝑝+ 𝑦 𝑥  of data 𝑥, 𝑦  given parameters 𝛽
• Optimizer: How do we optimize the NLL? (E.g., gradient descent)

• Corresponding Loss Minimization View:
• Model family: Most likely label 𝑓+ 𝑥 = arg	max. 𝑝+ 𝑦 𝑥
• Loss function: Negative log likelihood (NLL) ℓ 𝛽; 𝑍 = −∑#)"* log 𝑝+ 𝑦# 𝑥#

• Very powerful framework for designing cutting edge ML algorithms
• Write down the “right” likelihood, form tractable approximation if needed
• Especially useful for thinking about non-i.i.d. data



What about classification?

• Consider the following choice:

𝑝! 𝑌 = 0 𝑥) ∝ 𝑒#
!"6#
% 	 and	 𝑝! 𝑌 = 1 𝑥) ∝ 𝑒

!"6#
%

• Then, we have

𝑝! 𝑌 = 1 𝑥) =
𝑒
!"6#
%

𝑒
!"6#
% + 𝑒#

!"6#
%

=
1

1 + 𝑒#!"6#

Sigmoid function

𝜎 𝑧 =
1

1 + 𝑒/0

Compare to linear regression:

𝑝+ 𝑦 𝑥# ∝ 𝑒/
+#1$/.

"

!



What about classification?

• Consider the following choice:

𝑝! 𝑌 = 0 𝑥) ∝ 𝑒#
!"6#
% 	 and	 𝑝! 𝑌 = 1 𝑥) ∝ 𝑒

!"6#
%

• Then, we have

𝑝! 𝑌 = 1 𝑥) =
𝑒
!"6#
%

𝑒
!"6#
% + 𝑒#

!"6#
%

= 𝜎 𝛽"𝑥)

• Furthermore, 𝑝! 𝑌 = 0 𝑥) = 1 − 𝜎 𝛽"𝑥)

Sigmoid function

𝜎 𝑧 =
1

1 + 𝑒/0

Compare to linear regression:

𝑝+ 𝑦 𝑥# ∝ 𝑒/
+#1$/.

"

!



Logistic/Sigmoid Function

�(z)

<latexit sha1_base64="u39OYtMSaq4IXUMvaNyC6wmVWPE="></latexit>

𝑝! 𝑌 = 1 𝑥) = 𝜎 𝛽"𝑥)



Logistic Regression Model Family

𝑓+ 𝑥  = arg	max
.

𝑝+ 𝑦 𝑥  

𝑓+ 𝑥 = arg	max
.

Z 𝜎 𝛽%𝑥
1 − 𝜎 𝛽%𝑥

	 if	𝑦 = 1
if	𝑦 = 0 

𝑓+ 𝑥 = \10	
if	𝜎 𝛽%𝑥 ≥ "

!
otherwise

 



Logistic Regression Model Family

𝑓+ 𝑥  = arg	max
.

𝑝+ 𝑦 𝑥  

𝑓+ 𝑥 = arg	max
.

Z 𝜎 𝛽%𝑥
1 − 𝜎 𝛽%𝑥

	 if	𝑦 = 1
if	𝑦 = 0 

𝑓+ 𝑥 = \10	
if	𝜎 𝛽%𝑥 ≥ "

!
otherwise

 

𝑓+ 𝑥 = \10	
if	𝛽%𝑥 ≥ 0
otherwise

 

𝑓+ 𝑥 = 1(𝛽%𝑥 ≥ 0) 

• Recovers linear classifiers!

�(z)

<latexit sha1_base64="u39OYtMSaq4IXUMvaNyC6wmVWPE=">AAADl3icfVJdaxNBFJ1m/ajrV6tP4stiEBKRkJWAfShYMUhfii00bSETy+zkJjt0ZnaZuVuNw/4MX/V3+W+cTRbTpK0XFs6ee869dy43yaWw2O3+2WgEd+7eu7/5IHz46PGTp1vbz05sVhgOA57JzJwlzIIUGgYoUMJZboCpRMJpcvGpyp9egrEi08c4y2Gk2FSLieAMPTWkVkwVa/1oR+H5VrPb6c4jug7iGjRJHYfn241LOs54oUAjl8zaYdzNceSYQcEllCEtLOSMX7ApDD3UTIEdufnMZfTaM+Nokhn/aYzm7FWHY8ramUq8UjFM7XquIm/MJWqlsxvbqsHaNDjZGTmh8wJB88Uwk0JGmEXVkqKxMMBRzjxg3Aj/noinzDCOfpVhSPvgH2zgwDf/koNhmJk3jjLjd/m9dBS0LQxUo/llTOnbii3/5xJ61UXnNlrxZeiDavjGM6WYHjt6gOUwHjmap4ImYipbVKFrxmX1Y9rlqljV4kQ5VX51rWbcLtck/YWkf3PWLgvYWwpYTFmt8qCWLrWr4uP0Xz2KKSC7pejHZV/KZJ5e0flLjdfv8jo4edeJe53eUa+5t1vf7CZ5SV6RFonJe7JH9skhGRBOMvKT/CK/gxfBh+BzsL+QNjZqz3OyEsHRX31eLZk=</latexit>

𝜎 0 =
1
2



Logistic Regression Algorithm

• Then, we have the following NLL loss:

        ℓ 𝛽; 𝑍 = −∑#)"* log 𝑝+ 𝑦# 𝑥#
        ℓ 𝛽; 𝑍 = −∑#)"* 1 𝑦# = 1 ⋅ log 𝜎 𝛽%𝑥# + 1 𝑦# = 0 ⋅ log 1 − 𝜎 𝛽%𝑥#
        ℓ 𝛽; 𝑍 = −∑#)"* 𝑦# ⋅ log 𝜎 𝛽%𝑥# + 1 − 𝑦# ⋅ log 1 − 𝜎 𝛽%𝑥#

• Logistic regression minimizes this loss:

#𝛽 𝑍 = arg	min
!

ℓ 𝛽; 𝑍



Intuition on the Objective

• Loss for example 𝑖 is

d
− log 𝜎 𝛽"𝑥)

− log 1 − 𝜎 𝛽"𝑥)
	 if	𝑦) = 1
if	𝑦) = 0

lo
g𝑧



Intuition on the Objective

• Loss for example 𝑖 is

d
− log 𝜎 𝛽"𝑥)

− log 1 − 𝜎 𝛽"𝑥)
	 if	𝑦) = 1
if	𝑦) = 0

−
lo
g𝑧



Intuition on the Objective

• If 𝑦) = 1:
• If 𝜎 𝛽%𝑥# = 1, then loss = 0
• As 𝜎 𝛽%𝑥# → 0,	loss → ∞

• If 𝑦) = 0
• If 𝜎 𝛽%𝑥# = 0, then loss = 0
• As 𝜎 𝛽%𝑥# → 1,	loss → ∞

𝜎 𝛽#𝑥$

lo
ss

−𝑦) ⋅ log 𝜎 𝛽"𝑥) − 1 − 𝑦) ⋅ log 1 − 𝜎 𝛽"𝑥)



Intuition on the Objective

• If 𝑦) = 1:
• If 𝜎 𝛽%𝑥# = 1, then loss = 0
• As 𝜎 𝛽%𝑥# → 0,	loss → ∞

• If 𝑦) = 0
• If 𝜎 𝛽%𝑥# = 0, then loss = 0
• As 𝜎 𝛽%𝑥# → 1,	loss → ∞

lo
ss

−𝑦) ⋅ log 𝜎 𝛽"𝑥) − 1 − 𝑦) ⋅ log 1 − 𝜎 𝛽"𝑥)

𝜎 𝛽#𝑥$



Optimization for Logistic Regression

• To optimize the NLL loss, we need its gradient:

        ∇+ℓ 𝛽; 𝑍 = −∑#)"* 𝑦# ⋅ ∇+ log 𝜎 𝛽%𝑥# + 1 − 𝑦# ⋅ ∇+ log 1 − 𝜎 𝛽%𝑥#

        ∇+ℓ 𝛽; 𝑍 = −∑#)"* 𝑦# ⋅
∇%3 +#1$
3 +#1$

− 1 − 𝑦# ⋅
∇%3 +#1$
"/3 +#1$

        ∇+ℓ 𝛽; 𝑍 = −∑#)"* 𝑦# ⋅
3 +#1$ "/3 +#1$ ⋅1$

3 +#1$
− 1 − 𝑦# ⋅

3 +#1$ "/3 +#1$ ⋅1$
"/3 +#1$

        ∇+ℓ 𝛽; 𝑍 = −∑#)"* 𝑦# ⋅ 1 − 𝜎 𝛽%𝑥# ⋅ 𝑥# − 1 − 𝑦# ⋅ 𝜎 𝛽%𝑥# ⋅ 𝑥#
        ∇+ℓ 𝛽; 𝑍 = −∑#)"* 𝑦# − 𝜎 𝛽%𝑥# ⋅ 𝑥#

𝜎% 𝑧
= 𝜎 𝑧 1 − 𝜎 𝑧



Optimization for Logistic Regression

• Gradient of NLL:

∇!ℓ 𝛽; 𝑍 =K
)*$

+

𝜎 𝛽"𝑥) − 𝑦) ⋅ 𝑥)

• Surprisingly similar to the gradient for linear regression!
• Only difference is the 𝜎

• Gradient descent works as before
• No closed-form solution for $𝛽 𝑍



Feature Maps

• Can use feature maps, just like linear regression



Regularized Logistic Regression

• We can add 𝐿$ or 𝐿% regularization to the NLL loss, e.g.:

ℓ 𝛽; 𝑍 = −H
#)"

*

𝑦# ⋅ log 𝜎 𝛽%𝑥# + 1 − 𝑦# ⋅ log 1 − 𝜎 𝛽%𝑥# + 𝜆 ⋅ 𝛽 !
!

• Is there a more “natural” way to derive the regularized loss?



Regularization as a Prior

• So far, we have not assumed any distribution over the parameters 𝛽
• What if we assume 𝛽 ∼ 𝑁 0, 𝜎!𝐼  (the 𝑑 dimensional normal distribution)?
• (This 𝜎 is a hyperparameter, not the sigmoid function)

• Consider the modified likelihood

 𝐿 𝛽; 𝑍 = 𝑝3,!∣5 𝑌, 𝛽 𝑋
 𝐿(𝛽;𝑍)= 𝑝3∣5,! 𝑌 𝑋, 𝛽 ⋅ 𝑁 𝛽; 0, 𝜎%𝐼 	

 𝐿 𝛽; 𝑍 = ∏)*$
+ 𝑝! 𝑦) 𝑥) ⋅ $

@ %8
𝑒#

% $
$

$)$



Regularization as a Prior

• So far, we have not assumed any distribution over the parameters 𝛽
• What if we assume 𝛽 ∼ 𝑁 0, 𝜎!𝐼  (the 𝑑 dimensional normal distribution)?

• Consider the modified NLL

 ℓ 𝛽; 𝑍 = −∑)*$+ log 𝑝! 𝑦) 𝑥) + log 𝜎 2𝜋 + ! $
$

%@$

• Obtain 𝐿%regularization on 𝛽!
• With 𝜆 = "

!3"
• If 𝛽# ∼ Laplace 0, 𝜎!  for each 𝑖, obtain 𝐿"regularization

constant regularization!



Additional Role of Regularization

• In 𝑝!, if we replace 𝛽 with 𝑐𝛽, where 𝑐 ≫ 1 (and 𝑐 ∈ ℝ), then:
• The decision boundary does not change
• The probabilities 𝑝+ 𝑦 𝑥  become more confident

𝑝+ 𝑦 𝑥 𝑝"5+ 𝑦 𝑥

𝑝!&' 𝑌 = 1 𝑥 ≈ 1𝑝' 𝑌 = 1 𝑥 ≈ 0.6



Additional Role of Regularization

• Regularization ensures that 𝛽 does not become too large
• Prevents overconfidence

• Regularization can also be necessary
• Without regularization (i.e., 𝜆 = 0) and data is linearly separable, then 

gradient descent diverges (i.e., 𝛽 → ±∞)



Multi-Class Classification

• What about more than two classes?
• Disease diagnosis: healthy, cold, flu, pneumonia
• Object classification: desk, chair, monitor, bookcase
• In general, consider a finite space of labels 𝒴

𝑥1

𝑥2



Multi-Class Classification

• Naïve Strategy: One-vs-rest classification
• Step 1: Train 𝒴  logistic regression models, where model 𝑝+& 𝑌 = 1 𝑥  is 

interpreted as the probability that the label for 𝑥 is 𝑦
• Step 2: Given a new input 𝑥, predict label 𝑦 = arg	max

.'
𝑝+&' 𝑌 = 1 𝑥



Multi-Class Logistic Regression

• Strategy: Include separate 𝛽7  for each label 𝑦 ∈ 𝒴 = {1,… , 𝑘}

• Let 𝑝! 𝑦 𝑥 ∝ 𝑒!("6, i.e.

𝑝! 𝑦 𝑥 =
𝑒!("6

∑7!∈𝒴 𝑒
!(!
" 6

• We define softmax 𝑧$, … , 𝑧I =
J*+

∑#,+
- J*#

… J*-
∑#,+
- J*#

• Then, 𝑝! 𝑦 𝑥 = softmax 𝛽$"𝑥,… , 𝛽I"𝑥 7
• Thus, sometimes called softmax regression



Multi-Class Logistic Regression

• Model family

• 𝑓+ 𝑥 = arg	max
.

𝑝+ 𝑦 𝑥 = arg	max
.

6%&
#(

∑&'∈𝒴 6
%
&'
# (

= arg	max
.

𝛽.%𝑥

• Optimization
• Gradient descent on NLL
• Simultaneously update all parameters 𝛽. .∈𝒴



Classification Metrics

• While we minimize the NLL, we often evaluate using accuracy

• However, even accuracy isn’t necessarily the “right” metric
• If 99% of labels are negative (i.e., 𝑦# = 0), accuracy of 𝑓+ 𝑥 = 0 is 99%!
• For instance, very few patients test positive for most diseases
• “Imbalanced data”

• What are alternative metrics for these settings?



Classification Metrics

• Classify test examples as follows:
• True positive (TP): Actually positive, predictive positive
• False negative (FN): Actually positive, predicted negative
• True negative (TN): Actually negative, predicted negative
• False positive (FP): Actually negative, predicted positive

• Many metrics expressed in terms of these; for example:

accuracy =
𝑇𝑃 + 𝑇𝑁

𝑛
	 error = 1 − accuracy =

𝐹𝑃 + 𝐹𝑁
𝑛
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Classification Metrics

• For imbalanced metrics, we roughly want to disentangle:
• Accuracy on “positive examples”
• Accuracy on “negative examples”

• Different definitions are possible (and lead to different meanings)!



Sensitivity & Specificity

• Sensitivity: What fraction of actual positives are predicted positive?
• Good sensitivity: If you have the disease, the test correctly detects it
• Also called true positive rate

• Specificity: What fraction of actual negatives are predicted negative?
• Good specificity: If you do not have the disease, the test says so
• Also called true negative rate

• Commonly used in medicine
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Precision & Recall

• Recall: What fraction of actual positives are predicted positive?
• Good recall: If you have the disease, the test correctly detects it
• Also called the true positive rate (and sensitivity)

• Precision: What fraction of predicted positives are actual positives?
• Good precision: If the test says you have the disease, then you have it
• Also called positive predictive value

• Used in information retrieval, NLP
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