Announcements

* Quiz 1 due Thursday at 8pm

* Homework 2 due next Wednesday at 8pm
* Covers linear regression



Announcements: Office Hours

* My office hours will be Thursdays 1-2pm in 611 Levine Hall



Announcements: Homework Submission

* When submitting on GradeScope, please match answers for the
written portion with questions

e Otherwise, makes grading a lot more difficult!

* For future homework, we will deduct % point for each sub-problem
that is not matched



Announcements: Project Teams

* We will be permitting teams of 4

* However, more work will be expected
e Expect about 50% more work
* Teams of 3 are strongly preferred

* Team formation (due Wednesday, September 20)
e https://forms.gle/g5sW21rHkF8nCXW4A



https://forms.gle/q5sW21rHkF8nCXW4A

Recap: Choice of Optimizer

 Strategy 1: Closed-form solution

e Strategy 2: Gradient descent



Recap: Closed-Form Solution

* Setting V;L(f;Z) = 0, we have X "X = XY
« Assuming X ' X is invertible, we have
BZ)=X"X)TXTY
* Example: i
[2 2] [ﬁ1] _ [2]
2 21\|p, 2

* In this case, any 5, = 1 — 3, is a solution



Recap: Closed-Form Solution

* In general, X ' X € R*“ is the matrix (X X)) ;» = JIL, x;;%, 7

e Case 1: Two features are perfectly correlated
* Suppose two features j; and j, are perfectly correlated
* In other words, x;; = cx;;, for all training examples x;
* Then, (X'X); ; = (X'X); ; forall j, so the matrix is rank-deficient
* Note that we also have (X 'X);; = (X'X);;

* Fix: Use regularization or remove one of the correlated features



Recap: Closed-Form Solution

* Ingeneral, X' X € R**% isthe matrix (X" X) .., = 2" x;x;
ji ijXij’

* Case 2: Number of examples n is fewer than number of features d

* Recall that the MSE loss is L(3; Z) = || XS — Y||5

* The MSE is zero when X7 = Y, but there are infinitely many solutions to this
linear system when n < d since there are n equations in d variables

* Can also show that X ' X is rank-deficient

* Fix: Use regularization, remove features, collect more data



Recap: Shortcomings of Closed-Form

 Computing #(Z) = (X "X)"' XY can be challenging when the
number of features d is large

» Computing (X" X)"1is 0(d?)
* d = 10* features = 0(10%%)
* Even storing X ' X requires a lot of memory



Recap: Gradient Descent

 Initialize 8, = 0

* Repeat until || — fri1ll2 < € .
ﬁt+1 (_ﬁt_a.vﬁl‘(ﬁt;z) L(IB;Z)Z T :Bt

- :Bt+1

1 ==
* For linear regression, know the

gradient from strategy 1 0 : : — 1
0 05 1 15 2

p




Recap: Gradient Descent

e Gradient is

VoL(B;Z) = ==XV + 2XTXB + 2Ap
2
== Py (e B = yixi) + 228
* Takes O(n) to compute the gradient!

* Can we do better?
* |dea: Use a single example at a time to approximate the gradient



Stochastic Gradient Descent

f <0
Fort € {1,2, ... }:
B’ < B
fef—a-VgL(B;7)

If || — B, < e: Break



Stochastic Gradient Descent

B0
Fort € {1,2, ... }:
BB
BepB—a VgL(B;Z)

If [|B" — B||, < €: Break



Stochastic Gradient Descent

B0
Fort € {1,2, ... }:
BB

Fori € {1,...,n}:
BB —a-VgL(B;{(x;,y)})

If [|B" — B||, < €: Break



Stochastic Gradient Descent

B0
Fort € {1,2, ... }:
BB

Fori € {1,...,n}:

B B—a-(= (B -ya)+ 218 )

If [|B" — B||, < €: Break



Stochastic Gradient Descent

f <0
Fort € {1,2, ... }:
B <P

Fori € {1,...,n}:

,3“ﬁ—“'(%(xixiTﬁ_Yixi)+2/1,3)

If || — B, < e: Break



Stochastic Gradient Descent

* We will see more variations when we get to neural networks
* Mini-batch stochastic gradient descent

* Accelerated gradient descent
* AdaGrad



Lecture 5: Logistic Regression (Part 1)

CIS 4190/5190
Spring 2023



Supervised Learning

300

Data Z = {(x;, y)}j=1  B(Z) = argming L(B;Z) Model /7
L encodes y; = fz(x;)




Classification

3-0+0

Data Z = {(x;, y)}i=1  B(Z) = argming L(B; 2) Model /57

\ L encodes y; =~ fz(x;)

Label is a discrete value y; € Y = {1, ..., k}




(Binary) Classification

e Input: Dataset Z = {(x, V1), (x5, v>), ..., (%, Vi) }
* Output: Model y; = f5(x;)
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Image: https://eyecancer.com/uncategorized/choroidal-
X1 (tu mor Size) metastasis-test/

Example: Malignant vs. Benign Ocular Tumor



Loss Minimization View of ML

* Three design decisions
* Model family: What are the candidate models [ ? (E.g., linear functions)
* Loss function: How to define “approximating”? (E.g., MSE loss)
* Optimizer: How do we optimize the loss? (E.g., gradient descent)

* How do we adapt to classification?



Linear Functions for (Binary) Classification

* Input: Dataset Z = {(xy, y1), (x5, v2), .., (06, v }

* Classification:

Labels y; € {0, 1}

Predict y; = 1(f"x; = 0)

1(C) equals 1 if C is true and 0 if C is false
How to learn 5? Need a loss function!




Loss Functions for Linear Classifiers

* (In)accuracy:
1 n
L(B;7) = E; 1 (Yi * fﬁ(xi))

* Computationally intractable

e Often, but not always the “true”
loss (e.g., imbalanced data)




Loss Functions for Linear Classifiers

* Distance:
1 n
L(; 7) = ;Z dist(xs, /) - 1(f () # 1)

* If L(;7) = 0, then 100% accuracy
* Variant of this loss results in SVM
* We consider a more general strategy

L(B;7)=1.2



Maximum Likelihood Estimation

A probabilistic viewpoint on learning (from statistics)

* Given x;, suppose V; is drawn i.i.d. from distribution pyx(Y = v | x; ()

with parameters [ (or density, if y; is continuous): \
Vi~ Ple( | x5 B) Y is random variable,
not vector

* Typically write ps (Y =y | x) orjust pp(y [ x)
* Called a model (and {pﬁ}ﬁ is the model family)
* Will show up convert pj to f5 later



Maximum Likelihood Estimation

 Compare to loss function minimization:
* Before: y; = fz(x;)
* Now:  y; ~pg(-lx;pB)

* Intuition the difference:
° fp(x;) just provides a point that y; should be close to

: Pﬁ( ‘| x;; B ) provides a score for each possible y;

 Maximum likelihood estimation combines the loss function and
model family design decisions



Maximum Likelihood Estimation

* Likelihood: Given model pj, the probability of dataset Z (replaces
loss function in loss minimization view):

n
L5 ) = pp (7 1) =] | pp 1)
i=1
* Negative Log-likelihood (NLL): Computationally better behaved form:

0(5;7) = —log L(; 7) = = ) logps(v; 1 %)
=1



Intuition on the Likelihood
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Example: Linear Regression

* Assume that the conditional density is

- 1 _(ﬁTXi—yi)z
pﬁ(yilxi):N(yL’;,B Xi’l):\/T_T[.e 2

* N(y; u, 0%) is the density of the normal (a.k.a. Gaussian) distribution
with mean u and variance ¢



Example: Linear Regression

* Then, the likelihood is

L(5; Z)-l_[pﬁ(yl |x)—]_[

e The NLL is

n log(Zn)

xl 3/1)

L(3;7) = —zlogpﬁ(}’i | x;) =
i=1

\

h'd

constant

ZwT

Yi)z

J

MSE|



Example: Linear Regression

* Loss minimization for maximum likelihood estimation:

[(Z) = arg min£(S; Z)
B

* Note: Called maximum likelihood estimation since maximizing the
likelihood equivalent to minimizing the NLL



Example: Linear Regression

* What about the model family?

fp(x) = argmaxpp(y | x)

y
| (BTx~y);
= arg 3fnax\/T_ﬂ- e 2
— IBTx

* Recovers linear functions!



Loss Minimization View of ML

* Three design decisions
* Model family: What are the candidate models [ ? (E.g., linear functions)
* Loss function: How to define “approximating”? (E.g., MSE loss)
* Optimizer: How do we optimize the loss? (E.g., gradient descent)



Maximum Likelihood View of ML

* Two design decisions
* Likelihood: Probability ps(y | x ) of data (x, y) given parameters [
* Optimizer: How do we optimize the NLL? (E.g., gradient descent)

e Corresponding Loss Minimization View:
* Model family: Most likely label /3 (x) = arg max, pg(y | x)
* Loss function: Negative log likelihood (NLL) £(f5; Z) = — i1 logps(y; | x;)

* Very powerful framework for designing cutting edge ML algorithms
* Write down the “right” likelihood, form tractable approximation if needed
* Especially useful for thinking about non-i.i.d. data



What abOUt CIaSSificatiOn? Compare to linear regression:

Gy ece L
X;) Xe
* Consider the following choice: / pply
T T

2
_:8 Xi p'x;
p[g(Y=O|xi)OCQ 2 andp'g(Y=1|xi)o<ez

Sigmoid function

 Then, we have 1
L7 T 7)==
p'B(Y:1|xi): BTx; _ﬁTxi:1+€_ﬁ X
e 2 +He 2



What abOUt CIaSSificatiOn? Compare to linear regression:

Gy ece L
X;) Xe
* Consider the following choice: / pply
T T

2
_:8 Xi p'x;
p[g(Y=O|xi)OCQ 2 andplg(Y=1|xi)o<ez

Sigmoid function
* Then, we have 8 1

e
pp(Y =11x)=— ,BTxi:O-(’BTxi)
e 2 +e 2

* Furthermore, pg(Y =0 | x;) =1 —0(B " x;)



Logistic/Sigmoid Function




Logistic Regression Model Family

fp(x) = argymaxpﬁ(y | %)

3 a(fTx) ify=1
- arg;nax{l —oa(B'x) ity=0

_ {1 if o(7x) > 3

0 otherwise



Logistic Regression Model Family

fp(x) = argymaxpﬁ(y | %)

_ o(f'x) ify=1 1.0
= arg;nax 1— O'(,BTX) lfy =0 O-(Z)
.

(1 ifa(FTx) =

=10 | 0.5
\ otherwise

_[1ifpTx=0 //
0 otherwise .

=1(8Tx = 0) -6 7 2 0 2 4 6

1
O'(O) =E

 Recovers linear classifiers!



Logistic Regression Algorithm

* Then, we have the following NLL loss:

2(f;7) = = Xiz logpp(yi | x;)
= =Y, 10 = 1) - log(a(BTx)) + 1(v; = 0) - log(1 — o (8T x)))
==Y v -log(a(BTx)) + (1 — ) -log(1 — o(B %))

* Logistic regression minimizes this loss:

f(Z) = arg min £(3; Z)
B



Intuition on the Objective

* Loss for example i is

[ —log(a(FTx))  ify, =1
—log(1—0o(p"x)) ity =0

\




Intuition on the Objective

* Loss for example i is

\

log(a (A7) iy =1
—log(1—0o(p"x)) ity =0
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Intuition on the Objective

¢ Ifyl = 1:

* Ifg(f"x;) = 1,thenloss = 0

* Asa(f"x;) = 0,loss > o

’lfyl:O

* Ifa(B"x;) =0, thenloss =0

* Asa(f"x;) = 1,1loss >

—Yi

' 108(0(,3Txi))

Q0 02 04 06 08

o(f'x)

— (1 —y;)-log(1 —a(Bx)

1.0



Intuition on the Objective

¢ Ifyl = 1:

* Ifg(f"x;) = 1,thenloss = 0
* Asa(f"x;) = 0,loss > o

’lfyl:O

* Ifa(B"x;) =0, thenloss =0
* Asa(f"x;) = 1,1loss >

—Yi

' 108(0(,3Txi))

—(1—=y)-

80 02 04 06 o8

o(f'x)

log(1—a(B"x))

1.0



Optimization for Logistic Regression

* To optimize the NLL loss, we need its gradient:

Vpt(632) = = Eita v - Vplog(a(FTx)) + (1 =) - Vglog(1 — o (5 x)))

__yn o, Vgo(BTx) o5 Vpa(BTx)
"(2) =~ i=1Yi a(fTx;) (1 =) 1-0(f " x;)
Z
B A AR Lo (ARD) B o(BTx)(1-0(BTx)) i
— i=1 yl ) O'(,BTXi) — (1 o yl) ’ 1_O_(BTxi)

==Yty (1=0(Bx)) % = A =y) 0B x) - x
= —2a(vi —a(Bx)) - x;



Optimization for Logistic Regression

* Gradient of NLL:
n
Ve t(B;72) = Z(U(,BTXL') — Vi) X
i=1

 Surprisingly similar to the gradient for linear regression!
* Only difference is the o

 Gradient descent works as before
* No closed-form solution for 3 (Z)



Feature Maps

* Can use feature maps, just like linear regression
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P(y = 1|x)



Regularized Logistic Regression

* We can add L, or L, regularization to the NLL loss, e.g.:
£(B;7) = —2%’ log(a(BTx)) + (1 — ) -log(1 —a(BTx) + 4 lIBII5
i=1

* Is there a more “natural” way to derive the regularized loss?



Regularization as a Prior

* So far, we have not assumed any distribution over the parameters [§
* What if we assume 5 ~ N(0,c°I) (the d dimensional normal distribution)?
e (This o is a hyperparameter, not the sigmoid function)

e Consider the modified likelihood

L(B;Z) = pypix (Y, B 1 X)

— pYIX,,B(Y | XMB) ) N(ﬁ’ 010-21)

= (H?=1p,8(yl' | Xl)) gy 202




Regularization as a Prior

* So far, we have not assumed any distribution over the parameters [§
* What if we assume 5 ~ N(0,c°]) (the d dimensional normal distribution)?

e Consider the modified NLL

Ilﬁll
~— \r'/

constant regularization!

f(lB;Z)__ n logpﬁ(yllxl

* Obtain L,regularization on [

e WithA =— !

207
* If B; ~ Laplace(0, c2) for each i, obtain L,regularization



Additional Role of Regularization

* In pg, if we replace [ with ¢f5, where ¢ > 1 (and ¢ € R), then:

* The decision boundary does not change
* The probabilities pz (v | x ) become more confident

pp(y | x) H P1op(V | X)‘/

o ‘71-‘ - . . 2 4 1 9 1 . 9 y
pp(Y=11x)=0.6 propg(Y =11x) =1




Additional Role of Regularization

* Regularization ensures that [f does not become too large
* Prevents overconfidence

* Regularization can also be necessary

* Without regularization (i.e., A = 0) and data is linearly separable, then
gradient descent diverges (i.e., f = £ )



Multi-Class Classification

 What about more than two classes?
* Disease diagnosis: healthy, cold, flu, pneumonia
* Object classification: desk, chair, monitor, bookcase
* In general, consider a finite space of labels Y

® | A

0y A

X, C//QAA
T OE N\ A

_ B \

s

A

>

X1



Multi-Class Classification

* Naive Strategy: One-vs-rest classification
e Step 1: Train |Y| logistic regression models, where model pﬁy(Y =1|x)is
interpreted as the probability that the label for x is y

[ 51t
XXAA

XXX A
>




Multi-Class Logistic Regression

* Strategy: Include separate 3, for each label y € Y = {1, ..., k}
*Let pp(y | x) « ePr” ie.

By x
pﬁ(y | x) = 5T
Zy’eye g
. _ e?1 eZk
* We define softmax(zy, ..., z;) = [ZIi;l 7o 3E eZi]

* Then, ps(y 1 x) = softmax(ﬁfx, ...,,BRTx)y

* Thus, sometimes called softmax regression



Multi-Class Logistic Regression

* Model family
Byx
* f(x) = argmaxps(y | ¥) = arg max——— = arg max ;] x
y y Zy,ey e:By/X y

* Optimization
 Gradient descent on NLL
e Simultaneously update all t
y up parameters {'By}yey



Classification Metrics

* While we minimize the NLL, we often evaluate using accuracy

* However, even accuracy isn’t necessarily the “right” metric
* 1f 99% of labels are negative (i.e., y; = 0), accuracy of f5(x) = 0is 99%!
* For instance, very few patients test positive for most diseases
* “Imbalanced data”

* What are alternative metrics for these settings?



Classification Metrics

* Classify test examples as follows:
* True positive (TP): Actually positive, predictive positive
* False negative (FN): Actually positive, predicted negative
* True negative (TN): Actually negative, predicted negative
* False positive (FP): Actually negative, predicted positive

* Many metrics expressed in terms of these; for example:

TP+ TN FP + FN

dCCUuracy = error = 1 — dCCUuracy =
n n




Confusion Matrix

Predicted Class

Yes No
Vs
< Yes TP FN
@
©
2 No FP TN
@)
<




Confusion Matrix

Predicted Class

Yes No
(Vp)
< Yes 3TP 4FN
®)
“©
g No 6FP 37TN
<

Accuracy = 0.8



Classification Metrics

* For imbalanced metrics, we roughly want to disentangle:
* Accuracy on “positive examples”
* Accuracy on “negative examples”

* Different definitions are possible (and lead to different meanings)!



Sensitivity & Specificity

* Sensitivity: What fraction of actual positives are predicted positive?
* Good sensitivity: If you have the disease, the test correctly detects it
* Also called true positive rate

* Specificity: What fraction of actual negatives are predicted negative?
* Good specificity: If you do not have the disease, the test says so
* Also called true negative rate

* Commonly used in medicine



Sensitivity & Specificity

Predicted Class

Yes No
A TP
Yes tivity =
8 TP FN sensitivity = ———
© TN
§ No FP TN specificty = VT




Sensitivity & Specificity

Predicted Class

Yes No
2 Yes 3TP 4 FN tivity = —
8 sensitivity = ———
- e
g No 6FP 37 TN | specificity = YT




Sensitivity & Specificity

Predicted Class
Yes No

>
n

3TP 4FN sensitivity = 3/7

=
O

6FP 37 TN | specificity = 37/43

Actual Class



Precision & Recall

* Recall: What fraction of actual positives are predicted positive?
* Good recall: If you have the disease, the test correctly detects it
* Also called the true positive rate (and sensitivity)

* Precision: What fraction of predicted positives are actual positives?
* Good precision: If the test says you have the disease, then you have it
* Also called positive predictive value

e Used in information retrieval, NLP



Precision & Recall

Predicted Class

Yes No
v TP
m —
8 Yes TP FN recall = Y
©
g No FP TN
<

. TP
precision =

TP+ FP



Precision & Recall

Predicted Class

Yes No
\ TP
8 Yes 3TP |4FN recall = TP T TN
©
g NoO 6FP B/ TN
<
o TP
precision =

TP+ FP



Precision & Recall

Actual Class

Predicted Class

Yes No
Yes 3TP |4 FN
NoO 6FP B/ TN

precision = 3/9

recall = 3/7



