Announcements

- Quiz 1 due Thursday at 8pm
- Homework 2 due next Wednesday at 8pm
 - Covers linear regression

Announcements: Office Hours

• My office hours will be Thursdays 1-2pm in 611 Levine Hall

Announcements: Homework Submission

- When submitting on GradeScope, please match answers for the written portion with questions
 - Otherwise, makes grading a lot more difficult!
- For future homework, we will deduct ½ point for each sub-problem that is not matched

Announcements: Project Teams

- We will be permitting teams of 4
- However, more work will be expected
 - Expect about 50% more work
 - Teams of 3 are strongly preferred
- Team formation (due Wednesday, September 20)
 - https://forms.gle/q5sW21rHkF8nCXW4A

Recap: Choice of Optimizer

- Strategy 1: Closed-form solution
- Strategy 2: Gradient descent

Recap: Closed-Form Solution

- Setting $\nabla_{\beta} L(\hat{\beta}; Z) = 0$, we have $X^{\top} X \hat{\beta} = X^{\top} Y$
- Assuming $X^{\top}X$ is invertible, we have

 $\hat{\beta}(Z) = (X^{\top}X)^{-1}X^{\top}Y$

• Example:

$$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

• In this case, any
$$\hat{\beta}_2 = 1 - \hat{\beta}_1$$
 is a solution

Recap: Closed-Form Solution

- In general, $X^{\top}X \in \mathbb{R}^{d \times d}$ is the matrix $(X^{\top}X)_{jj'} = \sum_{i=1}^{n} x_{ij}x_{ij'}$
- Case 1: Two features are perfectly correlated
 - Suppose two features j_1 and j_2 are perfectly correlated
 - In other words, $x_{ij_1} = cx_{ij_2}$ for all training examples x_i
 - Then, $(X^{\top}X)_{j_1j} = (X^{\top}X)_{j_2j}$ for all *j*, so the matrix is rank-deficient
 - Note that we also have $(X^{\top}X)_{jj_1} = (X^{\top}X)_{jj_2}$
- Fix: Use regularization or remove one of the correlated features

Recap: Closed-Form Solution

- In general, $X^{\top}X \in \mathbb{R}^{d \times d}$ is the matrix $(X^{\top}X)_{jj'} = \sum_{i=1}^{n} x_{ij}x_{ij'}$
- Case 2: Number of examples *n* is fewer than number of features *d*
 - Recall that the MSE loss is $L(\beta; Z) = ||X\beta Y||_2^2$
 - The MSE is zero when $X\beta = Y$, but there are infinitely many solutions to this linear system when n < d since there are n equations in d variables
 - Can also show that $X^{\top}X$ is rank-deficient
- Fix: Use regularization, remove features, collect more data

Recap: Shortcomings of Closed-Form

- Computing $\hat{\beta}(Z) = (X^T X)^{-1} X^T Y$ can be challenging when the number of features d is large
- Computing $(X^{\top}X)^{-1}$ is $O(d^3)$
 - $d = 10^4$ features $\rightarrow O(10^{12})$
 - Even storing $X^{\top}X$ requires a lot of memory

Recap: Gradient Descent

- Initialize $\beta_1 = \vec{0}$
- Repeat until $\|\beta_t \beta_{t+1}\|_2 \le \epsilon$:

 $\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_\beta L(\beta_t; \mathbf{Z})$

• For linear regression, know the gradient from strategy 1

Recap: Gradient Descent

• Gradient is

$$\nabla_{\beta} L(\beta; Z) = -\frac{2}{n} X^{\mathsf{T}} Y + \frac{2}{n} X^{\mathsf{T}} X \beta + 2\lambda\beta$$
$$= \frac{2}{n} \sum_{i=1}^{n} \left(x_i x_i^{\mathsf{T}} \beta - y_i x_i \right) + 2\lambda\beta$$

- Takes O(n) to compute the gradient!
 - Can we do better?
 - Idea: Use a single example at a time to approximate the gradient

 $\beta \leftarrow \vec{0}$ For $t \in \{1, 2, ...\}$: $\beta' \leftarrow \beta$

$$\boldsymbol{\beta} \leftarrow \boldsymbol{\beta} - \boldsymbol{\alpha} \cdot \nabla_{\boldsymbol{\beta}} L(\boldsymbol{\beta}; \mathbf{Z})$$

$$\beta \leftarrow \vec{0}$$

For $t \in \{1, 2, ...\}$:
 $\beta' \leftarrow \beta$

$$\beta \leftarrow \beta - \alpha \cdot \nabla_{\beta} L(\beta; Z)$$

 $\beta \leftarrow \vec{0}$ For $t \in \{1, 2, ...\}$: $\beta' \leftarrow \beta$ For $i \in \{1, ..., n\}$:

$$\beta \leftarrow \beta - \alpha \cdot \nabla_{\beta} L(\beta; \{(x_i, y_i)\})$$

$$\beta \leftarrow \vec{0}$$

For $t \in \{1, 2, ...\}$:
$$\beta' \leftarrow \beta$$

For $i \in \{1, ..., n\}$:

$$\beta \leftarrow \beta - \alpha \cdot \left(\frac{2}{n} (x_i x_i^{\mathsf{T}} \beta - y_i x_i) + 2\lambda\beta\right)$$

 $\beta \leftarrow \vec{0}$ For $t \in \{1, 2, ...\}$: $\beta' \leftarrow \beta$ For $i \in \{1, ..., n\}$: $\beta \leftarrow \beta - \alpha \cdot \left(\frac{2}{n} \left(x_i x_i^{\mathsf{T}} \beta - y_i x_i\right) + 2\lambda\beta\right)$

- We will see more variations when we get to neural networks
 - Mini-batch stochastic gradient descent
 - Accelerated gradient descent
 - AdaGrad
 - ...

Lecture 5: Logistic Regression (Part 1)

CIS 4190/5190 Spring 2023

Supervised Learning

Data $Z = \{(x_i, y_i)\}_{i=1}^n$ $\hat{\beta}(Z) = \arg \min_{\beta} L(\beta; Z)$ *L* encodes $y_i \approx f_\beta(x_i)$

Model $f_{\widehat{\beta}(Z)}$

Classification

Model $f_{\widehat{\beta}(Z)}$

Data
$$Z = \{(x_i, y_i)\}_{i=1}^n$$

 $\hat{\beta}(Z) = \arg \min_{\beta} L(\beta; Z)$
 $L \text{ encodes } y_i \approx f_{\beta}(x_i)$

Label is a **discrete value** $y_i \in \mathcal{Y} = \{1, \dots, k\}$

(Binary) Classification

- Input: Dataset $Z = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
- **Output:** Model $y_i \approx f_\beta(x_i)$

Image: https://eyecancer.com/uncategorized/choroidalmetastasis-test/

Example: Malignant vs. Benign Ocular Tumor

Loss Minimization View of ML

• Three design decisions

- Model family: What are the candidate models *f*? (E.g., linear functions)
- Loss function: How to define "approximating"? (E.g., MSE loss)
- **Optimizer:** How do we optimize the loss? (E.g., gradient descent)
- How do we adapt to classification?

Linear Functions for (Binary) Classification

- Input: Dataset $Z = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
- Classification:
 - Labels $y_i \in \{0, 1\}$
 - Predict $y_i \approx 1(\beta^{\top} x_i \geq 0)$
 - 1(C) equals 1 if C is true and 0 if C is false
 - How to learn β? Need a loss function!

Loss Functions for Linear Classifiers

• (In)accuracy:

$$L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(y_i \neq f_\beta(x_i)\right)$$

- Computationally intractable
- Often, but not always the "true" loss (e.g., imbalanced data)

Loss Functions for Linear Classifiers

• Distance:

$$L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} \operatorname{dist}(\mathbf{x}_{i}, f_{\beta}) \cdot 1(f_{\beta}(\mathbf{x}_{i}) \neq \mathbf{y}_{i})$$

- If $L(\beta; \mathbb{Z}) = 0$, then 100% accuracy
- Variant of this loss results in SVM
- We consider a more general strategy

Maximum Likelihood Estimation

- A probabilistic viewpoint on learning (from statistics)
- Given x_i , suppose y_i is drawn i.i.d. from distribution $p_{Y|X}(Y = y | x; \beta)$ with parameters β (or density, if y_i is continuous):

 $y_i \sim p_{Y|X}(\cdot \mid x_i; \beta)$

Y is random variable, not vector

- Typically write $p_{\beta}(Y = y \mid x)$ or just $p_{\beta}(y \mid x)$
 - Called a model (and $\{p_{\beta}\}_{\beta}$ is the model family)
 - Will show up convert p_{β} to f_{β} later

Maximum Likelihood Estimation

- Compare to loss function minimization:
 - Before: $y_i \approx f_\beta(x_i)$
 - Now: $y_i \sim p_\beta(\cdot | x_i; \beta)$
- Intuition the difference:
 - $f_{\beta}(x_i)$ just provides a point that y_i should be close to
 - $p_{\beta}(\cdot | x_i; \beta)$ provides a score for each possible y_i
- Maximum likelihood estimation combines the loss function and model family design decisions

Maximum Likelihood Estimation

• Likelihood: Given model p_{β} , the probability of dataset Z (replaces loss function in loss minimization view):

$$L(\beta; Z) = p_{\beta}(Y \mid X) = \prod_{i=1}^{n} p_{\beta}(y_i \mid x_i)$$

• Negative Log-likelihood (NLL): Computationally better behaved form:

$$\ell(\beta; \mathbf{Z}) = -\log L(\beta; \mathbf{Z}) = -\sum_{i=1}^{n} \log p_{\beta}(y_i \mid x_i)$$

Intuition on the Likelihood

• Assume that the conditional density is

$$p_{\beta}(y_i \mid x_i) = N(y_i; \beta^{\mathsf{T}} x_i, 1) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(\beta^{\mathsf{T}} x_i - y_i)^2}{2}}$$

• $N(y; \mu, \sigma^2)$ is the density of the normal (a.k.a. Gaussian) distribution with mean μ and variance σ^2

• Then, the likelihood is

$$L(\beta; Z) = \prod_{i=1}^{n} p_{\beta}(y_i \mid x_i) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(\beta^{\mathsf{T}} x_i - y_i)^2}{2}}$$

• The NLL is

$$\ell(\beta; \mathbf{Z}) = -\sum_{i=1}^{n} \log p_{\beta}(y_i \mid x_i) = \underbrace{\frac{n \log(2\pi)}{2}}_{\text{constant}} + \underbrace{\frac{1}{2} \sum_{i=1}^{n} (\beta^{\mathsf{T}} x_i - y_i)^2}_{\text{MSE!}}$$

• Loss minimization for maximum likelihood estimation:

$$\hat{\beta}(Z) = \arg\min_{\beta} \ell(\beta; Z)$$

• Note: Called maximum likelihood estimation since maximizing the likelihood equivalent to minimizing the NLL

• What about the model family?

$$f_{\beta}(x) = \arg \max_{y} p_{\beta}(y \mid x)$$
$$= \arg \max_{y} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(\beta^{\mathsf{T}} x - y)_{2}^{2}}{2}}$$
$$= \beta^{\mathsf{T}} x$$

• Recovers linear functions!

Loss Minimization View of ML

• Three design decisions

- Model family: What are the candidate models *f*? (E.g., linear functions)
- Loss function: How to define "approximating"? (E.g., MSE loss)
- **Optimizer:** How do we optimize the loss? (E.g., gradient descent)

Maximum Likelihood View of ML

Two design decisions

- Likelihood: Probability $p_{\beta}(y \mid x)$ of data (x, y) given parameters β
- **Optimizer:** How do we optimize the NLL? (E.g., gradient descent)
- Corresponding Loss Minimization View:
 - Model family: Most likely label $f_{\beta}(x) = \arg \max_{y} p_{\beta}(y \mid x)$
 - Loss function: Negative log likelihood (NLL) $\ell(\beta; Z) = -\sum_{i=1}^{n} \log p_{\beta}(y_i \mid x_i)$
- Very powerful framework for designing cutting edge ML algorithms
 - Write down the "right" likelihood, form tractable approximation if needed
 - Especially useful for thinking about non-i.i.d. data

What about classification? compare to linear regression: $p_R(y \mid x_i) \propto e^{-\frac{(\beta^T x_i - y)^2}{2}}$

• Consider the following choice: $p_{\beta}(y | x_i) \ll e$

$$p_{\beta}(Y = 0 \mid x_i) \propto e^{-\frac{\beta' x_i}{2}} \text{ and } p_{\beta}(Y = 1 \mid x_i) \propto e^{\frac{\beta' x_i}{2}}$$

Sigmoid function

• Then, we have

$$p_{\beta}(Y = 1 \mid x_{i}) = \frac{e^{\frac{\beta^{\mathsf{T}} x_{i}}{2}}}{e^{\frac{\beta^{\mathsf{T}} x_{i}}{2}} + e^{-\frac{\beta^{\mathsf{T}} x_{i}}{2}}} = \frac{1}{1 + e^{-\beta^{\mathsf{T}} x_{i}}}$$

What about classification? compare to linear regression: $p_R(v \mid x_i) \propto e^{-\frac{(\beta^T x_i - y)^2}{2}}$

• Consider the following choice: $p_{\beta}(y \mid x_i) \propto e$

$$p_{\beta}(Y = 0 \mid x_i) \propto e^{-\frac{\beta^{\mathsf{T}} x_i}{2}}$$
 and $p_{\beta}(Y = 1 \mid x_i) \propto e^{\frac{\beta^{\mathsf{T}} x_i}{2}}$

Sigmoid function

Then, we have

$$p_{\beta}(Y = 1 \mid x_i) = \frac{e^{\frac{\beta^{\mathsf{T}} x_i}{2}}}{e^{\frac{\beta^{\mathsf{T}} x_i}{2}} + e^{-\frac{\beta^{\mathsf{T}} x_i}{2}}} = \sigma(\beta^{\mathsf{T}} x_i)$$

• Furthermore, $p_{\beta}(Y = \mathbf{0} \mid x_i) = 1 - \sigma(\beta^{\mathsf{T}} x_i)$

Logistic/Sigmoid Function

Logistic Regression Model Family

$$f_{\beta}(x) = \arg \max_{y} p_{\beta}(y \mid x)$$

$$= \arg \max_{y} \begin{cases} \sigma(\beta^{\mathsf{T}}x) & \text{if } y = 1\\ 1 - \sigma(\beta^{\mathsf{T}}x) & \text{if } y = 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } \sigma(\beta^{\mathsf{T}}x) \ge \frac{1}{2}\\ 0 & \text{otherwise} \end{cases}$$

Logistic Regression Model Family

$$f_{\beta}(x) = \arg \max p_{\beta}(y \mid x)$$

$$= \arg \max_{y} \begin{cases} \sigma(\beta^{\mathsf{T}}x) & \text{if } y = 1\\ 1 - \sigma(\beta^{\mathsf{T}}x) & \text{if } y = 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } \sigma(\beta^{\mathsf{T}}x) \ge \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} 1 & \text{if } \beta^{\mathsf{T}}x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

$$= 1(\beta^{\mathsf{T}}x \ge 0)$$

Recovers linear classifiers!

Logistic Regression Algorithm

• Then, we have the following NLL loss:

$$\ell(\beta; Z) = -\sum_{i=1}^{n} \log p_{\beta}(y_i \mid x_i)$$

= $-\sum_{i=1}^{n} 1(y_i = 1) \cdot \log(\sigma(\beta^{\top} x_i)) + 1(y_i = 0) \cdot \log(1 - \sigma(\beta^{\top} x_i))$
= $-\sum_{i=1}^{n} y_i \cdot \log(\sigma(\beta^{\top} x_i)) + (1 - y_i) \cdot \log(1 - \sigma(\beta^{\top} x_i))$

• Logistic regression minimizes this loss:

$$\hat{\beta}(Z) = \arg\min_{\beta} \ell(\beta; Z)$$

• Loss for example *i* is

$$\begin{cases} -\log(\sigma(\beta^{\mathsf{T}} x_i)) & \text{if } y_i = 1\\ -\log(1 - \sigma(\beta^{\mathsf{T}} x_i)) & \text{if } y_i = 0 \end{cases}$$

• Loss for example *i* is

$$\begin{cases} -\log(\sigma(\beta^{\mathsf{T}} x_i)) & \text{if } y_i = 1\\ -\log(1 - \sigma(\beta^{\mathsf{T}} x_i)) & \text{if } y_i = 0 \end{cases}$$

- If $y_i = 1$:
 - If $\sigma(\beta^{\top} x_i) = 1$, then loss = 0
 - As $\sigma(\beta^{\top} x_i) \to 0$, loss $\to \infty$
- If $y_i = 0$
 - If $\sigma(\beta^{\mathsf{T}} x_i) = 0$, then loss = 0
 - As $\sigma(\beta^{\top} x_i) \to 1$, loss $\to \infty$

$$-y_i \cdot \log(\sigma(\beta^{\top} x_i)) - (1 - y_i) \cdot \log(1 - \sigma(\beta^{\top} x_i))$$

- If $y_i = 1$:
 - If $\sigma(\beta^{\mathsf{T}} x_i) = 1$, then loss = 0
 - As $\sigma(\beta^{\top} x_i) \to 0$, loss $\to \infty$
- If $y_i = 0$
 - If $\sigma(\beta^{\mathsf{T}} x_i) = 0$, then loss = 0
 - As $\sigma(\beta^{\top} x_i) \to 1$, loss $\to \infty$

$$-y_i \cdot \log(\sigma(\beta^\top x_i)) - (1 - y_i) \cdot \log(1 - \sigma(\beta^\top x_i))$$

Optimization for Logistic Regression

• To optimize the NLL loss, we need its gradient:

$$\nabla_{\beta}\ell(\beta;Z) = -\sum_{i=1}^{n} y_{i} \cdot \nabla_{\beta}\log(\sigma(\beta^{\mathsf{T}}x_{i})) + (1-y_{i}) \cdot \nabla_{\beta}\log(1-\sigma(\beta^{\mathsf{T}}x_{i}))$$

$$= -\sum_{i=1}^{n} y_{i} \cdot \frac{\nabla_{\beta}\sigma(\beta^{\mathsf{T}}x_{i})}{\sigma(\beta^{\mathsf{T}}x_{i})} - (1-y_{i}) \cdot \frac{\nabla_{\beta}\sigma(\beta^{\mathsf{T}}x_{i})}{1-\sigma(\beta^{\mathsf{T}}x_{i})}$$

$$= -\sum_{i=1}^{n} y_{i} \cdot \frac{\sigma(\beta^{\mathsf{T}}x_{i})(1-\sigma(\beta^{\mathsf{T}}x_{i}))\cdot x_{i}}{\sigma(\beta^{\mathsf{T}}x_{i})} - (1-y_{i}) \cdot \frac{\sigma(\beta^{\mathsf{T}}x_{i})(1-\sigma(\beta^{\mathsf{T}}x_{i}))\cdot x_{i}}{1-\sigma(\beta^{\mathsf{T}}x_{i})}$$

$$= -\sum_{i=1}^{n} y_{i} \cdot (1-\sigma(\beta^{\mathsf{T}}x_{i})) \cdot x_{i} - (1-y_{i}) \cdot \sigma(\beta^{\mathsf{T}}x_{i}) \cdot x_{i}$$

$$= -\sum_{i=1}^{n} (y_{i} - \sigma(\beta^{\mathsf{T}}x_{i})) \cdot x_{i}$$

Optimization for Logistic Regression

• Gradient of NLL:

$$\nabla_{\beta} \ell(\beta; \mathbf{Z}) = \sum_{i=1}^{n} (\sigma(\beta^{\top} x_{i}) - y_{i}) \cdot x_{i}$$

- Surprisingly similar to the gradient for linear regression!
 - Only difference is the σ
- Gradient descent works as before
 - No closed-form solution for $\hat{\beta}(Z)$

Feature Maps

• Can use feature maps, just like linear regression

Regularized Logistic Regression

• We can add L_1 or L_2 regularization to the NLL loss, e.g.:

$$\ell(\beta; \mathbf{Z}) = -\sum_{i=1}^{n} y_i \cdot \log(\sigma(\beta^{\mathsf{T}} x_i)) + (1 - y_i) \cdot \log(1 - \sigma(\beta^{\mathsf{T}} x_i)) + \lambda \cdot \|\beta\|_2^2$$

• Is there a more "natural" way to derive the regularized loss?

Regularization as a Prior

- So far, we have not assumed any distribution over the parameters β
 - What if we assume $\beta \sim N(0, \sigma^2 I)$ (the *d* dimensional normal distribution)?
 - (This σ is a hyperparameter, not the sigmoid function)
- Consider the modified likelihood

 $L(\beta; Z) = p_{Y,\beta|X}(Y,\beta \mid X)$ = $p_{Y|X,\beta}(Y \mid X,\beta) \cdot N(\beta; 0, \sigma^2 I)$ = $\left(\prod_{i=1}^n p_\beta(y_i \mid x_i)\right) \cdot \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{\|\beta\|_2^2}{2\sigma^2}}$

Regularization as a Prior

- So far, we have not assumed any distribution over the parameters β
 - What if we assume $\beta \sim N(0, \sigma^2 I)$ (the *d* dimensional normal distribution)?
- Consider the modified NLL

$$\ell(\beta; Z) = -\sum_{i=1}^{n} \log p_{\beta}(y_i \mid x_i) + \underbrace{\log \sigma \sqrt{2\pi}}_{2\sigma^2} + \underbrace{\frac{\|\beta\|_2^2}{2\sigma^2}}_{2\sigma^2}$$

constant regularization!

- Obtain L_2 regularization on β !
 - With $\lambda = \frac{1}{2\sigma^2}$
 - If $\beta_i \sim \text{Laplace}(0, \sigma^2)$ for each *i*, obtain L_1 regularization

Additional Role of Regularization

- In p_{β} , if we replace β with $c\beta$, where $c \gg 1$ (and $c \in \mathbb{R}$), then:
 - The decision boundary does not change
 - The probabilities $p_{\beta}(y \mid x)$ become more confident

Additional Role of Regularization

- Regularization ensures that β does not become too large
 - Prevents overconfidence
- Regularization can also be necessary
 - Without regularization (i.e., $\lambda = 0$) and data is linearly separable, then gradient descent diverges (i.e., $\beta \to \pm \infty$)

Multi-Class Classification

- What about more than two classes?
 - Disease diagnosis: healthy, cold, flu, pneumonia
 - **Object classification:** desk, chair, monitor, bookcase
 - In general, consider a finite space of labels ${\mathcal Y}$

Multi-Class Classification

- Naïve Strategy: One-vs-rest classification
 - Step 1: Train $|\mathcal{Y}|$ logistic regression models, where model $p_{\beta_y}(Y = 1 \mid x)$ is interpreted as the probability that the label for x is y
 - Step 2: Given a new input x, predict label $y = \arg \max p_{\beta_{x'}} (Y = 1 | x)$

Multi-Class Logistic Regression

- Strategy: Include separate β_y for each label $y \in \mathcal{Y} = \{1, ..., k\}$
- Let $p_{\beta}(y \mid x) \propto e^{\beta_y^{\mathsf{T}} x}$, i.e.

$$p_{\beta}(y \mid x) = \frac{e^{\beta_{y}^{\mathsf{T}}x}}{\sum_{y' \in \mathcal{Y}} e^{\beta_{y'}^{\mathsf{T}}x}}$$

- We define softmax $(z_1, ..., z_k) = \begin{bmatrix} e^{z_1} & \dots & e^{z_k} \\ \frac{\sum_{i=1}^k e^{z_i}}{\sum_{i=1}^k e^{z_i}} & \dots & \frac{e^{z_k}}{\sum_{i=1}^k e^{z_i}} \end{bmatrix}$
- Then, $p_{\beta}(y \mid x) = \operatorname{softmax}(\beta_1^{\top} x, \dots, \beta_k^{\top} x)_{y}$
 - Thus, sometimes called **softmax regression**

Multi-Class Logistic Regression

• Model family

•
$$f_{\beta}(x) = \arg \max_{y} p_{\beta}(y \mid x) = \arg \max_{y} \frac{e^{\beta y x}}{\sum_{y' \in y} e^{\beta y' x}} = \arg \max_{y} \beta_{y}^{\mathsf{T}} x$$

- Optimization
 - Gradient descent on NLL
 - Simultaneously update all parameters $\{\beta_{y}\}_{y \in \mathcal{U}}$

Classification Metrics

- While we minimize the NLL, we often evaluate using accuracy
- However, even accuracy isn't necessarily the "right" metric
 - If 99% of labels are negative (i.e., $y_i = 0$), accuracy of $f_\beta(x) = 0$ is 99%!
 - For instance, very few patients test positive for most diseases
 - "Imbalanced data"
- What are alternative metrics for these settings?

Classification Metrics

• Classify test examples as follows:

- True positive (TP): Actually positive, predictive positive
- False negative (FN): Actually positive, predicted negative
- True negative (TN): Actually negative, predicted negative
- False positive (FP): Actually negative, predicted positive
- Many metrics expressed in terms of these; for example:

accuracy =
$$\frac{TP + TN}{n}$$
 error = 1 - accuracy = $\frac{FP + FN}{n}$

Confusion Matrix

Confusion Matrix

		Predicted Class	
		Yes	No
Actual Class	Yes	3 TP	4 FN
	No	6 FP	37 TN

Accuracy = 0.8

Classification Metrics

- For imbalanced metrics, we roughly want to disentangle:
 - Accuracy on "positive examples"
 - Accuracy on "negative examples"
- Different definitions are possible (and lead to different meanings)!

- Sensitivity: What fraction of actual positives are predicted positive?
 - Good sensitivity: If you have the disease, the test correctly detects it
 - Also called true positive rate
- Specificity: What fraction of actual negatives are predicted negative?
 - Good specificity: If you do not have the disease, the test says so
 - Also called true negative rate
- Commonly used in medicine

- Recall: What fraction of actual positives are predicted positive?
 - Good recall: If you have the disease, the test correctly detects it
 - Also called the true positive rate (and sensitivity)
- Precision: What fraction of predicted positives are actual positives?
 - Good precision: If the test says you have the disease, then you have it
 - Also called **positive predictive value**
- Used in information retrieval, NLP

precision = 3/9