Upcoming Deadlines

- Project Team Formation due tonight
- Quiz 1 due tomorrow
- HW 2 due in one week

Lecture 6: Logistic Regression

CIS 4190/5190 Spring 2023

Recap: Maximum Likelihood View of ML

Two design decisions

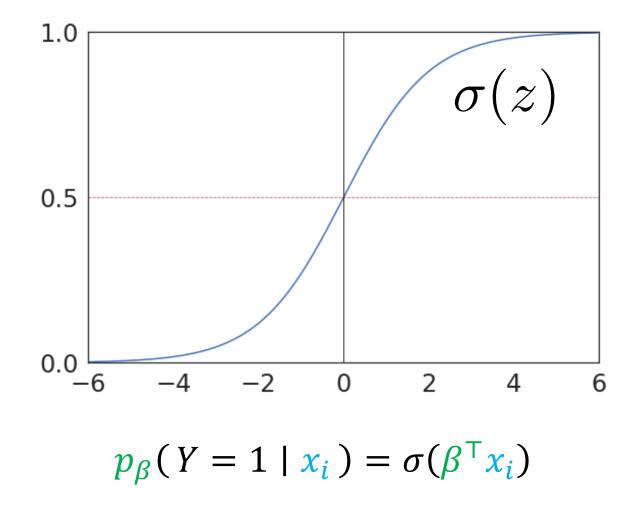
- Likelihood: Probability $p_{\beta}(y \mid x)$ of data (x, y) given parameters β
- **Optimizer:** How do we optimize the NLL? (E.g., gradient descent)
- Corresponding Loss Minimization View:
 - Model family: Most likely label $f_{\beta}(x) = \arg \max_{y} p_{\beta}(y \mid x)$
 - Loss function: Negative log likelihood (NLL) $\ell(\beta; Z) = -\sum_{i=1}^{n} \log p_{\beta}(y_i \mid x_i)$
- Very powerful framework for designing cutting edge ML algorithms
 - Write down the "right" likelihood, form tractable approximation if needed
 - Especially useful for thinking about non-i.i.d. data

Recap: Logistic Regression

• Consider the following choice:

$$p_{\beta}(Y = 1 \mid x_i) = \sigma(\beta^{\top} x_i)$$
$$p_{\beta}(Y = 0 \mid x_i) = 1 - \sigma(\beta^{\top} x_i)$$

Recap: Logistic Regression



Recap: Logistic Regression

• Model family: Linear classifiers $f_{\beta}(x) = 1(\beta^{\top}x \ge 0)$

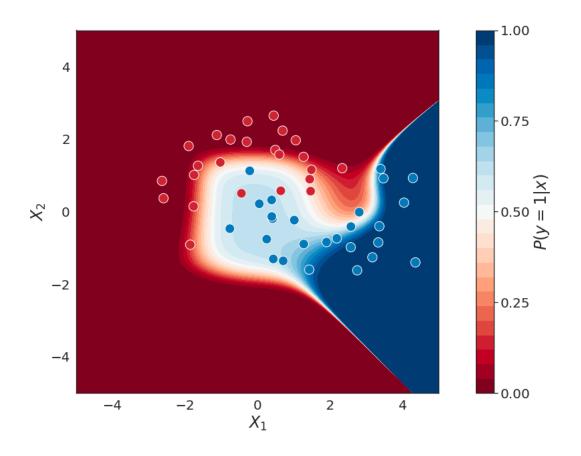
Loss function: Negative log likelihood

$$\ell(\beta; \mathbf{Z}) = -\sum_{i=1}^{n} y_i \cdot \log(\sigma(\beta^{\mathsf{T}} x_i)) + (1 - y_i) \cdot \log(1 - \sigma(\beta^{\mathsf{T}} x_i))$$

• **Optimizer:** Gradient descent

Feature Maps

• Can use feature maps, just like linear regression



Regularized Logistic Regression

• We can add L_1 or L_2 regularization to the NLL loss, e.g.:

$$\ell(\beta; \mathbf{Z}) = -\sum_{i=1}^{n} y_i \cdot \log(\sigma(\beta^{\mathsf{T}} x_i)) + (1 - y_i) \cdot \log(1 - \sigma(\beta^{\mathsf{T}} x_i)) + \lambda \cdot \|\beta\|_2^2$$

• Is there a more "natural" way to derive the regularized loss?

Regularization as a Prior

- So far, we have not assumed any distribution over the parameters β
 - What if we assume $\beta \sim N(0, \sigma^2 I)$ (the *d* dimensional normal distribution)?
- Consider the modified likelihood

$$L(\beta; Z) = p_{Y,\beta|X}(Y,\beta \mid X)$$

= $p_{Y|X,\beta}(Y \mid X,\beta) \cdot N(\beta; 0, \sigma^2 I)$
= $\left(\prod_{i=1}^n p_\beta(y_i \mid x_i)\right) \cdot \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{\|\beta\|_2^2}{2\sigma^2}}$

Regularization as a Prior

- So far, we have not assumed any distribution over the parameters β
 - What if we assume $\beta \sim N(0, \sigma^2 I)$ (the *d* dimensional normal distribution)?
- Consider the modified NLL

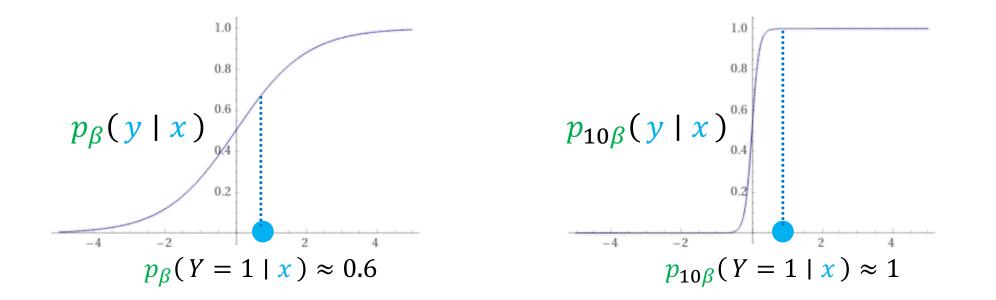
$$\ell(\beta; \mathbf{Z}) = -\sum_{i=1}^{n} \log p_{\beta}(\mathbf{y}_{i} \mid \mathbf{x}_{i}) + \underbrace{\log \sigma \sqrt{2\pi}}_{\mathbf{Z}\sigma^{2}} + \underbrace{\frac{\|\beta\|_{2}^{2}}{2\sigma^{2}}}_{\mathbf{Z}\sigma^{2}}$$

constant regularization!

- Obtain L_2 regularization on β !
 - With $\lambda = \frac{1}{2\sigma^2}$
 - If $\beta_i \sim \text{Laplace}(0, \sigma^2)$ for each *i*, obtain L_1 regularization

Additional Role of Regularization

- In p_{β} , if we replace β with $c \cdot \beta$, where $c \gg 1$ (and $c \in \mathbb{R}$), then:
 - The decision boundary does not change
 - The probabilities $p_{\beta}(y \mid x)$ become more confident

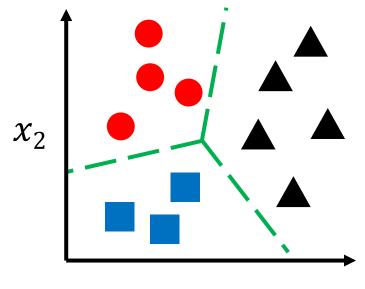


Additional Role of Regularization

- Regularization ensures that β does not become too large
 - Prevents overconfidence
- Regularization can also be necessary
 - Without regularization (i.e., $\lambda = 0$) and data is linearly separable, then gradient descent diverges (i.e., $\beta \to \pm \infty$)

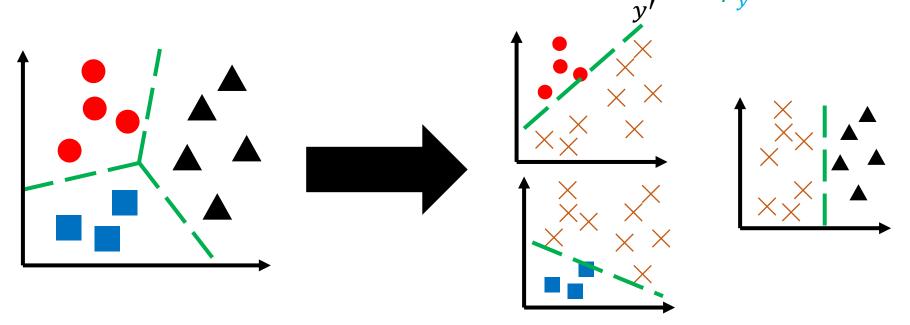
Multi-Class Classification

- What about more than two classes?
 - Disease diagnosis: healthy, cold, flu, pneumonia
 - **Object classification:** desk, chair, monitor, bookcase
 - In general, consider a finite space of labels ${\mathcal Y}$



Multi-Class Classification

- Naïve Strategy: One-vs-rest classification
 - Step 1: Train $|\mathcal{Y}|$ logistic regression models, where model $p_{\beta_y}(Y = 1 \mid x)$ is interpreted as the probability that the label for x is y
 - Step 2: Given a new input x, predict label $y = \arg \max p_{\beta_{x'}} (Y = 1 | x)$



Multi-Class Logistic Regression

- Strategy: Include separate β_y for each label $y \in \mathcal{Y} = \{1, ..., k\}$
- Let $p_{\beta}(y \mid x) \propto e^{\beta_y^{\mathsf{T}} x}$, i.e.

$$p_{\beta}(y \mid x) = \frac{e^{\beta_{y}^{\mathsf{T}}x}}{\sum_{y' \in \mathcal{Y}} e^{\beta_{y'}^{\mathsf{T}}x}}$$

- We define softmax $(z_1, ..., z_k) = \begin{bmatrix} e^{z_1} & \dots & \frac{e^{z_k}}{\sum_{i=1}^k e^{z_i}} & \dots & \frac{e^{z_k}}{\sum_{i=1}^k e^{z_i}} \end{bmatrix}$
- Then, $p_{\beta}(y \mid x) = \operatorname{softmax}(\beta_1^{\top} x, \dots, \beta_k^{\top} x)_{y}$
 - Thus, sometimes called **softmax regression**

Multi-Class Logistic Regression

• Model family

•
$$f_{\beta}(x) = \arg \max_{y} p_{\beta}(y \mid x) = \arg \max_{y} \frac{e^{\beta y x}}{\sum_{y' \in y} e^{\beta y' x}} = \arg \max_{y} \beta_{y}^{\mathsf{T}} x$$

- Optimization
 - Gradient descent on NLL
 - Simultaneously update all parameters $\{\beta_{y}\}_{y \in \mathcal{U}}$

Classification Metrics

- While we minimize the NLL, we often evaluate using accuracy
- However, even accuracy isn't necessarily the "right" metric
 - If 99% of labels are negative (i.e., $y_i = 0$), accuracy of $f_\beta(x) = 0$ is 99%!
 - For instance, very few patients test positive for most diseases
 - "Imbalanced data"
- What are alternative metrics for these settings?

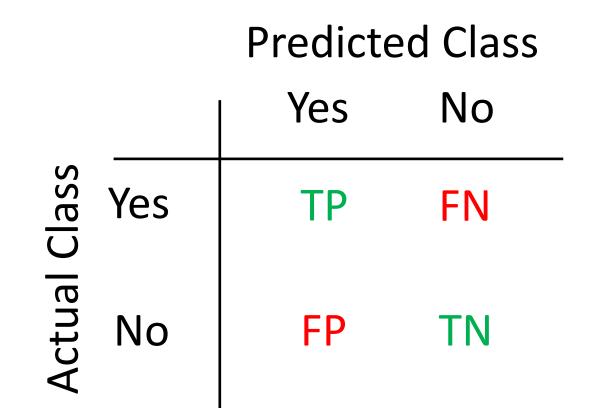
Classification Metrics

• Classify test examples as follows:

- True positive (TP): Actually positive, predictive positive
- False negative (FN): Actually positive, predicted negative
- True negative (TN): Actually negative, predicted negative
- False positive (FP): Actually negative, predicted positive
- Many metrics expressed in terms of these; for example:

accuracy =
$$\frac{TP + TN}{n}$$
 error = 1 - accuracy = $\frac{FP + FN}{n}$

Confusion Matrix



Confusion Matrix

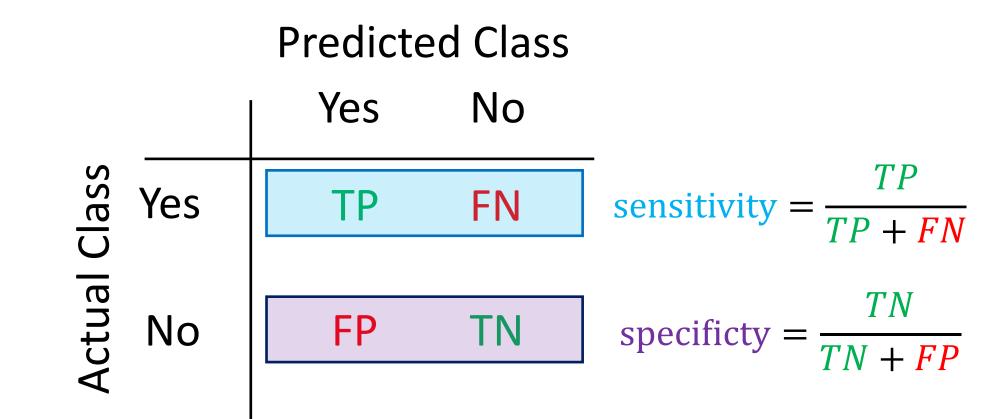
		Predicted Class	
		Yes	No
Actual Class	Yes	3 TP	4 FN
	No	6 FP	37 TN

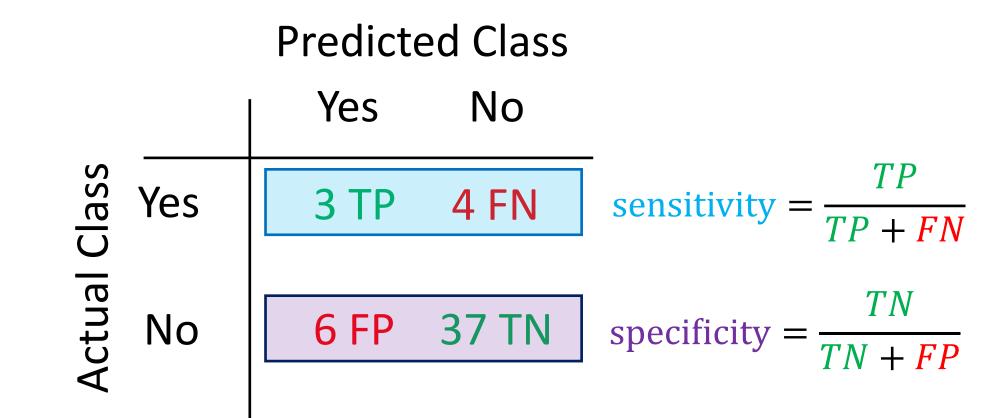
Accuracy = 0.8

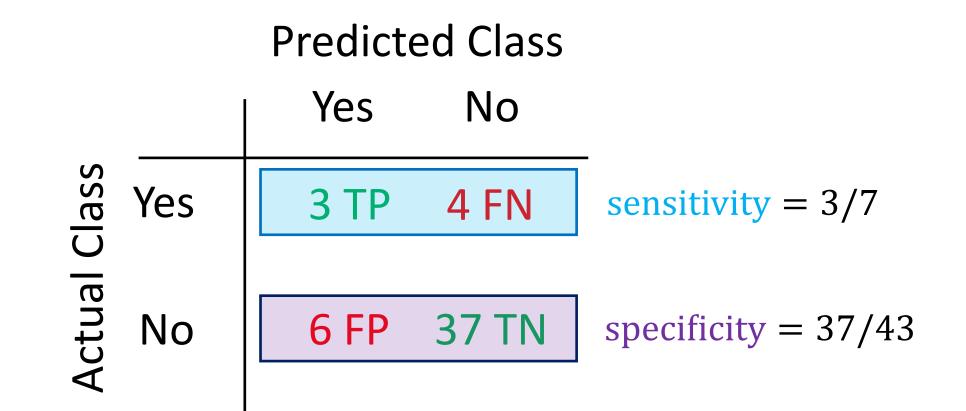
Classification Metrics

- For imbalanced metrics, we roughly want to disentangle:
 - Accuracy on "positive examples"
 - Accuracy on "negative examples"
- Different definitions are possible (and lead to different meanings)!

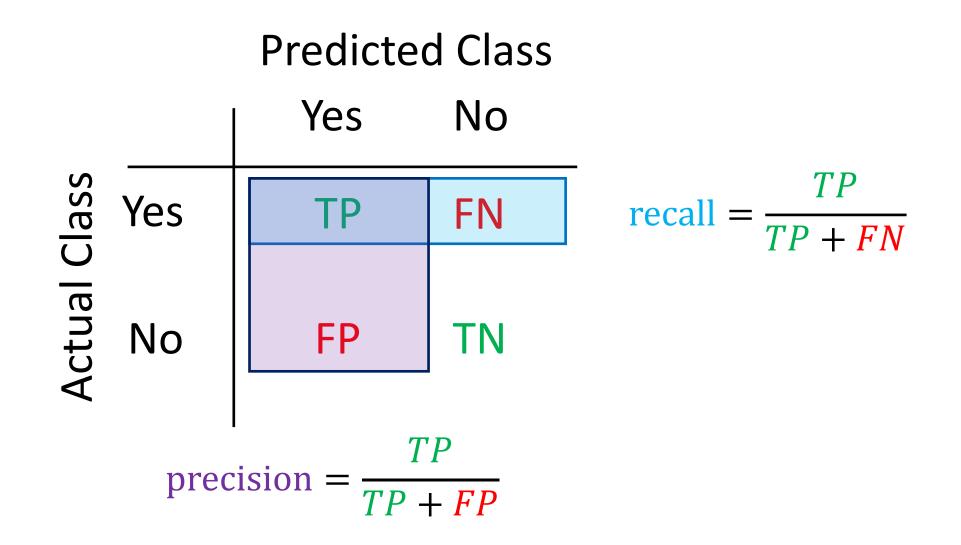
- Sensitivity: What fraction of actual positives are predicted positive?
 - Good sensitivity: If you have the disease, the test correctly detects it
 - Also called true positive rate
- Specificity: What fraction of actual negatives are predicted negative?
 - Good specificity: If you do not have the disease, the test says so
 - Also called true negative rate
- Commonly used in medicine

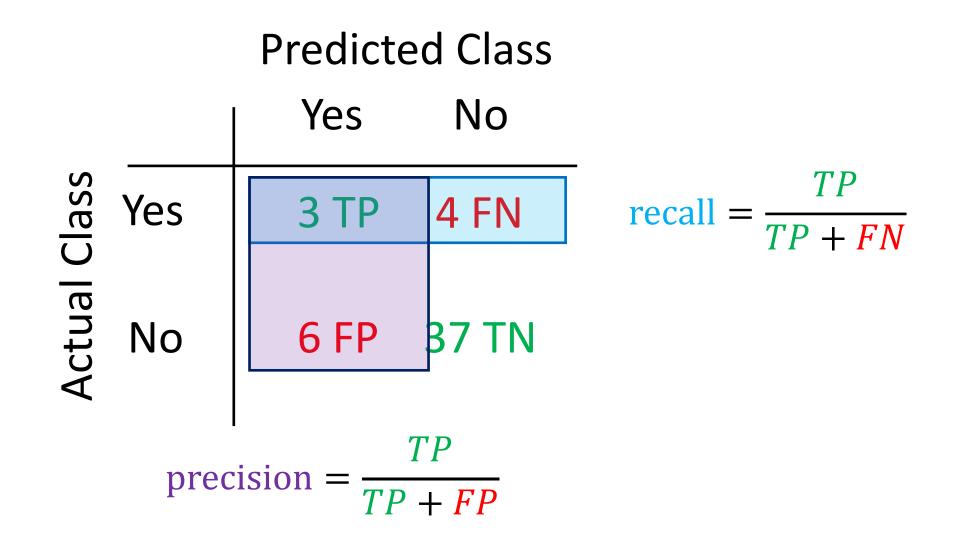


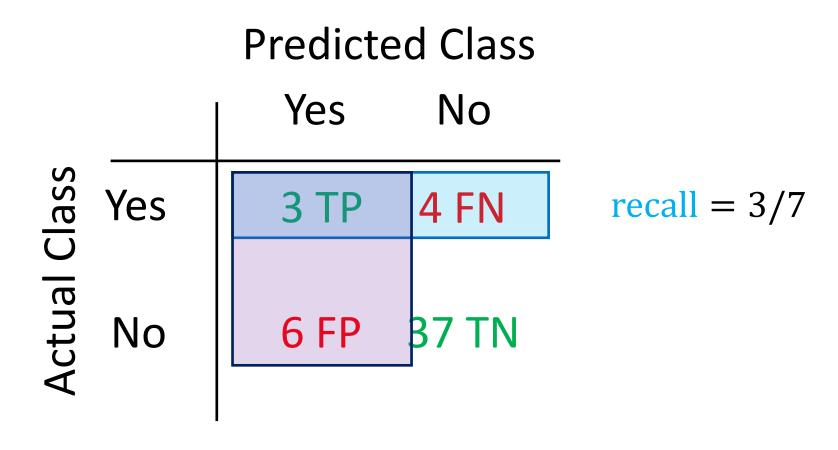




- Recall: What fraction of actual positives are predicted positive?
 - Good recall: If you have the disease, the test correctly detects it
 - Also called the true positive rate (and sensitivity)
- Precision: What fraction of predicted positives are actual positives?
 - Good precision: If the test says you have the disease, then you have it
 - Also called **positive predictive value**
- Used in information retrieval, NLP







precision = 3/9

Classification Metrics

How to obtain a single metric?

- Combination, e.g., F_1 score = $\frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$ is the harmonic mean
- More on this later

• How to choose the "right" metric?

- No generally correct answer
- Depends on the goals for the specific problem/domain

Optimizing a Classification Metric

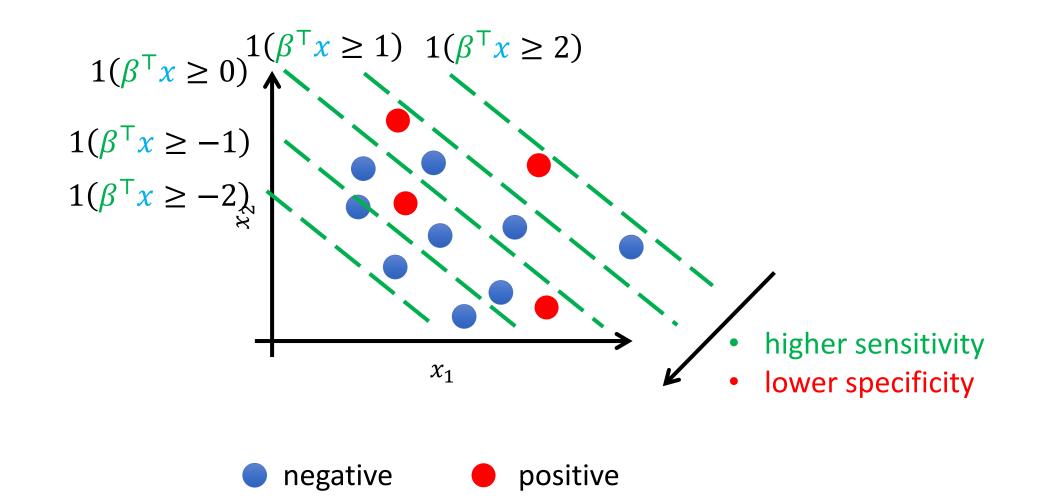
- We are training a model to minimize NLL, but we have a different "true" metric that we actually want to optimize
- Two strategies (can be used together):
 - **Strategy 1:** Optimize prediction threshold threshold
 - Strategy 2: Upweight positive (or negative) examples

• Consider hyperparameter au for the threshold:

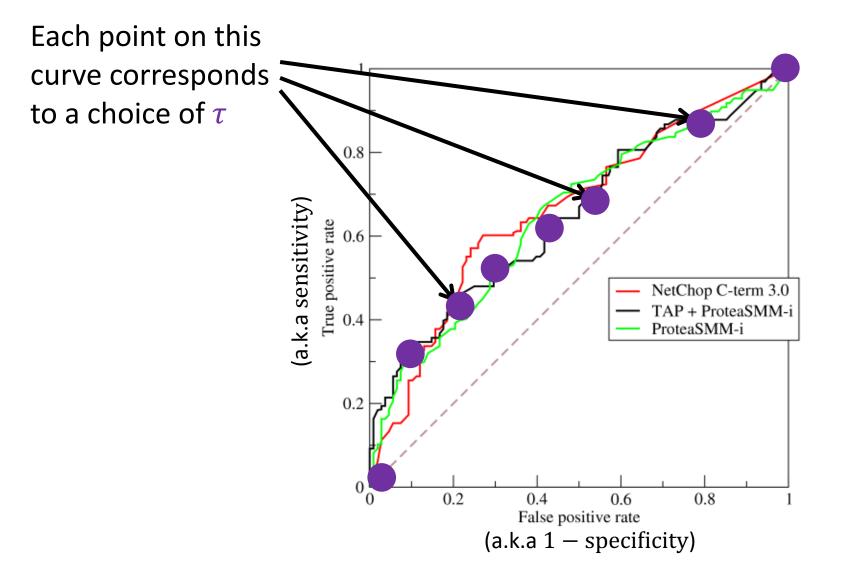
 $f_{\beta}(x) = 1(\beta^{\top}x \ge 0)$

• Consider hyperparameter au for the threshold:

 $f_{\beta}(x) = 1(\beta^{\top} x \ge \tau)$



Visualization: ROC Curve



Aside: Area under ROC curve is another metric people consider when evaluating $\hat{\beta}(Z)$

• Consider hyperparameter au for the threshold:

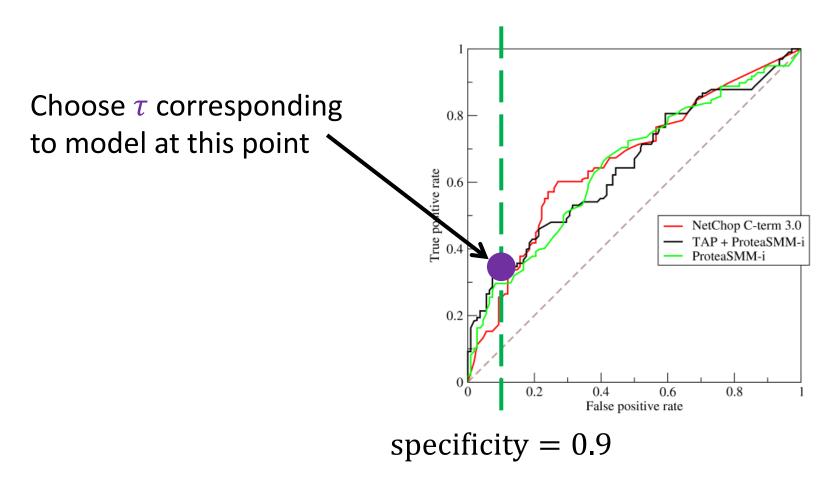
 $f_{\beta}(x) = 1(\beta^{\top} x \ge \tau)$

- Unlike most hyperparameters, we choose this one **after** we have already fit the model on the training data
 - Then, choose the value of au that optimizes the desired metric
 - Fit using validation data (training data is OK if needed)

- Step 1: Compute the optimal parameters $\hat{\beta}(Z_{\text{train}})$
 - Using gradient descent on NLL loss over the training dataset
 - Resulting model: $f_{\hat{\beta}(Z_{\text{train}})}(x) = 1(\hat{\beta}(Z_{\text{train}})^{\mathsf{T}}x \ge 0)$
- Step 2: Modify threshold au in model to optimize desired metric
 - Search over a fixed set of au on the validation dataset
 - Resulting model: $f_{\widehat{\beta}(Z_{\text{train}}),\widehat{\tau}(Z_{\text{val}})}(x) = 1\left(\widehat{\beta}(Z_{\text{train}})^{\mathsf{T}}x \ge \widehat{\tau}(Z_{\text{val}})\right)$
- Step 3: Evaluate desired metric on test set

Choice of Metric Revisited

• Common strategy: Optimize one metric at fixed value of another



Optimizing a Classification Metric

- We are training a model to minimize NLL, but we have a different "true" metric that we actually want to optimize
- Two strategies (can be used together):
 - **Strategy 1:** Optimize prediction threshold threshold
 - Strategy 2: Upweight positive (or negative) examples

Class Re-Weighting

• Weighted NLL: Include a class-dependent weight W_{γ} :

$$\ell(\beta; \mathbf{Z}) = -\sum_{i=1}^{n} w_{y_i} \cdot \log p_{\beta}(y_i \mid x_i)$$

- Intuition: Tradeoff between accuracy on negative/positive examples
 - To improve sensitivity (true positive rate), upweight positive examples
 - To improve specificity (true negative rate), upweight negative examples
- Can use this strategy to learn β , and the first strategy to choose τ

Classification Metrics

- NLL isn't usually the "true" metric
 - Instead, frequently used due to good computational properties
- Many choices with different meanings
- Typical strategy:
 - Learn β by minimizing the NLL loss
 - Choose class weights w_y and threshold τ to optimize desired metric