Upcoming Deadlines

- **Project Team Formation due tonight**
- **Quiz 1 due tomorrow**
- HW 2 due in one week

Lecture 6: Logistic Regression

CIS 4190/5190 Spring 2023

Recap: Maximum Likelihood View of ML

• **Two design decisions**

- Likelihood: Probability $p_{\beta}(y | x)$ of data (x, y) given parameters β
- **Optimizer:** How do we optimize the NLL? (E.g., gradient descent)
- **Corresponding Loss Minimization View:**
	- **Model family:** Most likely label $f_{\beta}(x) = \arg \max_{y} p_{\beta}(y | x)$
	- Loss function: Negative log likelihood (NLL) $\ell(\beta; Z) = -\sum_{i=1}^n \log p_\beta(y_i \mid x_i)$
- Very powerful framework for designing cutting edge ML algorithms
	- Write down the "right" likelihood, form tractable approximation if needed
	- Especially useful for thinking about non-i.i.d. data

Recap: Logistic Regression

• Consider the following choice:

$$
p_{\beta}(Y = 1 | x_i) = \sigma(\beta^{\top} x_i)
$$

$$
p_{\beta}(Y = 0 | x_i) = 1 - \sigma(\beta^{\top} x_i)
$$

Recap: Logistic Regression

Recap: Logistic Regression

• **Model family:** Linear classifiers $f_{\beta}(x) = 1(\beta^{\top} x \ge 0)$

Loss function: Negative log likelihood

$$
\ell(\beta; Z) = -\sum_{i=1}^n y_i \cdot \log(\sigma(\beta^\top x_i)) + (1 - y_i) \cdot \log(1 - \sigma(\beta^\top x_i))
$$

• **Optimizer:** Gradient descent

Feature Maps

• Can use feature maps, just like linear regression

Regularized Logistic Regression

• We can add L_1 or L_2 regularization to the NLL loss, e.g.:

$$
\ell(\beta; Z) = -\sum_{i=1}^{n} y_i \cdot \log(\sigma(\beta^{\top} x_i)) + (1 - y_i) \cdot \log(1 - \sigma(\beta^{\top} x_i)) + \lambda \cdot ||\beta||_2^2
$$

• Is there a more "natural" way to derive the regularized loss?

Regularization as a Prior

- So far, we have not assumed any distribution over the parameters β
	- What if we assume $\beta \sim N(0, \sigma^2 I)$ (the d dimensional normal distribution)?
- Consider the modified likelihood

$$
L(\beta; Z) = p_{Y, \beta | X}(Y, \beta | X)
$$

= $p_{Y | X, \beta}(Y | X, \beta) \cdot N(\beta; 0, \sigma^2 I)$
=
$$
(\prod_{i=1}^n p_{\beta}(y_i | x_i)) \cdot \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{||\beta||_2^2}{2\sigma^2}}
$$

Regularization as a Prior

- So far, we have not assumed any distribution over the parameters β
	- What if we assume $\beta \sim N(0, \sigma^2 I)$ (the d dimensional normal distribution)?
- Consider the modified NLL

$$
\ell(\beta; Z) = -\sum_{i=1}^n \log p_\beta(y_i \mid x_i) + \log \sigma \sqrt{2\pi} + \frac{\|\beta\|_2^2}{2\sigma^2}
$$

constant regularization!

- Obtain L_2 regularization on $\beta!$
	- With $\lambda =$ 1 $2\sigma^2$
	- If $\beta_i \sim \text{Laplace}(0, \sigma^2)$ for each i, obtain L_1 regularization

Additional Role of Regularization

- In p_{β} , if we replace β with $c \cdot \beta$, where $c \gg 1$ (and $c \in \mathbb{R}$), then:
	- The decision boundary does not change
	- The probabilities $p_{\beta}(y | x)$ become more confident

Additional Role of Regularization

- Regularization ensures that β does not become too large
	- Prevents overconfidence
- Regularization can also be **necessary**
	- Without regularization (i.e., $\lambda = 0$) and data is linearly separable, then gradient descent diverges (i.e., $\beta \rightarrow \pm \infty$)

Multi-Class Classification

- What about more than two classes?
	- **Disease diagnosis:** healthy, cold, flu, pneumonia
	- **Object classification:** desk, chair, monitor, bookcase
	- In general, consider a finite space of labels y

Multi-Class Classification

- **Naïve Strategy:** One-vs-rest classification
	- Step 1: Train $|\mathcal{Y}|$ logistic regression models, where model $p_{\beta_{\mathcal{Y}}}(Y=1 \mid x)$ is interpreted as the probability that the label for x is y
	- **Step 2:** Given a new input x , predict label $y = \arg \max x$ $p_{\beta_{y'}}$ ($Y = 1 | x$

Multi-Class Logistic Regression

- **Strategy:** Include separate β_{ν} for each label $y \in \mathcal{Y} = \{1, ..., k\}$
- Let $p_\beta(\, y \mid x \,) \propto e^{\beta \frac{\mathsf{T}}{\mathsf{y}} x}$, i.e.

$$
p_{\beta}(y \mid x) = \frac{e^{\beta y} x}{\sum_{y' \in y} e^{\beta y / x}}
$$

- We define softmax $(z_1, ..., z_k)$ = $e^{Z}1$ $\frac{e^{Z_1}}{\sum_{i=1}^k e^{Z_i}}$ … $\frac{e^{Z_k}}{\sum_{i=1}^k e^{Z_i}}$
- Then, $p_{\beta}(y | x) = \text{softmax}(\beta_1^\top x, ..., \beta_k^\top x)$ \overline{y}
	- Thus, sometimes called **softmax regression**

Multi-Class Logistic Regression

• **Model family**

•
$$
f_{\beta}(x) = \arg \max_{y} p_{\beta}(y | x) = \arg \max_{y} \frac{e^{\beta y}^{\top} x}{\sum_{y' \in y} e^{\beta y/x}} = \arg \max_{y} \beta y^{\top} x
$$

- **Optimization**
	- Gradient descent on NLL
	- Simultaneously update all parameters $\{ \beta_y \}_{y \in \mathcal{U}}$

Classification Metrics

- While we minimize the NLL, we often evaluate using **accuracy**
- However, even accuracy isn't necessarily the "right" metric
	- If 99% of labels are negative (i.e., $y_i = 0$), accuracy of $f_\beta(x) = 0$ is 99%!
	- For instance, very few patients test positive for most diseases
	- "Imbalanced data"
- What are alternative metrics for these settings?

Classification Metrics

• **Classify test examples as follows:**

- **True positive (TP):** Actually positive, predictive positive
- **False negative (FN):** Actually positive, predicted negative
- **True negative (TN):** Actually negative, predicted negative
- **False positive (FP):** Actually negative, predicted positive
- Many metrics expressed in terms of these; for example:

$$
accuracy = \frac{TP + TN}{n}
$$
 error = 1 - accuracy = $\frac{FP + FN}{n}$

Confusion Matrix

Confusion Matrix

 $Accuracy = 0.8$

Classification Metrics

- For imbalanced metrics, we roughly want to disentangle:
	- Accuracy on "positive examples"
	- Accuracy on "negative examples"
- Different definitions are possible (and lead to different meanings)!

- **Sensitivity:** What fraction of **actual positives** are **predicted positive**?
	- **Good sensitivity:** If you have the disease, the test correctly detects it
	- Also called **true positive rate**
- **Specificity:** What fraction of **actual negatives** are **predicted negative**?
	- **Good specificity:** If you do not have the disease, the test says so
	- Also called **true negative rate**
- Commonly used in medicine

- **Recall:** What fraction of **actual positives** are **predicted positive**?
	- **Good recall:** If you have the disease, the test correctly detects it
	- Also called the **true positive rate** (and sensitivity)
- **Precision:** What fraction of **predicted positives** are **actual positives**?
	- **Good precision:** If the test says you have the disease, then you have it
	- Also called **positive predictive value**
- Used in information retrieval, NLP

 $precision = 3/9$

Classification Metrics

• **How to obtain a single metric?**

- Combination, e.g., F_1 score = 2·precision·recall <u>Epredision recall</u> is the harmonic mean
precision+recall
- More on this later

• **How to choose the "right" metric?**

- No generally correct answer
- Depends on the goals for the specific problem/domain

Optimizing a Classification Metric

- We are training a model to minimize NLL, but we have a different "true" metric that we actually want to optimize
- Two strategies (can be used together):
	- **Strategy 1:** Optimize prediction threshold threshold
	- **Strategy 2:** Upweight positive (or negative) examples

• Consider hyperparameter τ for the threshold:

 $f_{\beta}(x) = 1(\beta^{\top} x \geq 0)$

• Consider hyperparameter τ for the threshold:

 $f_{\beta}(x) = 1(\beta^{\top} x \geq \tau)$

Visualization: ROC Curve

Aside: Area under ROC curve is another metric people consider when evaluating $\hat{\beta}(Z)$

• Consider hyperparameter τ for the threshold:

 $f_{\beta}(x) = 1(\beta^{\top} x \geq \tau)$

- Unlike most hyperparameters, we choose this one **after** we have already fit the model on the training data
	- Then, choose the value of τ that optimizes the desired metric
	- Fit using validation data (training data is OK if needed)

- **Step 1:** Compute the optimal parameters $\hat{\beta}(Z_{train})$
	- Using gradient descent on NLL loss over the training dataset
	- **Resulting model:** $f_{\widehat{\beta}(Z_{\text{train}})}(x) = 1 (\widehat{\beta}(Z_{\text{train}})^{\top} x \geq 0)$
- **Step 2:** Modify threshold τ in model to optimize desired metric
	- Search over a fixed set of τ on the validation dataset
	- **Resulting model:** $f_{\widehat{\beta}(Z_{\text{train}}),\widehat{\tau}(Z_{\text{val}})}(x) = 1 \left(\widehat{\beta}(Z_{\text{train}})^{\top} x \geq \widehat{\tau}(Z_{\text{val}}) \right)$
- **Step 3:** Evaluate desired metric on test set

Choice of Metric Revisited

• **Common strategy:** Optimize one metric at fixed value of another

Optimizing a Classification Metric

- We are training a model to minimize NLL, but we have a different "true" metric that we actually want to optimize
- Two strategies (can be used together):
	- **Strategy 1:** Optimize prediction threshold threshold
	- **Strategy 2:** Upweight positive (or negative) examples

Class Re-Weighting

• **Weighted NLL:** Include a class-dependent weight W_v :

$$
\ell(\beta; Z) = -\sum_{i=1}^{n} w_{y_i} \cdot \log p_{\beta}(y_i \mid x_i)
$$

- **Intuition:** Tradeoff between accuracy on negative/positive examples
	- To improve sensitivity (true positive rate), upweight positive examples
	- To improve specificity (true negative rate), upweight negative examples
- Can use this strategy to learn β , and the first strategy to choose τ

Classification Metrics

- NLL isn't usually the "true" metric
	- Instead, frequently used due to good computational properties
- Many choices with different meanings
- Typical strategy:
	- Learn β by minimizing the NLL loss
	- Choose class weights w_v and threshold τ to optimize desired metric