
Upcoming Deadlines

• Project Team Formation due tonight

• Quiz 1 due tomorrow

• HW 2 due in one week



Lecture 6: Logistic Regression
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Recap: Maximum Likelihood View of ML

• Two design decisions
• Likelihood: Probability 𝑝! 𝑦 𝑥  of data 𝑥, 𝑦  given parameters 𝛽
• Optimizer: How do we optimize the NLL? (E.g., gradient descent)

• Corresponding Loss Minimization View:
• Model family: Most likely label 𝑓! 𝑥 = arg	max" 𝑝! 𝑦 𝑥
• Loss function: Negative log likelihood (NLL) ℓ 𝛽; 𝑍 = −∑#$%& log 𝑝! 𝑦# 𝑥#

• Very powerful framework for designing cutting edge ML algorithms
• Write down the “right” likelihood, form tractable approximation if needed
• Especially useful for thinking about non-i.i.d. data



Recap: Logistic Regression

• Consider the following choice:

   𝑝! 𝑌 = 1 𝑥" = 𝜎 𝛽#𝑥"  
   𝑝! 𝑌 = 0 𝑥" = 1 − 𝜎 𝛽#𝑥"  



Recap: Logistic Regression
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𝑝! 𝑌 = 1 𝑥" = 𝜎 𝛽#𝑥"



Recap: Logistic Regression

• Model family: Linear classifiers 𝑓! 𝑥 = 1 𝛽#𝑥 ≥ 0

Loss function: Negative log likelihood

ℓ 𝛽; 𝑍 = −/
"$%

&

𝑦" ⋅ log 𝜎 𝛽#𝑥" + 1 − 𝑦" ⋅ log 1 − 𝜎 𝛽#𝑥"

• Optimizer: Gradient descent



Feature Maps

• Can use feature maps, just like linear regression



Regularized Logistic Regression

• We can add 𝐿% or 𝐿' regularization to the NLL loss, e.g.:

ℓ 𝛽; 𝑍 = −5
#$%

&

𝑦# ⋅ log 𝜎 𝛽'𝑥# + 1 − 𝑦# ⋅ log 1 − 𝜎 𝛽'𝑥# + 𝜆 ⋅ 𝛽 (
(

• Is there a more “natural” way to derive the regularized loss?



Regularization as a Prior

• So far, we have not assumed any distribution over the parameters 𝛽
• What if we assume 𝛽 ∼ 𝑁 0, 𝜎(𝐼  (the 𝑑 dimensional normal distribution)?

• Consider the modified likelihood

 𝐿 𝛽; 𝑍 = 𝑝(,!∣+ 𝑌, 𝛽 𝑋
 𝐿(𝛽;𝑍)= 𝑝(∣+,! 𝑌 𝑋, 𝛽 ⋅ 𝑁 𝛽; 0, 𝜎'𝐼 	

 𝐿 𝛽; 𝑍 = ∏"$%
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Regularization as a Prior

• So far, we have not assumed any distribution over the parameters 𝛽
• What if we assume 𝛽 ∼ 𝑁 0, 𝜎(𝐼  (the 𝑑 dimensional normal distribution)?

• Consider the modified NLL

 ℓ 𝛽; 𝑍 = −∑"$%& log 𝑝! 𝑦" 𝑥" + log 𝜎 2𝜋 + ! "
"

',"

• Obtain 𝐿'regularization on 𝛽!
• With 𝜆 = %

()!
• If 𝛽# ∼ Laplace 0, 𝜎(  for each 𝑖, obtain 𝐿%regularization

constant regularization!



Additional Role of Regularization

• In 𝑝!, if we replace 𝛽 with 𝑐 ⋅ 𝛽, where 𝑐 ≫ 1 (and 𝑐 ∈ ℝ), then:
• The decision boundary does not change
• The probabilities 𝑝! 𝑦 𝑥  become more confident

𝑝! 𝑦 𝑥 𝑝%*! 𝑦 𝑥

𝑝!"# 𝑌 = 1 𝑥 ≈ 1𝑝# 𝑌 = 1 𝑥 ≈ 0.6



Additional Role of Regularization

• Regularization ensures that 𝛽 does not become too large
• Prevents overconfidence

• Regularization can also be necessary
• Without regularization (i.e., 𝜆 = 0) and data is linearly separable, then 

gradient descent diverges (i.e., 𝛽 → ±∞)



Multi-Class Classification

• What about more than two classes?
• Disease diagnosis: healthy, cold, flu, pneumonia
• Object classification: desk, chair, monitor, bookcase
• In general, consider a finite space of labels 𝒴

𝑥1

𝑥2



Multi-Class Classification

• Naïve Strategy: One-vs-rest classification
• Step 1: Train 𝒴  logistic regression models, where model 𝑝!" 𝑌 = 1 𝑥  is 

interpreted as the probability that the label for 𝑥 is 𝑦
• Step 2: Given a new input 𝑥, predict label 𝑦 = arg	max

"#
𝑝!"# 𝑌 = 1 𝑥



Multi-Class Logistic Regression

• Strategy: Include separate 𝛽8  for each label 𝑦 ∈ 𝒴 = {1,… , 𝑘}

• Let 𝑝! 𝑦 𝑥 ∝ 𝑒!$%9, i.e.

𝑝! 𝑦 𝑥 =
𝑒!$%9

∑8&∈𝒴 𝑒
!$&
% 9

• We define softmax 𝑧%, … , 𝑧< =
='(

∑)*(
+ =')

… ='+
∑)*(
+ =')

• Then, 𝑝! 𝑦 𝑥 = softmax 𝛽%#𝑥,… , 𝛽<#𝑥 8
• Thus, sometimes called softmax regression



Multi-Class Logistic Regression

• Model family

• 𝑓! 𝑥 = arg	max
"

𝑝! 𝑦 𝑥 = arg	max
"

+$"
%&

∑"#∈𝒴 +
$
"#
% &

= arg	max
"

𝛽"'𝑥

• Optimization
• Gradient descent on NLL
• Simultaneously update all parameters 𝛽" "∈𝒴



Classification Metrics

• While we minimize the NLL, we often evaluate using accuracy

• However, even accuracy isn’t necessarily the “right” metric
• If 99% of labels are negative (i.e., 𝑦# = 0), accuracy of 𝑓! 𝑥 = 0 is 99%!
• For instance, very few patients test positive for most diseases
• “Imbalanced data”

• What are alternative metrics for these settings?



Classification Metrics

• Classify test examples as follows:
• True positive (TP): Actually positive, predictive positive
• False negative (FN): Actually positive, predicted negative
• True negative (TN): Actually negative, predicted negative
• False positive (FP): Actually negative, predicted positive

• Many metrics expressed in terms of these; for example:

accuracy =
𝑇𝑃 + 𝑇𝑁

𝑛
	 error = 1 − accuracy =

𝐹𝑃 + 𝐹𝑁
𝑛
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Classification Metrics

• For imbalanced metrics, we roughly want to disentangle:
• Accuracy on “positive examples”
• Accuracy on “negative examples”

• Different definitions are possible (and lead to different meanings)!



Sensitivity & Specificity

• Sensitivity: What fraction of actual positives are predicted positive?
• Good sensitivity: If you have the disease, the test correctly detects it
• Also called true positive rate

• Specificity: What fraction of actual negatives are predicted negative?
• Good specificity: If you do not have the disease, the test says so
• Also called true negative rate

• Commonly used in medicine
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Precision & Recall

• Recall: What fraction of actual positives are predicted positive?
• Good recall: If you have the disease, the test correctly detects it
• Also called the true positive rate (and sensitivity)

• Precision: What fraction of predicted positives are actual positives?
• Good precision: If the test says you have the disease, then you have it
• Also called positive predictive value

• Used in information retrieval, NLP
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Classification Metrics

• How to obtain a single metric?
• Combination, e.g., 𝐹%	score =

(⋅012345467⋅123899
012345467:123899

 is the harmonic mean

• More on this later

• How to choose the “right” metric?
• No generally correct answer
• Depends on the goals for the specific problem/domain



Optimizing a Classification Metric

• We are training a model to minimize NLL, but we have a different 
“true” metric that we actually want to optimize

• Two strategies (can be used together):
• Strategy 1: Optimize prediction threshold threshold
• Strategy 2: Upweight positive (or negative) examples



Optimizing Prediction Threshold

• Consider hyperparameter 𝜏 for the threshold:

𝑓! 𝑥 = 1 𝛽#𝑥 ≥ 0



Optimizing Prediction Threshold

• Consider hyperparameter 𝜏 for the threshold:

𝑓! 𝑥 = 1 𝛽#𝑥 ≥ 𝜏



Optimizing Prediction Threshold

𝑥!

𝑥 $

1 𝛽'𝑥 ≥ 0
1 𝛽'𝑥 ≥ 1 1 𝛽'𝑥 ≥ 2

1 𝛽'𝑥 ≥ −1

1 𝛽'𝑥 ≥ −2

• higher sensitivity
• lower specificity

positivenegative



Visualization: ROC Curve
Each point on this 
curve corresponds 
to a choice of 𝜏
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Optimizing Prediction Threshold

• Consider hyperparameter 𝜏 for the threshold:

𝑓! 𝑥 = 1 𝛽#𝑥 ≥ 𝜏

• Unlike most hyperparameters, we choose this one after we have 
already fit the model on the training data
• Then, choose the value of 𝜏 that optimizes the desired metric
• Fit using validation data (training data is OK if needed)



Optimizing Prediction Threshold

• Step 1: Compute the optimal parameters h𝛽 𝑍BCDEF
• Using gradient descent on NLL loss over the training dataset
• Resulting model: 𝑓G! H)*+,- 𝑥 = 1 P𝛽 𝑍I1847 '𝑥 ≥ 0

• Step 2: Modify threshold 𝜏 in model to optimize desired metric
• Search over a fixed set of 𝜏 on the validation dataset
• Resulting model: 𝑓G! H)*+,- ,KL H.+/ 𝑥 = 1 P𝛽 𝑍I1847 '𝑥 ≥ �̂� 𝑍M89

• Step 3: Evaluate desired metric on test set



Choice of Metric Revisited

• Common strategy: Optimize one metric at fixed value of another

speciSicity = 0.9

Choose 𝜏 corresponding 
to model at this point



Optimizing a Classification Metric

• We are training a model to minimize NLL, but we have a different 
“true” metric that we actually want to optimize

• Two strategies (can be used together):
• Strategy 1: Optimize prediction threshold threshold
• Strategy 2: Upweight positive (or negative) examples



Class Re-Weighting

• Weighted NLL: Include a class-dependent weight 𝑤8:

ℓ 𝛽; 𝑍 = −/
"$%

&

𝑤8) ⋅ log 𝑝! 𝑦" 𝑥"

• Intuition: Tradeoff between accuracy on negative/positive examples
• To improve sensitivity (true positive rate), upweight positive examples
• To improve specificity (true negative rate), upweight negative examples

• Can use this strategy to learn 𝛽, and the first strategy to choose 𝜏 



Classification Metrics

• NLL isn’t usually the “true” metric
• Instead, frequently used due to good computational properties

• Many choices with different meanings

• Typical strategy:
• Learn 𝛽 by minimizing the NLL loss
• Choose class weights 𝑤" and threshold 𝜏 to optimize desired metric


