
Upcoming Deadlines

• Quiz 4 due 10/5 at 8pm

• HW 3 due 10/11 at 8pm

• Project details on Wednesday
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Decision Tree Shortcomings

# days with fever >= 2?

child age > 3? no
macrolides

no
macrolides

prescribe
macrolides

FT

FT

Decision tree example from: Mar3gnon and Mon3. (2010). 
Condi3ons for risk assessment as a topic for probabilis3c 
educa3on. Proceedings of the Eighth Interna2onal Conference 
on Teaching Sta2s2cs (ICOTS8).



Decision Tree Shortcomings

• Hard to manage bias-variance tradeoff
• Small depth à High bias, low variance
• Large depth à Small bias, high variance



𝐝𝐞𝐟	PostPruneTree 𝑇, 𝑍!"#$%, 𝑍&#' : 
 𝐟𝐨𝐫	𝐞𝐚𝐜𝐡	internal	node	𝑁	of	𝑇:

  𝑇( ← Replace 𝑇, 𝑁, LeafNode Mode 𝑍!"#$% 𝑁

  𝑔( ← Loss 𝑇, 𝑍&#' − Loss 𝑇(, 𝑍&#'
 𝑁) ← arg	max

(
𝑔(

 𝐢𝐟	𝑔(! > 0:
  𝐫𝐞𝐭𝐮𝐫𝐧	PostPruneTree 𝑇(, 𝑍!"#$%, 𝑍&#'
 𝐞𝐥𝐬𝐞:
   𝐫𝐞𝐭𝐮𝐫𝐧	𝑇

Post Pruning

# days with fever ≥ 2?

child age ≥ 3?

no
macrolides

prescribe
macrolides
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FT

child age ≥ 1?
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macrolides

no
macrolides
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Post Pruning

# days with fever ≥ 2?

child age ≥ 3?

no
macrolides

prescribe
macrolides
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𝐝𝐞𝐟	PostPruneTree 𝑇, 𝑍!"#$%, 𝑍&#' : 
 𝐟𝐨𝐫	𝐞𝐚𝐜𝐡	internal	node	𝑁	of	𝑇:

  𝑇( ← Replace 𝑇, 𝑁, LeafNode Mode 𝑍!"#$% 𝑁

  𝑔( ← Loss 𝑇, 𝑍&#' − Loss 𝑇(, 𝑍&#'
 𝑁) ← arg	max

(
𝑔(

 𝐢𝐟	𝑔(! > 0:
  𝐫𝐞𝐭𝐮𝐫𝐧	PostPruneTree 𝑇(, 𝑍!"#$%, 𝑍&#'
 𝐞𝐥𝐬𝐞:
   𝐫𝐞𝐭𝐮𝐫𝐧	𝑇



Decision Tree Shortcomings

• Hard to manage bias-variance tradeoff
• Small depth à High bias, low variance
• Large depth à Small bias, high variance
• What if a different decision boundary would have worked?

• Can we manage this tradeoff in a more principled way?

• Idea: Random forests
• Grow large decision trees
• Rather than prune, average many of them!



Random Forests

…



Random Forests

• Train many decision trees and average them!
• Large depth à High variance, low bias
• Averaging many decision trees à average away “irrelevant” variance

• Very powerful model family in practice



Ensembles

• More generally, ensembles are an effecNve strategy for miNgaNng the 
bias-variance tradeoff

• Approaches so far:
• Different model family
• Feature engineering

• Ensembles:
• Combine models to reduce bias without increasing variance



Ensemble Learning

• Step 1: Learn a set of “base” models 𝑓!, … , 𝑓"

• Step 2: Construct model 𝐹 𝑥  that combines predictions of 𝑓!, … , 𝑓"



Example: Netflix Movie Recommendations

• Goal: Predict how a user will rate a movie based on:
• The user’s ratings for other movies
• Other users’ ratings for this movie (and others)
• No features!

• Netflix Prize (2007-2009): $1 million for the first team to do 10% 
better than the existing Netflix recommendation system

• Winner: BellKor’s Pragmatic Chaos
• An ensemble of 800+ rating systems



Ensembles of Decision Trees

• Strategy 1: Random forests

• Strategy 2: Gradient boosted decision trees

• Among the most powerful and widely-used models for “tabular” data 
(i.e., not images, text, graphs, or other highly structured data)



Ensemble Design Decisions

• How to learn the base models?

• How to combine the learned base models?



Ensemble Design Decisions

• How to learn the base models?

• How to combine the learned base models?



Combining Learned Base Models

• Regression: Average predictions 𝐹 𝑥 = !
"
∑#$!" 𝑓# 𝑥

• Works well if the base models have similar performance

𝑥 𝐹(𝑥)

𝑓!

…

𝑓"

+



Combining Learned Base Models

• Classification: Majority vote 𝐹 𝑥 = 1 ∑#$!" 𝑓# 𝑥 ≥ "
%

 (for binary)
• Can also average probabilities for classification

𝑥 𝐹(𝑥)

𝑓!

…

𝑓"

+



Combining Learned Base Models

• Can use weighted average:

𝐹 𝑥 =,
#$!

"

𝛽# ⋅ 𝑓# 𝑥

• Can fit weights using linear regression on second training set

• More generally, can fit a second layer model

𝐹 𝑥 = 𝑔& 𝑓! 𝑥 ,… , 𝑓" 𝑥



Combining Learned Base Models

• Second model as “mixture of experts”:

𝐹 𝑥 =,
#$!

"

𝑔 𝑥 # ⋅ 𝑓# 𝑥

• Second stage model predicts weights over “experts” 𝑓# 𝑥



Combining Learned Base Models

• Second model as “mixture of experts”:
• Special case: 𝑔 𝑥  is one-hot
• Advantage: Only need to run 𝑔 𝑥  and 𝑓Q R 𝑥

𝑥

𝑓!

…

𝑓"

𝑔

𝐹 𝑥 = 𝑓# 𝑥

𝑖 = 𝑔 𝑥



Ensemble Design Decisions

• How to learn the base models?

• How to combine the learned base models?



Ensemble Design Decisions

• How to learn the base models?

• How to combine the learned base models?



Learning Base Models

• Successful ensembles require diversity
• Different model families
• Different training data
• Different features
• Different hyperparameters

• IntuiNon: Models should make independent mistakes



Learning Base Models

• IntuiNon: Models should make independent mistakes
𝑥S 𝑥T 𝑥U 𝑥V

acc =
3
4

acc =
3
4

acc =
3
4

acc = 1 − 1 −
3
4

*

− 3 ⋅
3
4 ⋅ 1 −

3
4

+

≈ 0.84𝐹



Learning Base Models

• Intuition: Models should make independent mistakes
𝑥S 𝑥T 𝑥U 𝑥V

acc =
3
4

acc =
3
4

acc =
3
4

𝐹 acc → 1 as 𝑘 → ∞ 



Learning Base Models

• Ensemble can be built from different learning algorithms
• Example: Decision tree, logisYc regression, kNN, …

• What if we want an ensemble of decision trees?
• Issue: Decision tree learning algorithm is determinisYc
• Solu;on: Randomize the learning algorithm (may sacrifice performance)!

• Randomize decisions inside learning algorithm
• Example: Randomize splits weighted (somehow) by informaYon gain
• Issue: Very specific to the algorithm
• Solu;on: Randomize input to learning algorithm (i.e., training data)!



Randomizing Learning Algorithms

• Bagging: Randomize training data (“Boostrap AggregaNng”)
• Random examples: Subsample examples 𝑥, 𝑦  (obtain 𝑋 ∈ ℝc!×e) 

Random features: Subsample features 𝑥f (obtain 𝑋 ∈ ℝc×e!)

• Meta-strategy that can build ensembles from arbitrary base learners

• Can be thought of as a form of regularizaNon



Bootstrap

• Subsample examples 𝑥, 𝑦  with replacement (obtain 𝑋 ∈ ℝ'×))

• Excludes 1 − !
'

'
 of the training examples

• Separately in each of the replicates
• As 𝑛 → ∞, excludes → S

g
≈ 36.8% examples

• Has good statistical properties



Randomizing Learning Algorithms

...
Original

Training Data
Bootstrap Replicates
of the Training Data



Ensemble Learning

• Step 1: Create bootstrap replicates of the original training dataset

• Step 2: Train a classifier for each replicate

• Step 3 (OpNonal): Use held-out validaNon set to weight models
• Can just use average predicYons



Ensemble Learning

Original
Training Data ...

𝛽S 𝛽T 𝛽h

...



Random Forests

• Ensemble of decision trees using bagging
• Typically use simple average (over probabiliYes for classificaYon)

• IntuiNon:
• Large decision trees are good nonlinear models, but high variance
• Random forests average over many decision trees to reduce variance without 

increasing bias



Random Forests

• Tweak 1: Randomize features in learning algorithm instead of bagging
• At DT node splitting step, subsample ≈ 𝑑 features
• Allows each tree to use all features, but not at every node
• Aside: If a few features are highly predictive, then they will be selected in 

many trees, causing the base models to be highly correlated

• Tweak 2: Train unpruned decision trees
• Ensures base models have higher capacity
• Intuition: Skipping pruning increases variance



Bias Variance Tradeoff for Random Forests

• Naïvely, skipping pruning yields high variance

• Introduce randomness to average away “excess” variance
• Without randomness, all models in the random forest would be the same 

(large) decision tree, so the random forest would still have very large variance

• Randomness should ideally make base models more independent



AdaBoost (Freund & Schapire 1997)

• Like bagging, meta-algorithm that turns base models into ensemble
• Provably learns for base models achieving any error rate > 0.5

• Uses different training example weights (instead of different 
subsamples or different features) to introduce diversity
• In particular, upweights currently incorrectly predicted examples

• Base models should satisfy the following:
• High-bias/low-capacity (e.g., depth-limited decision trees, linear classifiers)
• Able to incorporate sample weights during learning
• Specific to classification (discuss general losses later)



AdaBoost (Freund & Schapire 1997)

• Input
• Training dataset 𝑍
• Learning algorithm Train 𝑍,𝑤  that can handle weights 𝑤
• Hyperparameter 𝑇 indicaYng number of models to train

• Output
• Ensemble of models 𝐹 𝑥 = ∑ijSk 𝛽i ⋅ 𝑓i 𝑥



Aside: Learning with Weighted Examples

• Many algorithms can directly incorporate weights into the loss

• For maximum likelihood estimation:

ℓ 𝛽; 𝑍, 𝑤 =,
#$!

'

𝑤# ⋅ log 𝑝& 𝑦# 𝑥#

• Alternatively, can subsample the data proportional to weights 𝑤#



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

size represents weight 𝑤l



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –

focus on linear classifiers 𝑓i 

𝑡 = 1



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –

𝑡 = 1
𝛽i becomes larger as 
𝜖i becomes smaller



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –

𝑡 = 1
Use convention 𝑦l ∈ −1,+1
If correct (𝑦l = 𝑓i 𝑥l ) then multiply by 𝑒mn"
If incorrect (𝑦l ≠ 𝑓i 𝑥l ) then multiply by 𝑒n"



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –

𝑡 = 1



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –
+   –

𝑡 = 2



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –
+   –

𝑡 = 2



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –
+   –

𝑡 = 2



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –

+  –

+   –

𝑡 = 3



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –

+  –

+   –

𝑡 = 3



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –

+  –

+   –

𝑡 = 3



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  

+ 

+ 
+  

+ 

+  

+  + 
+ 

+ + 

𝑡 = 𝑇Under certain assumptions, training error 
goes to zero in 𝑂 log 𝑛 	iterations



AdaBoost

1.  𝑤! ←
!
'
, … , !

'
 (𝑤!,#  weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5.      𝛽+ ←

!
%
ln !,-!

-!
6.      𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2"  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  

+ 

+ 
+  

+ 

+  

+  + 
+ 

+ + 

final model is average of base models 
weighted by their performance



AdaBoost Weighting Strategy

• On each iteration:
• Misclassified examples are upweighted
• Correctly classified are downweighted

• If an example is repeatedly misclassified, it will eventually be 
upweighted so much that it is correctly classified

• Emphasizes “hardest” parts of the input space
• Instances with highest weight are often outliers



AdaBoost and Overfitting

• Basic ML theory predicts AdaBoost always overfits as 𝑇 → ∞
• Hypothesis keeps growing more complex!
• In practice, AdaBoost often does not overfit

𝑇	 = 	5
𝑇	 = 	100
𝑇	 = 	1000

Train

Test
AdaBoost on OCR data with 

C4.5 as the base learner



AdaBoost Summary

• Strengths:
• Fast and simple to implement
• No hyperparameters (except for 𝑇)
• Very few assumptions on base models

• Weaknesses:
• Can be susceptible to noise/outliers when there is insufficient data
• No way to parallelize
• Small gains over complex base models
• Specific to classification!



Boosting as Gradient Descent

• Set of heuristics inspired by AdaBoost



BoosRng as Gradient Descent

• Both algorithms: new	model = old	model + update

• Gradient Descent:

𝜃+.! = 𝜃+ − 𝛼 ⋅ ∇4𝐿 𝜃+; 𝑍

• Boosting:

𝐹+.! 𝑥 = 𝐹+ 𝑥 + 𝛽+.! ⋅ 𝑓+.! 𝑥

• Here, 𝐹+ 𝑥 = ∑#$!+ 𝛽# ⋅ 𝑓# 𝑥



BoosRng as Gradient Descent

• Assuming 𝛽+ = 1 for all 𝑡, then:

𝐹+ 𝑥# + 𝑓+.! 𝑥# = 𝐹+.! 𝑥# ≈ 𝑦#



Boosting as Gradient Descent

• Assuming 𝛽+ = 1 for all 𝑡, then:

𝐹+ 𝑥# + 𝑓+.! 𝑥# = 𝐹+.! 𝑥# ≈ 𝑦#

• Rewriting this equation, we have

𝑓+.! 𝑥# = 𝐹+.! 𝑥# − 𝐹+ 𝑥# ≈ 𝑦# − 𝐹+ 𝑥#

“residuals”, i.e., error of the current model



Boosting as Gradient Descent

• In other words, at each step, boosNng is training the next model 𝑓+.! 
to approximate the residual:

𝑓+.! 𝑥# ≈ 𝑦# − 𝐹+ 𝑥#

• Idea: Train 𝑓+.! directly to predict residuals 𝑦# − 𝐹+ 𝑥#

• This strategy works for regression as well!

“residuals”, i.e., error of the current model



BoosRng as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1,… , 𝑇 :
• Step 1: Train 𝑓ipS using dataset

𝑍+.! = 𝑥# , 𝑦# − 𝐹+ 𝑥# #$!
'

• Step 2: Take

𝐹+.! 𝑥 = 𝐹+ 𝑥 + 𝑓+.! 𝑥

• Return the final model 𝐹3



Boosting as Gradient Descent

• Consider losses of the form

𝐿 𝐹; 𝑍 =
1
𝑛
,
#$!

'

]𝐿 𝐹 𝑥# ; 𝑦#

• In other words, sum of individual label-level losses ]𝐿 �̂�; 𝑦  of a 
predicNon �̂� = 𝐹 𝑥  if the ground truth label is 𝑦

• For example, ]𝐿 �̂�; 𝑦 = !
%
𝑦	̂ − 𝑦 % yields the MSE loss



Boosting as Gradient Descent

• Residuals are the gradient of the squared error ]𝐿 𝑦, �̂� = !
%
𝑦 − �̂� %:

−
𝜕]𝐿
𝜕�̂�

𝐹+ 𝑥# ; 𝑦# = 𝑦# − 𝐹+ 𝑥# = residual5

• For general ]𝐿, instead of 𝑥# , 𝑦# − 𝐹+ 𝑥# #$!
'

 we can train 𝑓+.! on

𝑍+.! = 𝑥# , −
𝜕]𝐿
𝜕�̂�

𝐹+ 𝑥# ; 𝑦#
#$!

'
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Boosting as Gradient Descent

• Casts ensemble learning in the loss minimizaNon framework
• Model family: Sum of base models 𝐹k 𝑥 = ∑ijSk 𝑓i 𝑥
• Loss: Any differenYable loss expressed as

𝐿 𝐹; 𝑍 =,
#$!

'

]𝐿 𝐹 𝑥# , 𝑦#

• Gradient boosNng is a general paradigm for training ensembles with 
specialized losses (e.g., most NLL losses)



Gradient Boosting in Practice

• Gradient boosting with depth-limited decision trees (e.g., depth 3) is 
one of the most powerful off-the-shelf classifiers available
• Caveat: Inherits decision tree hyperparameters

• XGBoost is a very efficient implementation suitable for production use
• A popular library for gradient boosted decision trees
• Optimized for computational efficiency of training and testing
• Used in many competition winning entries, across many domains
• https://xgboost.readthedocs.io

https://xgboost.readthedocs.io/

