
CIS 4190/5190: Applied Machine Learning Fall 2024

Homework 4

Handed Out: Nov 6th Due: 7:59pm Nov 20th

• You are encouraged to format your solutions using LATEX. Handwritten solutions are
permitted, but remember that you bear the risk that we may not be able to read your
work and grade it properly — we will not accept post hoc explanations for illegible
work. You will submit your solution manuscript for written HW 4 as a single PDF file.

• The homework is due at 7:59 PM on the due date. We will be using Gradescope
for collecting the homework assignments. Please submit your solution manuscript as a
PDF file via Gradescope. Post on Ed Discussion and contact the TAs if you are having
technical difficulties in submitting the assignment.

• Make sure to assign pages to each question when submitting homework to Gradescope.
The TA may deduct 0.2 points per sub-question if a page is not assigned to a question.

1 Written Questions

Note: You do not need to show work for multiple choice questions. If formatting your answer
in LATEX, use our LaTeX template hw4 template.tex (This is a read-only link. You’ll
need to make a copy before you can edit. Make sure you make only private copies.).

1. [Text Generation/Language Modeling] (10 pts) Text generation is a popular application
and area of research in NLP. In this problem, we will look at a specific yet common
scenario of text generation, where you want to generate a sentence by sampling words
from an autoregressive language model (such as GPT1). Given the first k prompt
words {w1, w2, ..., wk} from left-to-right order in a sentence, an autoregressive language
model outputs the probability distribution of the next word conditioned on the prompt
words: P (wk+1|w1, w2, ..., wk). A complete sentence can be generated by iteratively
sampling words from the next word probability distributions until an end-of-sentence
indicator (such as period “.”) is reached. But how should we sample the words from
P (wk+1|w1, w2, ..., wk)?

In this question, we will compare two different sampling strategies and learn the in-
tuition behind them with a toy example. Suppose you are interested in generating a
sentence that starts with the word “Bob”. You are given an autoregressive language
model with only 5 words in vocabulary - {Bob, loves, hates, cherry, cookie}.
You tried the following three prompts, and here are the three conditional probability
distributions of the next word you get. For all subquestions, assume that you only
want to generate the next two words after “Bob”.

1Free web demo of a GPT-3 like model - https://6b.eleuther.ai/

1

https://www.overleaf.com/read/vpczbmvcnfxx#0fe4f8
https://6b.eleuther.ai/

Next Word Probability
loves 0.50
hates 0.40
cookie 0.06
cherry 0.03
Bob 0.01

Table 1: P (w1|Bob)

Next Word Probability
cookie 0.40
Bob 0.25

cherry 0.20
hates 0.12
loves 0.03

Table 2: P (w2|Bob,loves)

Next Word Probability
cherry 0.70
cookie 0.20
Bob 0.08
loves 0.01
hates 0.01

Table 3: P (w2|Bob,hates)

(a) (1 pts) Suppose we use the greedy sampling strategy, that is, always sample the
word with highest conditional probability as the next word. What will be the
sentence you generated (i.e. “Bob” plus the next two words)?

(b) (3 pts) Naturally, your goal with text generation is to generate the most probable
sentence out of your vocabulary. In other words, you want to sample the sentence
which maximizes the joint probability of P (w1, w2|w0 = Bob). While deriving
the exact probability distribution with RNN models is in most cases NP-hard
2, people commonly use the natural log-sum of the next-word probability as an
approximation to the log-likelihood of the sentence; In other words:

ln(P (w1|w0 = Bob)) + ln(P (w2|w0 = Bob, w1)) (1)

Use the above formula to estimate the log-likelihood of the following two sentences
“Bob loves cookie” and “Bob hates cookie”.

(c) (2 pts) From the last question, do you think the greedy sampling strategy will
always give you the most probable sentence? Why or why not?
(Hint: Let’s take the reasonable assumption that sentences with higher estimated
log-likelihood from Eq. 1 are more probable.)

(d) (4 pts) Let’s consider an alternative sampling strategy called beam search. In-
stead of always taking the highest probability word, let’s say we take the top-2 3

words instead. In our case for w1, this would give us two beam hypotheses “Bob
loves” and “Bob hates”.

For the w2, we sample the top two words for the two beam hypotheses respectively,
which gives us the following four hypotheses.

2https://aclanthology.org/N18-1205.pdf
3k=2 for Top-k here is a tunable parameter, and the correct jargon for this is: beam search with beam

size of two

2

https://aclanthology.org/N18-1205.pdf

• Bob loves cookie

• Bob loves Bob

• Bob hates cherry

• Bob hates cookie

The next step would be estimating the log-likelihood of the four hypotheses,
and we will be keeping the top-2 highest probability hypotheses and iteratively
generate the next words. Which two hypotheses among the above four should we
keep in this case? In other words, which two have the top-2 highest estimated
log-likelihood among the above four? Show your computation (for the ones that
you haven’t computed before).

2. [Attention Mechanism] (10 pts) In this problem, we will walk through how dot-product
attention weights we introduced in class are calculated. Suppose we have a Sequence-
to-Sequence machine translation (MT) model from English to Dothraki, where the
hidden states for the encoder and decoder RNNs have size of 4. We input the English
sentence “Dragons eat apple too” into the MT model, and below are the values
of the hidden states we get from the model in the encoder.

Name Input Word Hidden State
h1 Dragons [0.7, 0.2, 0.3, 0.1]
h2 eat [0.2, 0.7, 0.3, 0.1]
h3 apple [0.0, 0.6, 0.4, 0.3]
h4 too [0.1, 0.1, 0.0, 0.9]

Table 4: Encoder hidden state values h1, ..., h4

Suppose the first word that the MT model generates in the decoder is “Zhavvorsa”,
and the hidden state value for the word is s1 = [0.5, 0.2, 0.4, 0.1]. You are welcome
(and encouraged!) to use electronic devices to help with calculations in this question.

(a) (3 pts) Calculate the dot-product attention scoresE1 4 for the word “Zhavvorsa”.
Recall that the definition of dot-product attention score is

Et = [sTt h1, ..., s
T
t hN] ∈ RN (2)

(b) (4 pts) Use the attention scores derived in (a), derive the attention distribution
α1 for “Zhavvorsa”. Recall that

αt = softmax(Et) = [
es

T
t h1∑N

k=1 e
sTt hk

, ...,
es

T
t hN∑N

k=1 e
sTt hk

] (3)

4Denoted lowercased e1 in lecture slides. Using uppercase here to avoid confusion with the Euler number
e in 3

3

(c) (3 pts) The attention distribution will be used as weights in a weighted summation
when computing the attention output. With α1 you derived in the last sub-
question, take the weighted sum of the encoder hidden state to compute the
attention output a1.

3. [Value Iteration] (10pts)

Let’s imagine a graph navigation MDP with the following structure:

a← b↔ c↔ d↔ e↔ f ↔ g → h

where each node is a state, and the arrows represent the possible action an agent can
take to traverse the graph. States a, h are terminal states, so the episode ends upon
reaching them.

The agent gets 100 reward for reaching a, 30 reward for reaching h, and 0 everywhere
else.

R(st, at, st+1) =


100 if st+1 = a

30 if st+1 = h

0 otherwise

(a) (1pts) The agent starts at state f , and the discount factor is 1.0. What is the
optimal action at state f?

(b) (1pts) The agent starts at state f , and the discount factor is 0.5. What is the
optimal action at state f?

(c) (2pts) The agent starts at state f . What discount factor would result in both
actions being equally likely? Show your work and give the answer rounded to 2
decimal places (e.g. 0.98).

(d) (2 pts) Follow the pseudo-code in Fig. 4.3 of this article to help your computation.
Write out the V (s) of each state after one round of value iteration, i.e. one pass
of the outer loop in Fig. 4.3. Loop over the states from left to right, initialize the
values to 0, and use a discount factor of 1.

(e) (2 pts) Write out the V (s) of each state after one round of value iteration. Loop
over the states from right to left, initialize the values to 0, and use a discount
factor of 1.

(f) (2 pts) How many rounds of VI would it take for V to converge if we only did left
to right updates? And how many rounds for convergence if we only did right to
left updates?

4. [Reinforcement Learning] (7 pts) Consider a deterministic grid world shown in the
figure 1 with an “absorbing” state G: any action performed at this state leads back
to the same state. The immediate rewards are 10 for the labeled transitions and 0 for
the unlabelled transitions. The discount factor γ = 0.8.

(a) (1.5 pts) Show the optimal policy by drawing arrows corresponding to optimal
actions for each cell in the grid. Note that the optimal policy need not be unique.

4

https://lcalem.github.io/blog/2018/09/24/sutton-chap04-dp#44-value-iteration

(b) (1.5 pts) Compute the optimal V-value function V ∗ for the top left state (column
1, row 2) in this grid world.

(c) (4 pts) Now, consider applying the Q-learning algorithm to this grid world. As-
sume the table of Q-values is initialized to zero, and α = 0.1. Assume the agent
begins in the bottom left grid square and then travels clockwise along the perime-
ter of the grid until it reaches the absorbing goal state, completing the first training
episode. Describe which Q-values are modified as a result of this episode, and give
their revised values.

Figure 1: Gridworld

5. [Reward Function] (4 pts) Imagine that you are designing a robot to run a maze. You
decide to give it a reward of +1 for escaping the maze and a reward of zero at all
other times. The task seems to break down naturally into “episodes” – the successive
runs through the maze that terminate when you reach the goal (as in the gridworld
example). So you decide to treat it as an episodic task, where the goal is to maximize
expected total reward in the episode Rt = rt+1 + rt+2 + rt+3 + . . .+ rT , where T is the
final time step of an episode. Suppose at some point during training the policy learnt
solves the maze but does so inefficiently, missing several shortcuts.

Will further training fix the policy to learn a more efficient route? If yes, explain the
reason. If not, suggest a fix.

5

	Written Questions

